
cells

Article

Transcryptomic Analysis of Human Brain-Microvascular
Endothelial Response to -Pericytes: Cell Orientation Defines
Barrier Function

Lisa Kurmann 1, Michal Okoniewski 2 , Omolara O. Ogunshola 3, Brigitte Leeners 1, Bruno Imthurn 1

and Raghvendra K. Dubey 1,4,*

����������
�������

Citation: Kurmann, L.; Okoniewski,

M.; Ogunshola, O.O.; Leeners, B.;

Imthurn, B.; Dubey, R.K.

Transcryptomic Analysis of Human

Brain-Microvascular Endothelial

Response to -Pericytes: Cell

Orientation Defines Barrier Function.

Cells 2021, 10, 963. https://doi.org/

10.3390/cells10040963

Academic Editors: Alexander

E. Kalyuzhny and Georg Breier

Received: 30 March 2021

Accepted: 16 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
lisa.kurmann@usz.ch (L.K.); brigitte.leeners@usz.ch (B.L.); bruno.imthurn@uzh.ch (B.I.)

2 ID Scientific IT Services, ETH Zurich, 8092 Zurich, Switzerland; michal.okoniewski@id.ethz.ch
3 Zurich Center Integrative Physiology (ZIHP), Vetsuisse Faculty, Institute of Veterinary Physiology,

University of Zurich, 8057 Zurich, Switzerland; larao@access.uzh.ch
4 Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
* Correspondence: Raghvendra.dubey@usz.ch

Abstract: Pericytes facilitate blood–brain barrier (BBB) integrity; however, the mechanisms involved
remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and
vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we inves-
tigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We
provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs.
Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant up-
regulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated
genes showed significant regulation of several pathways, including transforming growth factor-β
and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system
signaling, receptor of advanced glycation end products (RAGE), and cytokine–cytokine receptor
interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cy-
tokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine
proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on
the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC
co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated)
and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the
first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and
integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules
and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known
to improve barrier function, including TGF-β regulated ECM pathway, anti-inflammatory cytokines,
growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro
model for investigating BBB function and drug transport.

Keywords: pericyte; hCMEC/D3; co-culture; blood–brain barrier; orientation; transcriptome; condi-
tioned media; micro array

1. Introduction

The neurovascular unit (NVU) constitutes a highly evolved network of many different
cell types that together form a selectively permeable boundary between the systemic
circulation and the interstitial fluid of the brain, the so-called blood–brain barrier (BBB).
In addition to a single layer of endothelial cells (ECs), also astrocytes, pericytes (PCs),
microglia and neurons hold critical functions in maintaining the integrity of the vessel
wall [1,2]. PCs have long been an overlooked player in the field of BBB research. More
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recently, however, these mural cells have gained increasing attention as several studies
have revealed the importance of PCs with regard to a properly functioning endothelial
barrier. In vivo studies using viable pericyte-deficient mouse models provide evidence
that PCs are critical for BBB formation and PC loss results in severe vessel leakage [1,2].
Additionally, PC degeneration is associated with several central nervous system (CNS)
disorders such as Alzheimer’s disease, stroke or amyotrophic lateral sclerosis (ALS) [3].
Apart from PC depletion, disturbed signaling between ECs and PCs contributes to barrier
leakage and disease states. Communication between the two cell types is known to occur
via paracrine signaling involving a plethora of soluble factors, but also direct cell-to-cell
contacts in form of so-called peg-socket interactions, gap junctions and adhesion plaques
play a significant role [4].

Transport across the endothelial barrier can be partitioned into two major pathways:
paracellular and transcellular [5]. The paracellular permeability is restricted to small,
water-soluble molecules with a Stoke’s radius of less than 3 to 6 nm and is regulated by
a complex interplay between different junctional proteins and the actin cytoskeleton of
cells [5,6]. Transcellular routes, which include the steps of endocytosis, transport across
the cell lumen and exocytosis, are mainly responsible for macromolecular transport. The
uptake of molecules can be carrier- or receptor-mediated or non-specific via adsorption-
mediated endocytosis or pinocytosis [5,7]. Understanding the regulatory mechanisms of
transport pathways across the endothelial barrier is of great importance, particularly in the
field of drug delivery into the central CNS. Several promising therapeutics developed for
CNS diseases have failed in clinical trials due to the lack of an appropriate delivery system
across the BBB [7,8].

Due to the high complexity of in vivo data analysis, researchers make use of different
in vitro models for the BBB that include a combination of two or more cell types of the
NVU [9]. Although these models represent a vastly simplified picture of the in vivo
situation, they are of great importance when it comes to understand the contribution
of a single cell type to the function of the BBB [9]. Using such simplified 2D models,
many studies have improved our basic understanding of how PCs affect the function of
the endothelial barrier and, importantly, the mechanisms behind it [10–12]. Observed
variations in published data may in part be explained by the various possibilities of
assembling EC-PC co-culture models in different constellations.

To test our hypothesis that PCs interact with ECs to improve barrier function, we first
investigated the impact of different spatial arrangements of ECs and PCs on the function
of the endothelial barrier. Specifically, we seeded the PCs on the opposite side of the
endothelial cell layer on the basolateral side of the transwell insert (indirect) or together
with the ECs on the apical side in direct contact. Moreover, a non-contact model with PCs
plated on the well surface was also included. Additionally, we added pericyte-conditioned
media (PCM) to inserts culturing endothelial monolayers in order to evaluate the effect of
soluble factors secreted by PCs. Using different approaches for measuring barrier function,
we assessed whether PCs modulate para- and/or transcellular transport pathways in ECs.
Furthermore, using transcriptomic gene expression analysis and proteome arrays, we
explored potential signaling pathways and modulatory molecules by which PCs improve
EC barrier function.

2. Materials and Methods
2.1. Cell Culture

hBVPs: Human Brain Vascular Pericytes (HBVPs, ScienCell, CA, USA) between 4–10th
passage were cultured in Poly-L-Lysine- (PLL-) coated flasks (2 µg/cm2) under standard
tissue culture conditions (37 ◦C, 5% CO2) in growing media consisting of DMEM/F12
supplemented with antibiotic-antimycotic (AA; 100 µg/mL streptomycin, 100 µg/mL
penicillin and 0.025 µg/mL amphotericin B), Glutamax (1×) and 10% FBS. Media was
changed every two or three days until sub-confluency.
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hCMEC/D3: The human Cerebral Microvascular Endothelial Cell line (hCMEC/D3) [13]
was kindly provided by Dr. Pierre-Olivier Couraud (Institute COCHIN, Paris, France).
Cells between 34th and 39th passage were cultured on rat-tail-collagen-coated (250 µg/mL
in 80% EtOH) flasks under standard tissue culture conditions (37 ◦C, 5% CO2) in com-
plete growing media (EC basal media (EndoGRO Basal Medium supplemented with 0.2%
EndoGRO-LS Supplement, 5 ng/mL rh EGF, 4 mM L-Glutamine, 0.75 U/mL Heparin
Sulfate, 50 µg/mL Ascorbic Acid, 1 ng/mL bFGF, antibiotic-antimycotic (100 µg/mL strep-
tomycin, 100 µg/mL penicillin and 0.025 µg/mL amphotericin B))) supplemented with 5%
FBS. Media was changed every two or three days, and cells were passaged after confluency
was reached.

hASMC: Human Coronary Artery Smooth Muscle Cells (LONZA, Walkersville, MD,
USA) between 6–9th passage were cultured in non-coated flasks under standard tissue
culture conditions (37 ◦C, 5% CO2) in growing media consisting of M231 culture medium
supplemented with antibiotic-antimycotic (AA; 100 µg/mL streptomycin, 100 µg/mL
penicillin and 0.025 µg/mL amphotericin B) and SMGS (5% v/v FCS, 2 ng/mL human basic
Fibroblast Growth Factor, 0.5 ng/mL human Epidermal Growth Factor, 5 ng/mL Heparin,
5 µg/mL insulin and 0.2 µg/mL BSA). Media was changed every two or three days until
sub-confluency.

2.2. Barrier Function Studies

Determination of endothelial cell barrier function was achieved by three different
methods: Trans-endothelial electric resistance measurements (TEER), macromolecular
tracer assays and electric cell substrate impedance measurements.

2.3. Transendothelial Electric Resistance (TEER)

For TEER measurements in real-time, a cellZcope instrument (nanoAnalytics GmbH,
Münster, DE) was used. Permeable transparent PET membrane inserts of 0.4 µm pore size
and 24-well format (Corning Incorporated, NY, USA, Falcon 353095) were coated with
poly-L-Lysine on the basolateral side and with rat tail collagen (250 µg/mL in 80% EtOH)
on the apical side for 1h at 37 ◦C and washed twice with sterile H2O, before they were
incubated for another hour in PC growing media (5% FBS). For the co-culture models,
hBVPs were seeded either on the basolateral or on the apical side of the insert at a density of
25,000 cells/cm2. After adherence of the PCs was achieved (3 h), hCMEC/D3 were seeded
in the apical chamber at a cell density of 100,000 cells/cm2 in 150 µL EndoGro growing
media. This set-up allows the two cell types to form direct contacts through the pores of the
membrane [14]. Media in the basolateral chamber consisted of PC growing media (5% FBS).
After 3 days, media was changed to 2% FBS and hydrocortisone (1 µg/mL) was added.
For measurements, inserts were added to the cellZcope instrument (lower chamber: 1 mL
media, upper chamber: 0.5 mL media). Establishment of a proper barrier function was
monitored by recording resistance values of the inserts every hour, and treatments, when
necessary, were only applied once the cells reached a stable baseline. All measurements
were normalized to the values of a coated insert without any cells and results are depicted
in% of control or in absolute TEER values in ohm*cm2.

2.4. Macromolecular Tracer Assay

For the macromolecular tracer assay, cells were seeded into the inserts as described
above. Treatments, when necessary, were only applied after cells reached stable TEER
baseline as was determined by measurements with the cellZcope instrument. FITC-labeled
dextran molecules (1 mg/mL in media) of two different sizes (4 and 40 kDa) were added
to the upper chamber of the inserts in 100 µL/insert, with 500 µL of media in the ba-
solateral chamber. Samples (100 µL) were collected from the basolateral chamber after
40 min and added to a fluoro-block 96-wellplate. Fluorescent intensity was determined by
using a Tecan Spectrofluorometer reader (Tecan, Salzburg, AU) (excitation at 490 nm and
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emission at 520 nm). Relative fluorescent intensity was determined by normalizing to the
control sample.

2.5. Electric Cell Substrate Impedance Sensing (ECIS)

Impedance measurements were performed with the xCELLigence RTCA system
(Omni Life Sciences, Basel, CH). Wells of 16-well E-plates were coated with 40 µL rat-
tail-collagen (250 µg/mL in 80% EtOH) and/or PLL (2 µg/cm2) for 1 h at 37 ◦C, washed
2× with sterile ddH2O and subsequently incubated with 50 µL of EC growing media
for at least 1 h in the tissue culture incubator. The baseline was measured in each well
according to manufacturer’s protocol, before hCMEC/D3 cells were seeded at a density of
100,000 cells/cm2 in 100 µL growing media. Impedance was recorded in real time every
hour or as specified and was converted to the dimensionless parameter cell index (arbitrary
unit) by the xCELLigence RTCA software. Noted values on the y-axis were labeled as cell
index (or normalized cell index, if normalized to the timepoint before treatment).

2.6. Conditioned Media (CM)

Pericyte (PC-) and smooth muscle cell (SMC-) CM.
HBVPs and hASMCs were cultured in 75 cm2- (or 25 cm2-) culturing flasks in growing

media until confluency was reached. After 2 washing steps with HBSS (+Mg2+ +Ca2+),
10 mL (or 3.3 mL) serum-free DMEM/F12 supplemented with Glutamax (1×) was added for
24 h. CM was collected and centrifuged at 1000× g for 10 min at 4 ◦C. The supernatant was
carefully collected, aliquoted and frozen immediately at ×80 ◦C until further use. Control
consisted of non-conditioned media, which was not added to cells, but prepared at the same
time as the CM and otherwise treated identically. For CM-treatments, the collected CM was
supplemented with Glutamax (1×), antibiotic-antimycotic (AA; 100 µg/mL streptomycin,
100 µg/mL penicillin and 0.025 µg/mL amphotericin B) and 5% or 2% FBS, depending on
the experiment.

Co-Culture-Conditioned Media (Co-CM)

HBVPs were cultured on the basolateral side of transwell inserts with or without
endothelial cells on the apical side for 5 days, before inserts were removed (same media
conditions as used in normal co-culture experiments on inserts). New inserts containing
established endothelial monolayers were then added to the wells containing conditioned
media.

2.7. Cell Count

hCMEC/D3 cells were plated in 48-wellplates and allowed to grow to confluence
before treatment was added for the specified period of time. Thereafter, cells were washed
2× with HBSS (-Mg2+ -Ca2+), trypsinized with 0.5% trypsin and counted with a Coulter
Counter (Coulter Electronics, Luton, UK). Relative cell number was assessed by normaliz-
ing to the control treated samples.

2.8. Crystal Violet Staining (CVS)

hCMEC/D3 cells were plated in 48-wellplates and allowed to grow to confluence.
After treatment, paraformaldehyde (PFA, 4%) was added to the media (1:1) for 2 min,
before media was removed and fresh PFA (4%) was added for 15 min at RT without
shaking. Subsequently, cells were washed once with HBSS (+Mg2+ +Ca2+), and twice with
ddH2O for 3 min each wash. Crystal violet staining (CVS) solution (0.5% aqueous solution
in 25% Methanol) was added for 10 min at RT while shaking slightly. Cells were washed
extensively with ddH2O until no coloring of the water was visible anymore. Solubilization
of the cells was achieved by adding 1% SDS aqueous solution while shaking at RT for about
5 to 10 min. The solution was transferred to a 96-wellplate for reading the absorbance at
595 nm using a Tecan Spectrofluorometer reader (Tecan, Salzburg, AU).
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2.9. Microarray Analysis

For the microarray samples, ECs were seeded alone or with PCs on the opposite
side of permeable PET membrane inserts of 0.4 µm pore size and 6-well format (Corning
Incorporated, NY, USA, Costar 3450). After 7 days in culture (2% steroid-free FCS (charcoal-
stripped) in presence of hydrocortisone), cells were trypsinized, centrifuged and lysed
in 300 µL RNA lysis buffer (Zymo Research, CA, USA). Samples were frozen at −80 ◦C
until further processing. Total RNA was then extracted by using the Quick-RNA MiniPrep
Kit (ZymoResearch, CA, USA, R1055) according to the manufacture’s protocol. RNA
integrity was checked by calculating the ratio of absorbance at 260 nm and 280 nm/230 nm,
respectively. The samples were frozen at −80 ◦C for microarray analysis using Affymetrix
Clariom S Assay, human (Applied Biosystems by Thermo Fisher Scientific Inc, OK, USA,
902927) as previously described [15]. For transcriptome analysis, fragmented biotin-labeled
ds cDNA was hybridized to Clariom™ S arrays (Clariom™ S arrays, human). After
staining, arrays were scanned with Affymetrix Gene-Chip Scanner-3000-7G while quality
control analysis was performed using GeneChip Command Console Software (GCC) v5.0.
Transcriptome analysis was done at the transcriptomics core facility at the Center for
Molecular Medicine Cologne (CMMC). Differentially regulated genes were determined
with the Transcriptome Analysis Console (TAC, Applied Biosystems by Thermo Fisher
Scientific Inc, OK, USA) after uploading the CEL files, based on a foldchange cut-off of
± 1.5 (Log2 FC ± 0.59) and FDR P-value of 0.05. Pathway analysis was performed using
NCATS BioPlanet on the Enrichr website, which includes more than 1600 human pathways
from publicly available sources [16]. The microarray data are deposited in the public Gene
Expression Omnibus (GEO) database under the accession no. GSE168514 (access date 19th
April 2021).

2.10. Cytokine Proteome Array

For analysis of cytokine expression in co- and mono-cultured ECs, the Proteome
Profiler Human XL Cytokine Array Kit (R&D Systems, MN, USA, ARY022B) was used.
Cells were grown exactly as described in the microarray section above. After trypsinization
and centrifugation, the pellet was lysed in lysis buffer 17 (R&D Systems, MN, USA) sup-
plemented with aprotinin, leupeptin and pepstatin (10 µg/mL each), and after processing
according to the user’s manual, they were frozen at −80 ◦C until further use. Incubation
of the ready-to-use membranes was done o/n with equal amounts of samples (175 µg
in 1.5 mL), as was determined by BCA analysis. The following detection of the proteins
was performed exactly as described in the user’s manual and for the exposure of the
membranes Hyperfilm ECL (Amersham, CH) were used in a CAWOMAT 2000 IR film
developer (Wiroma AG, Niederscherli, CH). Experiment was performed two times with
independently prepared samples. Signal density of each spot was determined with the
imageJ software after background subtraction and values represented in the graphs denote
mean values of each protein from the two experiments.

2.11. Western Blot Analysis

For Western blot analysis, cells were grown exactly as described in the microarray
section above. After trypsinization and centrifugation, the pellet was lysed in lysis buffer
(containing 20 mM Tris pH 7.5, 1% Triton X- 100, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA,
2.5 mM sodium phosphate, 1 mM β-glycerophosphate, 1 mM sodium vanadate, 0.5 PMSF
and 0.2% SDS). Concentration of each sample was determined with the Pierce bicinchoninic
acid (BCA) Assay Kit according to the manufacturer’s protocol. Equivalent amounts (10 µg)
of protein from whole-cell lysates were separated on 10% SDS-polyacrylamide gels. After
transfer to a nitrocellulose membrane by the method of wet electroblotting, the membrane
was blocked with 5% milk at RT for 1h. Incubation with the primary antibody was
performed o/n at 4 ◦C. After washing, the membrane was incubated with the secondary
antibody for 1h at RT and washed again. For detection of proteins with IR Dyes, the
Odyssey LI-COR system (LI-COR, Nebraska, USA) was used. For peroxidase-conjugated
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secondary antibodies, chemiluminescent substrates (Pierce, Rockford, USA) were added
according to manufacturer’s instruction. Peroxidase activity was detected by exposing the
membranes to XOMAT LS films, which were developed with the CAWOMAT 2000 IR film
developer (WIROMA AG, Niederscherli, CH).

2.12. Statistical Analysis

Experiments were performed at least 3 times, and data are represented as mean ± SD
unless stated otherwise. Statistical evaluation was performed by using R. If ANOVA
assumptions were met parametric testing was performed with one-way ANOVA and
subsequent Tukey’s HSD multiple pairwise comparisons. If either one of the ANOVA as-
sumptions were not met, non-parametric testing was performed with Kruskal–Wallis rank
sum test and subsequent pairwise Wilcoxon-test with Benjamini–Hochberg corrections
for multiple comparisons. Microarray data analysis was performed with the Transcrip-
tome Analysis Console (TAC, Applied Biosystems), which uses generalized linear models
(Limma-based, eBayes). The generation of probe set intensity values was performed by
‘Signal Space Transformation’ (SST)-RMA normalization method and background correc-
tion.

3. Results
3.1. Preliminary Experiments

In the following, the barrier function of endothelial cells (ECs) is measured by three
different methods: trans-endothelial electric resistance measurements (TEER), macromolec-
ular tracer assays and electric cell substrate impedance sensing (ECIS) with the xCELLi-
gence system. While the first two systems are well established and most-commonly used
for in vitro barrier function measurements, the used ECIS system (xCELLigence RTCA) is
usually used for monitoring cell growth, adherence or motility. However, several studies
have also applied the same system for measuring barrier function [17–20]. In the Supple-
mentary Materials, we provide measurements that demonstrate the usability of the system
and show that for example hydrocortisone, a well-known barrier-inducer [21], increases
barrier function as measured with this system. To demonstrate barrier disruption, we used
hypoxic conditions as well as the inflammatory mediator thrombin to show a decrease in
the measured barrier function (Supplementary Figure S1).

3.2. Effect of Different Co-Culture Arrangements on Barrier Function

In a first step, we examined the effect of different spatial pericyte-endothelial cell
(PC-EC) arrangements on barrier function. ECs were always plated on the apical side of
the transwell inserts, while PCs were plated either on the basolateral side (“indirect”) or on
the apical side in direct contact with ECs (direct). For the direct model, cells were plated
in two different constellations: PCs plated first (PC_EC direct) or ECs plated first (EC_PC
direct) (Figure 1).

In order to assess the impact of the different models on the barrier function, TEER
was measured by means of a cellZcope instrument. In addition, the permeability of the
barrier towards FITC-labelled dextran molecules in different sizes (4 kDa and 40 kDa)
was assessed.

As the ratio of PCs to ECs can vary greatly according to different locations and sources
even within the brain [3,4,22], barrier function was assessed using different ratios of PCs
to ECs (1:1, 1:2 and 1:4), all of which increased the barrier function to a similar extent
(Supplementary Figure S2). In subsequent experiments, a ratio of 1:4 (PCs:ECs) was used.

Growing the cells in the indirect co-culture model resulted in a significant upregulation
of resistance measurements and a simultaneous decrease in permeability towards FITC-
dextran, if compared to an endothelial monolayer (Figure 2b,c). This clearly indicates
that the barrier function is enhanced in presence of PCs. In order to assess whether the
observed improvement is not only due to the additional cell layer, co-culture experiments
with smooth muscle cells (SMCs) instead of PCs were also performed. SMCs had no effect
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on barrier function as can be derived from Figure 2d. Additionally, the measured TEER
value of co-cultured cells was higher than cumulative values for EC and PC monocultures
(Supplementary Figure S3).

Figure 1. Schematic illustration of the experimental design of BBB models that were used in this study. “EC_only“:
endothelial cells (ECs) are plated on the apical side of a 24-well-plate insert with a pore-size of 0.4 µm. “indirect“: Pericytes
(PCs) are plated on the basolateral side of the insert, and in a second step (after 3 h), ECs are plated on the apical side,
allowing contact of the two cell types through the membrane. “PC_EC direct“: PCs are plated on the apical side of inserts
first, and after 3 h, ECs are plated on top of PCs. “EC_PC direct“: ECs are plated first, and after 3 h, PCs are seeded on top
of them.

Figure 2. Pericytes (PCs) increase barrier function of endothelial cells (ECs). Schematic representation of the indirect
co-culture model (a) ECs were cultured on transwell inserts alone (EC_only) or with PCs (indirect) (b,c) and SMCs (d) on
the basolateral side of the insert (indirect). Cells were cultured for 7 days before barrier function was assessed. Relative
trans-endothelial electric resistance (TEER) measurements were performed with a CellZcope instrument (b). Relative
fluorescence intensity measured by macromolecular tracer assay with FITC-labeled dextran molecules of 40 and 4 kDa
(c). Representative real-time TEER measurement of ECs alone and in co-culture with PCs or SMCs (d). Experiments were
performed at least three times in triplicates and data represent mean ± sd. **** p < 0.0001, compared to “EC_only”.



Cells 2021, 10, 963 8 of 23

If PCs were cultured on the same side of the insert together with ECs, TEER measure-
ments were lower than in EC monolayers, which was accompanied by a higher permeability
towards tracer molecules. This observation was irrespective of seeding order (Figure 3a,b)
and also applied when PCs were seeded on top of an established EC monolayer (Supple-
mentary Figure S4a). The results of the direct co-cultures were further verified by means of
ECIS measurements with the xCELLigence system in real-time. Impedance measurements
were significantly lower if PCs were co-cultured together with ECs in any seeding order
with direct contact (Figure 2c, Supplementary Figure S4b).

Figure 3. Measurements of endothelial barrier function with and without pericytes (PCs) in different constellations.
Endothelial cells (ECs) were cultured on transwell inserts alone (EC_only), with PCs on the opposite side of the insert
(indirect) or on the same side (PC_EC direct: PCs seeded first; and EC_PC direct: ECs seeded first). Cells were cultured
for 7 days before barrier function was assessed. Relative trans-endothelial electric resistance (TEER) measurements with a
CellZcope instrument (a). Relative fluorescence intensity measured by macromolecular tracer assay with FITC-dextran
4 kDa (b); results for 40 kDa FITC-dextran are comparable (data not shown). Representative ECIS measurements in real-time
with the xCELLigence System: ECs were seeded into eplates 3 h before PCs were added on top (c). Experiments have
been performed at least three times in triplicates and data represent mean ± sd. ** p < 0.01, **** p < 0.0001, compared to
“EC_only”.

3.3. Effect of Pericyte-Conditioned Media on Barrier Function

To assess a possible involvement of soluble factors secreted by PCs, the barrier func-
tion of EC monolayers was measured after treatment with PC-conditioned media (PCM)
in different set-ups. Treating an established endothelial monolayer with PCM in the ba-
solateral chamber for three days did not have a significant impact on barrier function
(Supplementary Figure S5) as measured by TEER and tracer assays. To test whether a
prolonged treatment with PCM is necessary for barrier improvement, ECs were treated
with PCM as soon as seeded into the inserts. Contrary to our expectations, the barrier
function was significantly compromised as shown by a reduction in TEER and by an
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increased permeability to 4 kDa FITC-dextran (Figure 4b,c). The permeability to bigger
FITC-dextran molecules, however, was not affected (40 kDa) (Figure 4d). A similar effect
was observed when PCs were plated on the bottom of the well-plate with no direct contact
to ECs (non-contact model) as is shown by a decrease in TEER (Supplementary Figure S6).
This non-contact model reflects a similar condition as the prolonged PCM treatment. Fur-
thermore, the effect of conditioned media from co-cultured and mono-cultured PCs was
compared with respect to barrier function. By treating EC monolayers with PCM from
co-cultured and mono-cultured PCs on the basolateral side for 3 days, no differential effect
on barrier function was observed (Supplementary Figure S7).

Figure 4. Measurements of endothelial barrier function after prolonged basolateral PCM treatment. Endothelial cells (ECs)
were plated on transwell inserts with EC growing media in the apical chamber and PCM in the basolateral chamber (a).
Relative TEER measurements (b) and macromolecular tracer assays with FITC-labeled dextran of 4 and 40 kDa (c,d) were
performed after 7 days in culture. Measurements were performed at least three times in triplicates and data represent mean
± sd. ns p > 0.05, * p < 0.05, **** p < 0.0001.

PCM treatment on the apical side of an established EC monolayer led to a significant
decrease after only 6 h of treatment as shown by real-time impedance measurement as
well as TEER measurements (Figure 5a,b). These findings are further supported by an
increase in permeability towards FITC-dextran molecules of 4 and 40 kDa (Figure 5c,
40 kDa as representative for both FITC-dextran sizes). When ECs were apically treated with
conditioned media from SMCs, the same effect was observed (Supplementary Figure S8).
This suggests a general rather than a pericyte-specific influence, which is more likely related
to EC’s apico-basal polarity.
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Figure 5. Measurements of endothelial barrier function after apical PCM treatment of an EC monolayer. ECs were cultured
in eplates (a) or on transwell inserts (b,c). After a stable barrier function was established (6–7 days), PCM was added to
the apical side for 24 h. Representative real-time ECIS measurements with the xCELLigence system (a), relative trans-
endothelial electric resistance (TEER) measurements with a CellZcope instrument (b) and macromolecular tracer assays
with FITC-labeled dextran of 40 kDa (representative also for 4 kDa) (c). Experiments were performed at least three times in
triplicates and data represent mean ± sd. *** p < 0.001, **** p < 0.0001.

For the purpose of investigating whether the effect of apical PCM treatment is a result
of reduced cell viability, crystal violet staining (CVS) as well as cell counting experiments
were performed. The results of both assays clearly showed that PCM treatment did not
decrease cell viability after 6 or 48 h of treatment (Supplementary Figure S9).

3.4. Gene Expression Array

In order to deepen our knowledge about genes which play a role in improving barrier
function in co-cultured cells, transcriptomic analysis of ECs cultured alone and in the
indirect co-culture model with PCs was performed by means of a microarray. Differentially
regulated genes (DRGs) were determined by comparison of gene expression in co- vs.
mono-cultured cells (Supplementary Figure S10). Quality control by means of principle
component analysis (PCA) of the different samples shows a clear-cut difference between
samples from EC mono- and co-cultures (Supplementary Figure S11). A total of 160 DRGs
were detected, with 122 genes down- and 38 genes upregulated (Figure 6a,b). A list of the
top ten genes up- and downregulated in co-cultured ECs is provided in the Supplementary
Materials (Supplementary Tables S1 and S2).



Cells 2021, 10, 963 11 of 23

Figure 6. Differentially regulated genes (DRGs). Number of DRGs in co-cultured vs. mono-cultured endothelial cells (ECs).
A total of 38 genes were upregulated, while 122 genes were downregulated (a). Pie chart representation of the same data
as in (a) denoting up-and downregulated genes in% of total number of DRGs (b). Heat map representation of DRGs (c).
Comparison of gene expression data in co-cultures vs. mono-cultured ECs was performed by using Transcriptome Analysis
Console (TAC, Applied Biosystems). For the analysis, a fold change (FC) cut-off of 1.5 (log2FC ± 0.59) and an FDR p-value
of 0.05 were applied.

Pathway enrichment analysis on DRGs revealed a major impact of co-culture on extra
cellular matrix (ECM) regulation as well as on changes of inflammatory pathways (Table 1).

Table 1. Pathway enrichment analysis of differentially regulated genes (DRGs) between endothelial cell co-cultures and
monocultures.

Pathway Overlap Adj. p-Value

TGF-beta regulation of extracellular matrix 40/565 9.37E-23
Interleukin-1 regulation of extracellular matrix 16/120 2.98E-12

Gastrin pathway 9/44 4.41E-08
TNF-alpha effects on cytokine activity, cell motility, and apoptosis 12/135 5.55E-07

Interleukin-5 regulation of apoptosis 12/144 9.32E-07
Interleukin-2 signaling pathway 26/847 2.30E-06

Immune system signaling by interferons, interleukins, prolactin, and growth hormones 15/280 3.02E-06
Fos-related antigen (FRA) pathway 7/37 3.93E-06

Oncostatin M 14/311 6.16E-05
Interferon alpha/beta signaling 7/64 1.57E-04

Interferon signaling 10/168 2.09E-04
Fibroblast growth factor 1 5/26 2.75E-04

T cell receptor regulation of apoptosis 18/603 3.63E-04
Thymic stromal lymphopoietin (TSLP) pathway 7/90 0.00112

Receptor of advanced glycation end products (RAGE) pathway 6/60 0.00107
Cytokine-cytokine receptor interaction 11/265 0.00138

Hypertrophy pathway 4/20 0.00182
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Table 1. Cont.

Pathway Overlap Adj. p-Value

Activator protein 1 (AP-1) transcription factor network 6/70 0.00219
Epidermal growth factor receptor 1 (EGFR1) pathway 8/152 0.00336

Cytosolic tRNA aminoacylation 4/24 0.00330
Type II interferon signaling (interferon-gamma) 5/50 0.00430

Ataxia-telangiectasia mutated (ATM)-dependent DNA damage response 6/82 0.00441
TNF-like weak inducer of apoptosis (TWEAK) regulation of gene expression 4/27 0.00465

Follicle-stimulating hormone (FSH) regulation of apoptosis 10/263 0.00475
Folate metabolism 5/63 0.0110

Analysis was performed using NCATS BioPlanet on the Enrichr website. Second column describes number of regulated genes compared to
total number of genes in the pathway and the p-value adjusted for multiple testing is noted in the last column. DRGs were determined
based on a fold change (FC) cut-off of 1.5 (log2FC ± 0.59) and an FDR p-value of 0.05.

Possible influential DRGs with regard to barrier function based on literature search
are shown in Table 2. The list includes several pro-inflammatory cytokines like IL-1-α,
IL-1-β, IL-32 and chemokine ligands-5, -6, -8 and -10 as well as VEGF-C, which are all
transcriptionally downregulated in co-cultured cells. Other soluble factors regulated in
co-cultured ECs comprise TGF-β2, the NOTCH ligand jagged-1 as well as BMP-4 and
BMP-6. When looking at known junctional proteins, we found occludin and claudin-1 to
be downregulated significantly on the transcriptional level upon co-culture. Furthermore,
cell membrane receptors for leptin and lysophosphatidic acid are up- and downregulated,
respectively. Additionally, co-cultured cells differentially express many ECM constituents,
several of which are TGF-β -regulated, such as latent TGF-β binding protein 1, serpins,
biglycan and tissue plasminogen activator.

Table 2. List of differentially regulated genes (DRGs) potentially linked to barrier function [23–27].

Gene Gene Description
log2 FC
(co- vs.

Monoculture)

FDR
p-Value

Soluble mediators
CXCL8 Chemokine (C-X-C motif) ligand 8 −3.7 1.68E-07
CXCL5 Chemokine (C-X-C motif) ligand 5 −2.2 0.0009
CXCL6 Chemokine (C-X-C motif) ligand 6 −1.9 0.036

CXCL10 Chemokine (C-X-C motif) ligand 10 −1.5 0.0045
IL1B Interleukin 1 beta −2.4 0.0003
IL1A Interleukin 1 alpha −1.4 0.0021
IL32 Interleukin-32 −1.7 0.0002

VEGFC Vascular endothelial growth factor C −1.3 0.0016
TGFB2 Transforming growth factor beta 2 1.1 0.016
BMP4 Bone morphogenetic protein 4 1.5 0.0048
BMP6 Bone morphogenetic protein 6 1.4 0.0021

Junctional Proteins
CLDN1 Claudin-1 −2.0 4.69E-05
OCCL Occludin −1.1 0.034

ECM Proteins

ADAMTS6 ADAM metallopeptidase with
thrombospondin type 1 motif 6 −1.3 0.0008

LAMB3 Laminin beta 3 −1.9 0.0008

SERPINE1
Serpin peptidase inhibitor, calde E

(nexin, plasminogen activator
inhibitor, type 1)

−1.6 0.0012

PLAU Plasminogen activator, urokinase −1.5 0.0019
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Table 2. Cont.

Gene Gene Description
log2 FC
(co- vs.

Monoculture)

FDR
p-Value

LTBP1 Latent transforming growth factor
beta binding protein 1 −1.1 0.0022

EFEMP1 EGF containing fibulin-like ECM
protein1 0.86 0.0125

SERPINA3 Serpin peptidase inhibitor, calde A
(alpha-1 antiproteinase, antitrypsin) 1.6 0.0252

BGN Biglycan 1.5 0.0348

Cell surface proteins
JAG1 Jagged 1 −1.2 0.020

LPAR1 Lysophosphatidic acid receptor 1 −1.3 0.0009
LEPR Leptin receptor 1.1 0.0092

Log2 Fold Changes (log2FC) of gene expression levels in co-cultured vs. mono-cultured endothelial cells and
adjusted p-values are depicted in the third and fourth column, respectively.

To validate some of our gene expression results also on the protein level (Supplemen-
tary Figure S10), we performed a membrane-based antibody array. Since we observed
a high number of DRGs related to inflammation, we decided to use the Proteome Pro-
filer Human XL Cytokine Array Kit, which detects the expression of 105 proteins. This
membrane-based antibody array detects the relative protein expression levels by means of
chemiluminescence, therefore, we used two different exposure times (3 min and 25 min)
to capture more and less abundantly expressed proteins. Among the highly expressed
proteins, co-culture does not seem to induce big changes, with the only exception of epi-
dermal growth factor (EGF), which was downregulated by 81% (Figure 7a and Table 3).
However, regulated proteins detected following prolonged exposure include different
cytokines (IL-1-α, IL-1-β, IL-3) and chemokines of the CXC-motif ligands CXCL1, CXCL5,
CXCL10, CXCL11, CXCL12, CXCL8 (Figure 7c,d; Table 3). In EC-PC co-cultures, a strong
modulation in IL binding proteins was observed with decrease of 100% in IL-18-BP and
an increase of 83% in IL-1-R4 (Figure 7d and Table 3). Interestingly, in co-cultured cells
hepatocyte growth factor (HGF) increased by 164% and PDGF-AB/-BB by 31%. We also
observed a 44–50% decrease in expression of granulocyte-macrophage colony-stimulating
factor (CSF-2 and CSF-3) and kallikrein-3. Results are also depicted in Table 3, together
with a color-code denoting if the detected protein expression levels correspond with the
mRNA levels detected by the microarray.

Table 3. List of differentially expressed proteins using a cytokine proteome array.

Protein Array Coordinates Protein Regulation mRNA Regulation

CXCL1 D1 −55% down (ns)
CXCL5 C2 −34% down
CXCL8 E4 −25% down

CXCL10 F10 −61% down
CXCL11 F11 −59% nr
CXCL12 H12 −31% up (ns)

IL-1-a D8 −64% down
IL-1-b D9 −34% down

IL-1-Ra D10 −50% nr
IL-1-R4 I3 +83% up

IL-3 D12 −100% nr
IL-18-BP E12 −100% nr

PDGF-AB/-BB H4 +31% nr
HGF D3 +164% nr

MIC-1 C10 −47% nr
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Table 3. Cont.

Protein Array Coordinates Protein Regulation mRNA Regulation

CSF-2 C11 −46% nr
CSF-3 C9 −44% nr

Kallikrein 3 F12 −53% nr
PECAM1 (CD31) J4 +14% nr

SERPIN E1 I1 +16% down
Pentraxin 3 H5 −27% down

EGF B10 −81% nr
Endoglin C3 +10% up (ns)
PLAUR I10 −11% down (ns)
DPPIV B9 −17% nr

ICAM-1 D4 +16% nr
MIF G7 +20% nr

Emmprin B11 +7% nr
List of differentially expressed proteins using a cytokine proteome array (membrane-based, chemiluminescent
detection). Array coordinates are shown in the second column for localization of spots in Figure 7b,d. Column 3
denotes the observed change in protein expression in co-cultures in relation to protein levels in mono-cultures.
Analysis was performed with the image processing software ImageJ (including background subtraction). The
last column denotes regulation of the corresponding mRNA levels upon co-culture, as was determined by
the microarray (upregulated (up); downregulated (down); not regulated (nr); ns: non-significantly with a p-
value < 0.05, but FDR p-value > 0.05). Matching transcriptomic and proteomic results are color-coded in green,
opposing results are highlighted in orange.

Figure 7. Differential expression of several cytokines in mono- and co-cultured endothelial cells (ECs). Proteome analysis
has been performed using the Proteome Profiler Human XL Cytokine Array Kit using equal amounts of cell lysates from
ECs cultured alone (EC only) and in co-cultures with pericytes (EC co). Representative array blots are shown after a short
exposure time of 3 min (b) and after long exposure time of 25 min (d). Bar graphs show the average signal intensities of
the framed spots on the array blots and include measurements of two independent experiments at high (a) and low (c)
exposure times, respectively. The legends on the right of the array blots denote the proteins as numbered in the respective
blots. Analysis was performed with the image processing software ImageJ (including background subtraction). Experiment
was performed twice with independent samples.
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4. Discussion

In this study, we present a fully human in vitro model for the blood brain barrier (BBB)
by co-culturing the cerebral microvascular endothelial cell line (hCMEC/D3) with primary
brain vascular pericytes (hBVP) grown on opposite sides of a porous transwell membrane
to maintain basolateral contact through the 0.4 µm pores. Studies with co-culture models
often make use of pure animal or a mixture of animal and human cell types, which may be
of a poor predictive value for translation into human physiology [28,29]. It is essential to
understand the mechanism of barrier function in fully human models of the BBB as there
are key differences in the morphology and function between animal and human cells in
the brain [29]. Although cell-cell junctional units are complex, the 2D EC-PC model used
provides a simple and inexpensive setup to explore the relative contribution of single cell
types in regulating BBB function [9,29]. More recently, complex 3D models and spheroids
with human induced pluripotent stem cells have been developed [22,28,29]. However,
spheroids do not allow for TEER measurements, and the assembly of such models is
expensive and complex.

The observed increase of barrier function in endothelial cells (ECs) cultured with
pericytes (PCs) on the opposing side of a transwell insert is in agreement with several
previous studies [11,12,21,30]. The fact that the permeability to higher molecular weight
dextrans (40 kDa) is decreased in presence of PCs indicates that trans-cellular transport
pathways are affected in our co-culture model as such large molecules most probably
travers the endothelium via non-specific transcytosis [31]. This observation is in agreement
with a previous study showing increased trans-cellular pathways in pericyte-deficient
mice [1,2]. The observed increase in TEER and the decreased permeability to 4 kDa
dextrans further imply that PCs affect para-cellular transport of ECs by potentially inducing
and/or maintaining the function of junctional complexes between neighboring cells [32,33].
Given the small hydrodynamic radius of 4 kDa FITC dextran of 1.4 nm, passage of this
tracer via the paracellular pathway is feasible [34]. In addition, even though transporters
and channels in the cell membrane also affect the ohmic resistance of a cell layer, at low
frequency measurements the contribution of cellular junctions predominates, which infers
that cellZcope measurements largely reflect paracellular transport characteristics [35].

Our findings on EC-barrier function using the cellZcope instrument were comparable
to those observed using xCELLigence ECIS system, which allows overall assessment of
various aspects of cell behavior including adhesion and barrier strength in EC monolayers
grown directly on gold-plated electrodes. The xCELLigence electrodes can measure acute
temporal changes in barrier resistance across EC monolayer as well as paracellular and
basolateral resistance and is more sensitive for assessing barrier function in cell lines [36].
However, the xCELLigence system does not allow the co-culture of cells with basolateral
contact for barrier integrity measurements, as was possible with cellZcope.

To better understand the mechanisms involved in the strengthening of endothelial
barrier function by PCs, we performed gene expression analysis on co- and mono-cultured
ECs. To the best of our knowledge, this is the first study comparing the transcriptomic
profile of ECs cultured alone and ECs co-cultured with PCs on the opposite side of a
transwell insert with basolateral surface of both cells in direct contact with each other. In a
previous transcriptomic study in ECs, the ECs and PCs are co-cultured in a non-contact
model (EC’s on membrane and PCs on the culture well surface), thus allowing only contact
with soluble factors [37].

4.1. Effect of Co-Culture on Inflammatory Profile of ECs

In the present study, the most striking change observed in the transcriptomic analysis
was the downregulation of several inflammatory cytokines in ECs co-cultured with PCs
compared to EC monocultures. This was also highly reflected in the results from path-
way analysis, with a great number of regulated pathways in co-cultured cells related to
inflammation. This includes obvious inflammatory pathways induced by inflammatory
mediators like interferons, interleukins or TNF-α, but also receptor of advanced glycation
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end products- (RAGE-) and FOS-related antigen- (FRA-) pathways comprise an inflamma-
tory component [38,39]. Apart from the so-called homeostatic cytokines (such as CXCL12,
CCL20 or XC3XL), which are expressed at normal or even high levels under physiologic
conditions [40], pro-inflammatory cytokines are secreted at high concentrations in response
to different inflammatory stimuli and have been shown to exert negative effects on the
BBB [24,41,42]. In the present study, the decreased pro-inflammatory profile of ECs co-
cultured with PCs is one possible reason for improved barrier function in co-cultures [24].
The fact that most of the transcriptionally regulated cytokine mRNAs also show a cor-
responding trend in the protein expression highlights the significance of the observed
changes. It further confirms the reliability of our microarray data by demonstrating that the
transcriptional regulation also triggers changes in corresponding protein levels. Compared
to most other cytokines, we did not observe congruent changes in gene and protein expres-
sion of CXCL12, which may be due to posttranscriptional regulation commonly observed
in cytokines [43]. Our results indicate that co-culture with PCs contributes to maintaining
a low inflammatory profile by downregulation of several pro-inflammatory cytokines on
the transcriptional as well as on the protein level.

The above notion is further supported by the fact that many different interleukins and
chemokine CXC-motif ligands, which are upregulated following ultrasound and infection
induced barrier disruption [23,42,44], were downregulated in ECs co-cultured with PCs.
Moreover, in co-cultured ECs, we observed a decrease in IL-18-binding protein and an
increase in IL-1-R4. Since IL-18 is protective against BBB-disruption [45], a decrease in
IL-18-BP would increase IL-18 availability and result in increased protective actions on the
BBB. With regard to IL-1-R4 (also called ST2), which is a decoy receptor for IL-33 and blocks
its function [46,47], upregulation in its expression may protect BBB against IL-33 mediated
EC insult, activation and microglia-mediated neuroinflammation. We also observed a
decrease in expression of granulocyte-macrophage colony-stimulating factors (CSF-2 and
CSF-3) and kallikrein-3, three key inflammatory players [48,49]. Both CSFs and kallikrein-3
are known to negatively influence BBB dynamics and integrity; hence their downregulation
in ECs co-cultured with PCs would reflect their protective role in maintaining EC integrity.

4.2. Soluble Mediators and Cell Surface Proteins

In ECs co-cultured with PCs, hepatocyte growth factor (HGF) increased by 164%,
platelet-derived growth factor-AB/-BB (PDGF-AB/-BB) by 31%, whereas EGF was de-
creased by 81%. Since HGF and PDGF-AA/-BB have been shown to improve BBB integrity
and function [50,51], whereas EGF increases BBB permeability [52], the PC induced changes
reflect improvement in EC barrier. Different soluble factors, including PDGF-B, vascular
endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), basic fibroblast
growth factor (FGF-2) and angiopoietin 1 and 2, have been shown to contribute significantly
to the paracrine signaling between ECs and PCs [51]. The importance of PDGF-B with
regard to EC-PC interaction has been demonstrated in numerous in vitro as well as in vivo
studies [51]. Our observation of increased PDGF-AB/-BB protein expression in co-cultured
ECs is in line with the relevance of this growth factor in EC-PC crosstalk. VEGF, a potent
stimulator of angiogenesis under physiological but also pathological conditions [53], is a
well-known inducer of vascular permeability at high concentrations [54,55]. The observed
decrease of VEGF-C, but no change in VEGF-A and VEGF-B expression in co-cultured ECs,
therefore, depicts a possible mechanism for barrier induction in co-culture, by reducing au-
tocrine BBB disruption. Interestingly, it has been observed that VEGF-C/VEGFR2 signaling
in PCs leads to vessel destabilization by antagonizing PDGFR-β signaling and depleting
PC coverage of the blood vessels [56], which presents another potential explanation on
how downregulation of VEGF-C could have beneficial effects on endothelial barrier.

The reduced expression of VEGF-C might also be linked to the downregulation of
the cellular receptor for lysophosphatidic acid (LPAR1), as LPAR1 is known to mediate
VEGF-C induction by LPA, thereby promoting angiogenesis [57]. The impact of LPA on
BBB is controversial and thought to be tissue-dependent [58]. However, in vitro and in vivo
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experiments clearly show that LPA signaling diminishes BBB function [25]. The reduced
expression of LPAR1 in co-cultured ECs might therefore also contribute to the barrier
improving effects by suppressing angiogenic activities of ECs. Another cell surface protein
that is downregulated in EC co-cultures on mRNA as well as protein level (Supplementary
Figure S12) is the NOTCH ligand Jagged 1. Our finding is further supported by Kang
et al. [14], who observed downregulation of Jagged 1 on the protein level in ECs co-culture
with PCs in the same model as we used in the present study (indirect EC-PC co-culture
with contact through a permeable membrane). NOTCH 1/Jagged 1 signaling is involved in
juxtacrine communication between ECs and mural cells and plays an important role during
vascular development [59], whereas increased Jagged 1 levels in vessels are linked to barrier
disruption via NOTCH and VE-cadherin/beta-catenin signaling [27]. Additionally, the
well-established barrier disrupter TNF-α upregulates Jagged 1 expression [14]. A cellular
receptor potentially supporting barrier function in our co-culture model is leptin receptor
(LEPR). Deficiency in leptin receptor induces BBB dysfunction in mice [26]. Hence, the
observed decrease in Jagged 1/increase in LEPR expression in EC co-cultured with PC may
contribute to the improved barrier function in our model.

4.3. Extracellular Matrix Regulation

The high impact of PC-EC co-culture on the regulation of ECM proteins is apparent
from the pathway analysis results, as the two most significantly enriched pathways are
linked to regulation of ECM. This could explain why the positive effect of co-culture is not
mimicked by basolateral treatment with PC conditioned media (PCM), since immediate
contact of the two cell types and the interaction with their extracellular environment is re-
quired. This contention is supported by the findings by Hartmann et al. who demonstrated
that ECs cultured on pericyte-derived ECM form a tighter barrier than when cultured
on their own matrix [60]. Reinforcing this hypothesis, connexin 43, a major gap junction
protein that is known to be involved in the formation of direct contacts between ECs and
PCs [61,62], is upregulated in PC co-cultures (unpublished data). Connexin 43 has been
shown to play an important role in barrier function by co-localizing with TJ proteins, and
the deletion of this protein results in severe barrier dysfunction [63,64].

Transforming growth factor beta (TGF-β) signaling is highly regulated upon co-
culture, as is evident from the pathway enrichment analysis, showing the most significantly
regulated pathway to be ‘TGF-β regulation of ECM’. We also observed favorable changes in
PECAM-1/CD31, SERPIN E1/PAI-1, Endoglin, PLAUR/uPAR/CD87, all TGF-β associated
factors known to preserve EC barrier function. TGF-β superfamily ligands are a versatile
group of different secreted factors including bone morphogenetic proteins (BMPs), activins,
inhibins, nodals as well as growth and differentiation factors [65]. They control several
aspects in the developing organism and play an important role in tissue homeostasis in
the adults by regulating different function such as cell proliferation, differentiation as well
as ECM production. Hence, TGF-β signaling strongly depends on spatial and temporal
expression profiles of all involved signaling constituents, which renders a highly complex
regulatory system. Several target proteins of the TGF-β pathway include ECM proteins,
which are themselves implicated in TGF-β regulation, mainly by activating latent forms of
TGF-β subtypes [66]. Due to the complex nature of TGF-β signaling, a thorough analysis
of regulated proteins involved in this pathway is beyond the scope of this study.

4.4. Junctional Proteins

In ECs co-cultured with PCs, we observed no change in claudin-5 or Zonula occludens
proteins (ZO-1 to 3), but a decrease in occludin and claudin-1 gene expression, compared
to ECs alone. Moreover, we observed a decrease in claudin-5 protein expression (Supple-
mentary Figure S13). Junctional proteins, such as claudin-5 and occludin, play a critical
role in regulating BBB permeability. However, increasing evidence suggests that BBB
permeability can be influenced by junctional protein-independent mechanisms. In Claudin-
5 knock out mice, the size-selective loosening of BBB is observed with change in BBB
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morphology [67]. Reduced barrier function under hypoxic conditions is induced by TJ
rearrangement, while the protein expression remained stable or even increased slightly,
however non-significantly [68]. Similarly, BBB damage in the early phase of ischemic stroke
leads to a claudin-5 re-localization, but no change in overall protein levels is observed [69].
Interestingly, claudin-1 dependent destabilization of BBB has been observed in chronic
stroke [70]. Moreover, claudin-1 can interfere with claudin-5 as its appearance in tight junc-
tion complex reduces claudin-5 strands and claudin-5/ZO-1 interaction, thereby limiting
its incorporation in tight junction complex [70]. Hence the finding of decreased claudin-1
in ECs co-cultured with PCs would positively influence EC barrier. Taken together, these
findings support the notion that bare TJ protein expression levels do not always meaning-
fully reflect barrier integrity, neither on the mRNA nor on the protein level. Notably higher
consideration should be attributed to post-translational modifications like phosphorylation
status, molecular interactions and cellular localization of TJ proteins [68,69,71].

4.5. Effects of Pericyte Conditioned Media (PCM) on Endothelial Barrier Function

Crosstalk between ECs and PCs depends on paracrine signaling as well as direct
cell–cell interactions. Different studies showed positive effects of PC-conditioned media
(PCM) on EC barrier function [12,72]. Our results from PCM experiments, however, in-
dicated no change in barrier properties of EC monolayers by PC-released soluble factors
(Supplementary Figure S5). We further used PCM from co- and mono-cultured PCs and
did not observe any differential effects between co- and mono-cultured PCM. Potential
explanation(s) for the lack of barrier improving effects of PCM on EC function can only be
speculated upon. It is feasible that PC-derived factors are present in high concentration
gradient between EC-PC basolateral interface. Moreover, active contribution of endoplas-
mic vesicles in facilitating PC-EC communication and differences in factors generated from
apical and basolateral cell surface cannot be ruled out.

Differential expression of several transporters, channels and lipids on the luminal
and abluminal side is a well-known feature of ECs and plays an important role in BBB
integrity [73]. Various soluble factors have been shown to induce polarized signaling, such
as VEGF, histamine, LPA, TGF-β and LPC [74]. The observed differential effects of PCM on
the apical and basolateral surface of an endothelial monolayer regarding barrier function
can be explained by this apicobasal polarity of ECs. Whereas basolateral PCM treatment
did not significantly change barrier function of an already established EC monolayer, it had
demolishing effects if applied apically. The fact that conditioned media from SMCs showed
similar deteriorating effects leads to the conclusion that the observed effect is not specific to
PCs but might rather be explained by the presence of apicobasal polarity of ECs. Similarly,
when PCM was applied basolaterally to growing EC monolayer, where the barrier was not
yet formed and soluble factors could pass through the permeable transwell membrane,
thereby acting on the apical side of ECs, a decrease in TEER was observed. This was
accompanied by an increase in permeability to low molecular weight dextran (4 kDa). Both
of these results represent an effect on paracellular rather than transcellular permeability
(see above). Taken together, these observations from PCM experiments indicate that soluble
mediators secreted by PCs seem to play a subordinate role in the process of para-cellular
barrier improvement in our model.

The non-contact co-culture model with PCs grown on the well-plate surface while
ECs were cultured in the transwell insert resulted in a decrease in barrier function when
compared to an EC monolayer. This experimental set-up reflects the situation of prolonged
PCM treatment resulting in decreased barrier function. Hatherell et al. [30] observed a
comparable effect by investigating different configurations of co-culture models including
ECs, PCs and also astrocytes (ACs). While culturing ECs and PCs together in the indirect
co-culture model on a porous membrane increased barrier function, the addition of PCs to
the well surface of an EC-AC co-culture led to a significant drop in the measured TEER.
Unfortunately, no data with ECs and PCs alone was shown in the non-contact model used.
These results are in contrast to other studies, which observed improved barrier properties in
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the non-contact co-culture model or after PCM treatment [10,11,75]. A potential explanation
for the different outcomes may be differences in experimental setup and/or the use of cells
from different species.

In the past, the oversimplified and non-physiological model obtained by simply
combining PCs and ECs as co-cultures has been used [76–78]. Our finding of a reduced
barrier function in this direct PC-EC co-culture is a clear indication for the non-physiologic
nature of this model. The same effect has also been observed by another in vitro study
performed with iPSC-derived pericytes [22]. By fluorescent imaging, they further showed
that PCs outcompete ECs for covering the glass surface, such that ECs are forced to
overgrow PCs, which most probably leads to barrier deterioration.

In conclusion, our results provide first evidence that in human EC-PC co-cultures,
contact on the basolateral surface represents a physiological orientation that is responsible
for increased EC barrier function. PCs regulate EC barrier function on the para- as well as
transcellular level. Transcriptomic analysis of genes and cytokine proteome arrays support
our findings from in vitro barrier studies and highlight that PC induced EC barrier function
is associated with decrease in pro-inflammatory cytokine profile, regulation of TGF-β as
well as extracellular matrix pathways and multiple permeability improving soluble factors,
but not tight junction proteins. Using human PC-EC co-cultures with basolateral contacts
may serve as a viable in vitro model for investigating BBB pathophysiology in inflammatory
and neurodegenerative disease, as well as for therapeutic drug delivery studies.
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