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Abstract: (1) Background: mouse models are fundamental to the study of hematopoiesis, but
comparisons between mouse and human in single cells have been limited in depth. (2) Methods:
we constructed a single-cell resolution transcriptomic atlas of hematopoietic stem and progenitor
cells (HSPCs) of human and mouse, from a total of 32,805 single cells. We used Monocle to examine
the trajectories of hematopoietic differentiation, and SCENIC to analyze gene networks underlying
hematopoiesis. (3) Results: After alignment with Seurat 2, the cells of mouse and human could be
separated by same cell type categories. Cells were grouped into 17 subpopulations; cluster-specific
genes were species-conserved and shared functional themes. The clustering dendrogram indicated
that cell types were highly conserved between human and mouse. A visualization of the Monocle
results provided an intuitive representation of HSPC differentiation to three dominant branches
(Erythroid/megakaryocytic, Myeloid, and Lymphoid), derived directly from the hematopoietic stem
cell and the long-term hematopoietic stem cells in both human and mouse. Gene regulation was
similarly conserved, reflected by comparable transcriptional factors and regulatory sequence motifs
in subpopulations of cells. (4) Conclusions: our analysis has confirmed evolutionary conservation
in the hematopoietic systems of mouse and human, extending to cell types, gene expression and
regulatory elements.

Keywords: hematopoiesis; gene regulatory network; single-cell RNA sequencing; cross-species analysis

1. Introduction

Hematopoiesis is a stepwise process originating from hematopoietic stem cells (HSCs)
associated, functionally, with loss of self-renewal, activation of lineage specific transcription
factors (TFs), and upregulation of downstream genes for progenitor cells and their mature
progenies [1–3]. From multipotent progenitors, the common lineages for myelopoiesis
(common myeloid progenitor, CMP) and lymphopoiesis (common lymphoid progenitor,
CLP) are segregated. During myeloid differentiation, oligopotent CMPs undergo further
restriction into bivalent granulocyte–monocyte progenitors (GMPs) of granulocytes and
monocytes, and megakaryocyte–erythroid progenitors (MEPs) that terminate in platelets
and red blood cells [4]. The classical model of hematopoiesis was a tree, rooted in the
long-term hematopoietic stem cell (LTHSC) and branching into multipotent, oligopotent,
and unipotent progenitors. However, novel single cell approaches, which can profile
gene expression of thousands of individual cells, have challenged established models of
hematopoiesis [5,6].

Single cell RNA-sequencing (scRNA-seq) has been used to examine the conservation
of transcription across species in various organs [7–11]. For example, scRNA-seq revealed
the surprisingly well-conserved cellular architecture between human and mouse brains:
similarity in hierarchical organization, corresponding relationships at the subclass level
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and no major missing homologous classes [10]. In pancreas, scRNA-seq analysis showed
major cell types (alpha, beta, gamma, delta, ductal and endothelial) to be conserved
between mouse and human [7]. Shay T et al. observed that the expression patterns of most
orthologous genes are conserved in the immune system, but several hundreds of genes
showed clearly divergent expression between human and mouse [12]. In our previous
study, co-expression and regulatory networks of hematopoietic genes were well conserved
between human and mouse. The co-expression network showed “small-world” and “scale-
free” architectures. The gene regulatory network formed a hierarchical structure and
hematopoiesis transcription factors localized to the hierarchy’s middle level, and, also,
tended to participate in blood-related diseases [13]. While scRNA-seq has been extensively
applied to investigate hematopoiesis in human and mouse, cross-species comparisons
of hematopoietic hierarchy have not been intensively reported, or appear only as one
component of larger reports, and are relatively superficial. For example, in an early study,
lineage transcriptomic characteristics were shown to be similar, without description of
differentiation trajectories and consideration of transcription networks [11].

In the present work, we utilized the 10× single cell platform and a canonical cor-
relation analysis (CCA) computational strategy, and we conducted a comparative tran-
scriptomic analysis of the hematopoietic hierarchy in human and mouse. We found that
the hematopoietic stem and progenitor cell (HSPC) compartments in the two species are
composed of populations characterized by the same sets of homologous genes, and the
hematopoietic lineages and transcriptional profiling in hematopoiesis are well conserved
between human and mouse. Lineage specificity and maturation were mainly determined
by transcription factors and their target genes. We developed a comprehensive atlas for cell
type-specific regulatory sequence motifs and TF-centered regulatory networks (regulons).
The primary sequence motifs of most cell type-specific TFs and their target genes were
conserved between human and mouse. Our results indicate evolutionary similarity in the
human and mouse hematopoietic systems.

2. Materials and Methods

Bone marrow samples were obtained from healthy donors after written informed con-
sent, in accordance with the Declaration of Helsinki, and following protocols approved by
the National Heart, Lung, and Blood Institute (NCT00001620). CD3−CD14−CD19−CD34+

cells were sorted using a LSRII Fortessa Cytometer (BD Biosciences, San Jose, CA, USA).
Lineage−CD117+ cells were sorted from bone marrow of C57BL/6 mice (Figure 1a). The
Chromium Single Cell 3′ platform (10× Genomics) was used to prepare scRNA-seq cDNA
libraries [14,15]. RNA-seq libraries were sequenced with paired-end reads of 75-bp on
Illumina HiSeq 3000 System. The cellranger pipeline (https://support.10xgenomics.com/
single-cellgene-expression/software/pipelines/latest/what-is-cell-ranger, accessed on
18 October 2018) was used to process raw data, align reads to the genome, and generate
gene–cell expression matrices. Specifically, sequencing reads of human were aligned to the
hg19 reference genome by STAR and uniquely aligned reads were calculated to quantitate
gene expression levels for all ENSEMBL genes with unique molecular identifiers (UMIs).
Low-quality cells were filtered and removed from further analyses if the number of detected
genes was fewer than 500 (due to low quality, potential fragments) or more than 3000 (due to
potential doublets). Cells with a high percentage of mitochondrion gene reads (>10%) were
also excluded. Raw and processed data from all experiments were deposited in the NCBI
Gene Expression Omnibus with GSE135194 and GSE142235 [14,15]. Downstream analyses
were performed using the R software package Seurat (http://satijalab.org/seurat/, v2.3.4,
accessed on 18 June 2018). Raw reads in each cell were first scaled by a library size to 10,000
and then log-transformed. Highly variable genes (~1300, identified with y.cutoff = 0.5)
were used for Principal Component Analysis (PCA) of high-dimensional data. Top 30
principal components were selected for unsupervised clustering of cells with a graph-based
clustering approach. Graph-based clusters methods were applied to group cells based
on two-dimensional t-distributed Stochastic Neighbor Embedding (tSNE) using Seurat at

https://support.10xgenomics.com/single-cellgene-expression/software/pipelines/latest/what-is-cell-ranger
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resolution 2 [16]. Each gene from a cluster was compared to the median expression of the
same gene from cells in all other clusters by FindMarkers function in Seurat and genes with
p < 0.01 were defined as cluster-specific genes [17]. Genes then were ranked based on their
expression fold change, and top cluster-specific genes were compared with published cell
type-specific genes [1,2]. An HSPC subtype was assigned to each cluster based on statistical
significance of overlap between HSPC- and cluster-specific genes (with smallest p values
of Fisher’s exact test) [17]. Sequencing reads of mouse were aligned to the mm9 reference
genome by STAR and the gene–cell expression matrix was calculated. Subsequently, gene
expression analysis for mouse followed the same pipeline as for human, using cell lineage
specific genes derived from GSE81682 in GEO as references for cell type assignment.

We used the canonical correlation analysis (CCA) algorithm to perform comparative
transcriptomic analysis of the hematopoietic system between human and mouse (RunCCA
function in Seurat 2 with parameter of num.cc = 20). The CCA algorithm is a multivari-
ate statistical technique for the determination of linear associations between two sets of
variables that are maximally correlated. In scRNA-seq analysis, the CCA algorithm can
detect the statistical common factors between two digital gene expression (DGE) matrices,
which vary due to batch effects or different methods used in normalization procedures.
These factors are aggregations of conserved gene-to-gene correlations between human and
mouse, and, therefore, we could align all human cells against all mouse cells in an identical
linear space and visualize shared populations in different species with further analyses
such as t-SNE.

To explore the conservation of cell populations between human and mouse, we applied
scmap (http://bioconductor.org/packages/scmap, accessed on 10 July 2019) to project
cells from a human scRNA-seq dataset onto cell types defined in the mouse scRNA-seq
dataset, with a parameter threshold of 0.7, and, conversely, from human to mouse datasets.
Cells in human were expected to be projected to the closest mouse cell types if there was
transcriptional conservation.

Differentiation trajectory analyses were conducted with Monocle (https://www.
bioconductor.org/packages/release/bioc/html/monocle.html, accessed on 6 June 2019).
Preprocessed Seurat objects were imported into Monocle with the “importCDS” function.
Monocle’s “orderCells” function arranged cells along a pseudo-time axis to indicate their
position in a developmental continuum. The trajectory trees identified by Monocle were
colored by cell types or expression levels of marker genes to show the differentiation
directions during hematopoiesis. The reversed graph embedding algorithm in Monocle 2
was used to impute differentiation trajectories in both 2- and 3-dimensions.

With RcisTarget software in Bioconductor, we identified putative transcription factor
motifs; SCENIC algorithm was used to construct gene networks and model regulon activity
within each cell state. We followed the developer’s instructions (https://github.com/
aertslab/SCENIC, accessed on 18 May 2019) pipeline for these analyses. For each cell
type-specific gene list of human and mouse, we scanned two motif TFs databases (using
RcisTarget in Bioconductor on hg19-tss-centered-10 kb-7species.mc8nr.feather or mm9-
tss-centered-10 kb-7species.mc9nr.feather from https://resources.aertslab.org/cistarget/,
accessed on 10 April 2019) and retained modules with significant motif enrichment [18].

http://bioconductor.org/packages/scmap
https://www.bioconductor.org/packages/release/bioc/html/monocle.html
https://www.bioconductor.org/packages/release/bioc/html/monocle.html
https://github.com/aertslab/SCENIC
https://github.com/aertslab/SCENIC
https://resources.aertslab.org/cistarget/
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Figure 1. (a) Schematic overview of the study design. (b) A tSNE plot of single-cell gene expression of human HSPCs.
(c) A tSNE plot of single-cell gene expression of mouse HSPCs. (d) Correlation of expression between human and mouse
orthologous cell-type specific genes (red indicates high correlation and blue indicates low correlation). Cell types of species
(inner was for human) were marked by the colors defined in (b). Conservation of homologous genes between species
was evident. (e) The phylogenetic tree of human and mouse cell populations. Average expression across human–mouse
homologous genes was calculated for cell types of human and mouse, and the distance between expression patterns for
different cell types was used for hierarchical clustering. (f) Correlation of expression levels of homologous genes in human
and mouse cell populations.
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For regulon analysis, the expression matrices of human and mouse were first extracted
from Seurat objects and then transformed into the required format for SCENIC, in which
rows represented genes and columns represented cells [18]. Cells with less than 500 and
more than 3000 detected genes were filtered. We also filtered genes with less than at least
6 UMI counts in human and mouse. We used GENIE3 in the Bioconductor expression
matrix to identify co-expressed gene modules and infer potential TF targets for each
module. Regulatory modules (regulons) were identified from co-expression and DNA
motif analyses. Regulons were then evaluated in each cell to ascertain their activities by
the AUCell package in Bioconductor, before a binary matrix (with 1 for active and 0 for
inactive, with threshold determined by the distribution of AUCell scores) was obtained. To
profile gene regulatory module features of all HSPCs, the Spearman correlation coefficients
between regulons were calculated, and only the positive-correlated targets in the regulons
were retained. We chose top5perTarget as a parameter of coexMethod to run SCENIC [18],
such that the top 5 percent of TFs were employed to create regulons for each gene. Cell
specificities of the identified regulons were assigned with Fisher’s exact test using the
mark gene list [1,2]. topGO was used to functionally annotate the identified regulons [19].
Networks of the TF regulons with motif information were visualized by Cytoscape [20].

3. Results
3.1. scRNA-Seq Identified a Comprehensive and Conserved List of HSPC Types

We obtained bone marrow samples from four healthy human donors. In order to
characterize the early stages of hematopoiesis, we sorted lineage−CD34+ cells to enrich for
HSPCs. After filtering out cells with limited numbers of detected genes, our dataset con-
tained 15,245 single CD34+ stem/progenitor cells. Sequencing data of single CD34+ cells,
as visualized tSNE (Figure 1b), displayed clear clusters, suggesting distinct cell types at the
molecular level. Hematopoietic cell identity was assigned to each cell cluster by comparing
cluster-specific genes with a reported lineage signature gene list [1,2]. CD34+ cells were
clustered into 15 clusters and then could be computationally assigned to the following cell
populations: multipotent progenitor HSCs, megakaryocyte–erythroid progenitors (MEPs),
granulocyte–monocyte progenitors (GMPs), B lymphocyte progenitors (ProBs), and early
T lineage progenitors (ETPs) (Figure 1b). The number of clusters identified by Seurat
depends on the resolution selected. Although resolutions 1, 2 and 3 generated different
numbers of clusters, cell type assignment at each resolution was almost identical and did
not affect further analyses.

For analysis of murine hematopoiesis, 17,560 linage−CD117+ cells from B6 mice were
also clustered, unsupervised, based on transcriptome similarity using tSNE (Figure 1c).
Hematopoietic cell identity was assigned to each cluster of cells by comparing cluster-
specific genes with accepted lineage signatures. We could group the cells into 36 clusters
and then assign them into long-term hematopoietic stem cells (LTHSC), multipotent pro-
genitors (MPP), lymphoid multipotent progenitors (LMPP), common myeloid progenitors
(CMP), MEP, and GMP.

We defined HSC in human and MPP and LTHSC in mouse as conserved HSC; ProB
in human and LMPP in mouse as lymphoid cells; and GMP and MEP in both species as
GMP and MEP, respectively. We considered that these were species comparable/closest
cell populations [21,22].

We analyzed human and mouse datasets in parallel with orthologous genes in InPara-
noid [23]. tSNE plots showed cells grouped by species, instead of by a cell type, due to
species specificity and batch effects (Figure S1a, human and mouse cells were profiled at
different times). The CCA algorithm is a multivariate statistical technique for finding linear
associations between two sets of variables that are maximally correlated. In scRNA-seq
analysis, the CCA algorithm can detect the statistical common factors among two digi-
tal gene expression (DGE) matrices, which vary from each other due to batch effects or
different methods used in normalization procedures. After alignment with CCA, cells
of mouse and human were well mixed and separated into the same cell type categories
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(Figure S1b,c). The cells clustered into 17 subpopulations (15,245, 17,560 cells, and 17,
16 subpopulations contain cells from human and mouse, respectively) by computational
analysis (Figure S1c). Cell assignments were validated from expression of typical cell
type-specific genes (Figure S1d). Complete gene lists in different cell populations were
shown in Supplemental File 1. There were many homologous genes apparent in the two
gene lists for the same cell types of human and mouse. The top 25 specific genes and their
expression are shown in Figure 2, in which the homologous genes were highlighted and
linked with lines. Typical hematopoiesis-related genes and their expression in different cell
populations are shown in Figure S2.

3.2. Conserved Cell-Type Expression between Human and Mouse

We built a human-to-mouse one-to-one orthologous gene list (13,520 genes), collected
from InParanoid (http://inparanoid.sbc.su.se, accessed on 16 August 2018) for homology
analysis [23]. Matching cell types requires shared expression patterns between species,
and we found that there were many homologous genes that best discriminated mouse
and human HSPCs. Identification of homologous types or classes enabled an analysis
of conservation and divergence of gene-expression patterns between the two species.
For each pair of homologous types, we compared the expression of orthologous genes
and investigated cell type-specific genes between human and mouse. There were a high
number of genes in human and mouse which shared the same cell-type specificity (Rand
index = 0.24, p < 0.00001, Supplemental File 1), especially in MEP and HSC. There were
many divergent genes that only express in certain lineages of human, not in those of
mouse, and vice versa (Supplemental File 1). We collected the overlap of type-specific gene
lists in human and mouse, calculated averages of gene-to-gene correlations with human
and mouse datasets, and conducted a clustering analysis with the averaged correlations
(Figure 1d). The column annotations for the assigned cell types of marker genes in human
(inner) and mouse (outer) showed high consistency, implying a conservation of cell type-
specific genes.

We explored similarities and differences in HSPCs between two species. To derive
a quantitative view of the cellular evolution from mouse to human in hematopoiesis, we
used mouse and human orthologous genes and calculated an average of expression of
cells of each type for human and mouse. After hierarchical clustering (ward.D2 method,
with 1-Pearson correlation as distance), a dendrogram indicated that cell types were highly
conserved between the two species (Figure 1e). For example, the MEP of mouse and human
shared very similar transcriptomes, and a GMP also showed high similarity. Human HSC
were first clustered with mouse LTHSC by the nearest neighbor (Figure 1e), and then
with mouse MPP. MPP and LMPP in mouse had a similar transcriptome, which was
already observed in human [1]. The high correlations of human and mouse in the same cell
types showed that cell-type similarity in orthologous gene expression dominated species
differences, particularly for the MEP and HSC populations (Figure 1e), as observed by
others [8,18,24].

A heatmap in Figure 1f quantitatively presents the expression similarity of cell types in
human and mouse. The mouse MEP cluster shows strong correlations with the human MEP
(R = 0.496, p < 1× 10−10), and the human HSC shows strong correlation with mouse LTHSC
(R = 0.389, p < 1 × 10−10) and MPP (R = 0.395, p < 1 × 10−10). Conservation of mammalian
cell types in single-cell comparative genomic studies have been reported [11,24].

http://inparanoid.sbc.su.se
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Figure 2. Heatmaps of differentially expressed genes in (a) human and (b) mouse cell populations. Heatmaps showed a 
scaled gene expression of the top 25 genes representing each of the identified cell populations found in human and mouse. 
Each row represents one gene and each column displays gene expression of 5 pooled cells. Genes are listed in the middle 
and homologous genes were linked together (colored by the cell type specificity). The marker gene lists of concordant cell 

Figure 2. Heatmaps of differentially expressed genes in (a) human and (b) mouse cell populations. Heatmaps showed a
scaled gene expression of the top 25 genes representing each of the identified cell populations found in human and mouse.
Each row represents one gene and each column displays gene expression of 5 pooled cells. Genes are listed in the middle
and homologous genes were linked together (colored by the cell type specificity). The marker gene lists of concordant cell
populations in human and mouse tend to be homologous. Note that MEP and GMP were well characterized, but others
were not well characterized in human and mouse due to the characteristic of cell populations.
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3.3. Projection by Scmap and Conservation of Cell Populations between Human and Mouse

The sharing of marker genes shown in Supplemental File 1 and Figure 2 simply
confirmed the comparable cell populations of human and mouse. To be more quantitative,
single-cell transcriptomes of human cells were compared with those of mouse cells using
scmap [25]. scmap projects a cell onto a reference dataset, allowing inference of cellular
identity based on resemblance of transcriptomes to the reference cell type. Seurat was
used to normalize gene expression by library sizes and log2 transformed the data, and
libraries were subset by expression of shared genes across datasets. Most human MEP
cells (85%) were mapped to mouse MEP cell types based on transcriptional similarity,
suggesting functional similarity and species conservation. A total of 48% of human HSC
cells were mapped to mouse LTHSC cell types, and 24% were mapped to MPP, indicating
the similarity of MPP and HSC (Figure 3a,b). Other human cell types were also mainly
mapped to their closest murine cell types. The mapping results are consistent with known
human–mouse comparable/closest cell populations [21,22]. In total, our analysis confirmed
conservation of hematopoietic stem and progenitor cell types between human and mouse.

3.4. Developmental Trajectories in Human and Mouse Hematopoiesis

Clustering is based on an assumption of biologically distinct groups, such as dis-
crete cell types or states; pseudo-temporal ordering assumes that data lie on a connected
manifold [26]. For detailed analysis of the transition from stem cells to lineage-restricted
progenitors, we used Monocle to arrange each cell by pseudo-temporal ordering based
on gene expression [27]. After applying Monocle to the profiled human and mouse cells,
an intuitive graphical representation of early stages of HSPC differentiation emerged. In
human, lineages clearly separated among lineage−CD34+CD38+ progenitors (Figure 3c).
We defined HSC in human and LTHSC in mouse as roots, so that they were located at
starting points of the hierarchy. In both human and mouse, three branches arose from
HSC and LTHSC. We confirmed cells in the three branches as erythroid/megakaryocytic,
myeloid and lymphoid (Figure 3c,d). At the cellular level, the adjacency of cell types
on plotting reflects differentiation pathways. The differentiation trajectories of human
and mouse are highly similar, as described by others [1,2]. The newly defined model
shows unexpected developmental shifts within the progenitor cell architecture: where
many stem and progenitor cell types are multipotent, the stem cell compartment is mul-
tipotent and only progenitors are unipotent. These features do not present in the classic
hierarchical model. We also examined expression level changes of individual genes within
the trajectories. As an example, GATA1 expression increased along the erythroid branch,
and GATA2 expression decreased with differentiation. There was a GATA1 and GATA2
switch in human and mouse, showing species conservation of gene participations during
erythroid differentiation (Figure 3c,d) [28]. Expression changes of other representative
lineage-specific genes along human and mouse differentiation trajectories also were shown
in Figure 3c,d and Figure S3. Therefore, at both cellular and molecular/gene levels, human
and mouse show conservation during differentiation. scRNA-seq allowed for deconvolu-
tion of heterogenous HSPC population, both LTHSC and CD34− as stem cells and lineage-
committed progenitors, and for the reconstruction of a trajectory of normal hematopoietic
differentiation in human and mouse. Monocle 2 was also used to analyze the data and
produce 2- and 3-dimensional projections, which were similar to those generated with the
Monocle ICA algorithm (Figure S4) [29]. Conservation of hematopoietic differentiation
between human and mouse was evident from the observations that genes were activated
at the same differentiation stages across species [9], and both human and mouse cells
were distributed along pseudo-temporally ordered paths from HSCs/LTHSCs to three
branches—erythroid/megakaryocytic, myeloid, and lymphoid.
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Figure 3. (a) Sankey diagrams of scmap-cluster projection of human dataset to mouse dataset. Each row is a cell of human,
colored with cell types. (b) Fractions of human cell populations projected to mouse cell types. Cells tended to be projected
to the corresponding cell population defined in mouse; for example, 85% of MEP mouse cells were mapped to human MEP
cell types. (c,d) Monocle revealed linage differentiation trajectories of human (c) and mouse (d) HSPCs. Cells (balls, colored
based on predicted cell type) are arranged in a 2D space calculated with Independent Component Analysis. The results
obtained with Monocle 2 are shown in Figure S3, showing the same themes. Expression of GATA1 and GATA2 for lineages
are highlighted in a differentiation tree, showing a clear GATA2 and GATA1 switch during differentiation.
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3.5. Conserved Cell Type Specific Regulatory Elements/Motifs between Human and Mouse

Given a gene list, the program RcisTarget identifies over-represented TF-binding
motifs and can predict candidate target genes (regulons) based on databases containing
motifs with genome-wide rankings. The over-representation of each motif for the gene list
is estimated through calculating a normalized enrichment score (NES) by AUCell algorithm.
After the cell type-specific gene lists were input for calculation, 1494 (in human) and 663
(in mouse) TFs with their recognition motifs were identified as significantly enriched in
different cell populations. We found that there were species conservation of transcription
factors and recognition motifs (Figure 4a) in the most similar cell types. As shown in
Figure 4a, MEP gene-set was enriched for a GATA1 associated “cisbp__M0801” motif
(NES = 4.29), and this motif was also enriched in mouse with NES = 3.88. GMP gene-set
was enriched for a CEBPA associated “cisbp__M0315” motif (NES = 6.95), and this motif
was also enriched in mouse with NES = 3.76.

The complete list of well-defined cell type-specific motifs, their corresponding tran-
scription factors for human and mouse, as well as species conservation, are shown in
Supplementary File 2. Some motifs showed species conservation and were active in only
one cell population. Some motifs were species-specific, restricted in their appearance,
only among human or mouse cell populations. Hematopoietic differentiation is controlled
by key transcription factors (TFs), which regulate stem cell functions and differentiation.
The same TFs in human and mouse tend to contribute to the same hematopoietic lineage
differentiation, but some TFs only function in hematopoiesis of human or mouse. For
example, in both human and mouse, higher activities of GATA1- and E2F1-related motifs
were present in MEP cells; SRF and RELA motifs in GMP cells; IRF and CBFB motifs in
lymphoid cells; and GATA2 and CHD1 motifs in HSC cells were observed. In addition,
other TFs were identified in specific cell populations of both species, such as upregulation
of FOSB, JUN, and JUND in HSC cells, and higher activity of JUN, JUNB, GTF2B and
CEBPD in lymphoid cells. Antagonism between transcription factor PU.1 (encoded by
SPI1) and GATA2 drives myeloid/lymphoid versus erythroid/megakaryocyte lineage com-
mitments [30,31]. In both human and mouse, GATA1 is the key transcriptional factor for
erythro- and megakaryocytic differentiation; GATA2 downregulation and reciprocal GATA1
upregulation maintain cell differentiation in the erythroid/megakaryocytic lineage [30–32].
We observed higher activities of GATA1 motifs in MEP, while SPI1 motifs were exclusive
in GMP cells of human and mouse. Transcription factor MEIS1 is an HSC marker, and its
expression level declines with cell differentiation; it is known to promote expression of
stem cell markers in leukemias [33,34]. We observed MEIS1 motifs exclusively activate
in LTHSC and MPP of mouse, indicating higher activity in stem cells and early stage of
multipotent progenitors. The cell type expression specificity of motifs is consistent with
function. FOSB, JUN, JUND and JUNB are members of activator protein-1 (AP-1). AP-1
is involved in cell differentiation, proliferation and survival [35]. JUNB is required for
Th17 cell development [36]. The expression of FOSB, together with GFI1, RUNX1 and SPI1,
are sufficient to generate immunocompetent HSCs in adult mouse endothelial cells [37].
Progression from the CLP to B/Myeloid and ProB Precursors during B Lymphopoiesis
requires CEBP. CEBPA is required for Flt3+ CLP maturation into ProB cells and then for pro-
liferation [38]. Collectively, multiple TFs, alone and in combination, regulate hematopoietic
stemness and differentiation.
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Figure 4. (a) A table of enriched motifs by RcisTarget for selected sets of regulons related to cell populations in human and
mouse, generated within the SCENIC workflow. (b) Average AUCell scores of all human and mouse cells were calculated
with the identified regulons to obtain a regulon-cell matrix. Then, the distance among regulons was hierarchically clustered.
The corresponding binding motifs were shown on the right. Regulons were grouped into several major modules, along with
representative TF regulons and associated cell types. (c) A clustering dendrogram shows the relationships of 37 orthologous
TF regulons.
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3.6. Conserved Cell Type Specific Regulatory Networks between Human and Mouse

To recapitulate the gene regulatory relationships among the different populations,
and thus infer the regulatory mechanisms underlying hematopoiesis, we used SCENIC, an
algorithm to deduce Regulatory Networks and cellular status from scRNA data [18]. A cell
expression matrix of 10,000 highly variable genes extracted from Seurat object (data slot
after normalization) was imported as an input matrix for SCENIC. By identifying the co-
expression modules (including transcriptional factors) and analysis of cis-regulatory motif
analysis with each co-expression modules, we obtained 84 cell identity-specific regulons,
together with their corresponding targets (Supplementary File 3). The number of targeted
genes ranged from 4 to 587 (average, 63).

Next, we investigated the gene networks that underlie mammalian cell-type conserva-
tion. For example, the GATA1 regulons for MEP in human and GATA1 regulons for MEP
in mouse were both identified as enriched regulons (Figure 4b,c). We examined TF regu-
lons from both human and mouse in SCENIC and identified 24 orthologous TF regulons,
which could be grouped into five major modules across human and mouse (Figure 4b and
Supplementary File 3). As examples, GATA1 and E2F4 are associated with erythropoiesis,
and IRF8 is associated with GMP populations. These modules were enriched not only for
lineage-specific transcription factors but also for conserved binding motifs that lead to
coordinated module activation in lineage commitment (Figure 4b, right). In contrast to
a published work [24], we did not find much species-specific genetic regulation between
human and mouse. We also clustered regulons based on a Pearson correlation of their
AUCell scores in all cells (Figure 4c), and expanded to include extended motifs defined in
SCENIC (Figure S5c). Again, clustering was driven by cell types rather than by species.
This reflected that homologous genes played dominant roles in the clustering results. If
non-homologous genes expressed in only human or mouse contribute heavily to varia-
tion, regulons would be clustered into two groups (human and mouse) rather than being
grouped by the same/similar regulons across the two species.

We used the Fisher’s exact test to check the cell type specificity of regulons, and
the result is shown in Supplementary File 4. Briefly, to test the enrichment of a cell
type annotation for a regulons, we used a One-tailed Fisher’s exact test to determine the
significance of the association between gene members in regulons and marker gene list,
and thus determined the enrichment of cell type for the regulons [17]. Most regulons
are cell type-specific, and the regulons associated with same transcriptional factors were
assigned to the same cell populations in human and mouse. For example, GATA1 regulons
were assigned to the MEP of human, and the MEP and CMP of mouse. IRF regulons were
assigned to the GMP of human and mouse. Some regulons were not cell type-specific, such
as SP1 and JUND. These regulons were active in many cell populations, indicating their
importance in the whole stage of differentiation.

We also examined the potential regulatory role of novel transcription factors by a gene
ontology (GO) enrichment analysis of target genes in 23 novel regulons. Functional anno-
tations of regulons are provided in Supplementary File 5. Enriched GO terms for GATA1
are associated with the activation/differentiation of erythropoiesis terms GO:0030218 (ery-
throcyte differentiation) and GO:0034101 (erythrocyte homeostasis). YBX1 regulon was
annotated with GO:0030218 (erythrocyte differentiation); YBX1 is a transcription factor
widely expressed in all cellular lineages during differentiation and is involved in erythroid
cell development [39]. Under regulation by GATA factors, YBX1 functions in erythroid
differentiation and aberrant expression of YBX1 gene results in dyserythropoiesis [39,40].
IRF8 targeted genes were highly related to biological processes, such as immune response
and lymphocyte activation, with terms of GO:0006955 (immune response), GO:0001775
(cell activation), and GO:0030217 (T cell differentiation).
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After more detailed exploration of the same-TF regulatory networks inferred for
regulons between human and mouse, we found that there was a significantly higher
number of conserved targets (evaluated by the Fisher’s test for significance of overlap),
and some species-specific targets genes, as reported by another study [18]. Two examples
of such an analysis are shown in Figure S5a,b. For regulons generated with SCENIC using
the target genes of IRF8 in human and mouse, the edges represent the connections between
each of the two TFs and their target genes. Human and mouse shared 34 targeted genes,
significantly higher than predicted by chance (p < 1 × 10−60, Fisher’s test). For regulons
generated with SCENIC using the targeted genes of GATA1 in human and mouse, there
were seven shared targeted genes (p < 1 × 10−10, Fisher’s test). Species conservation of
hematopoiesis was apparent at the gene network level, both for TFs and their targets.

SCENIC uses the AUCell algorithm to score the activities of entire gene regulatory
networks or regulons in each cell, which can be clustered and displayed in activity matri-
ces (Figure 5a,b). To determine the “on/off” activity of each regulon, AUCell automati-
cally identifies the threshold of activity and generates the binary activity regulon matrix
(1 for active, 0 for inactive). Next, the t-SNE algorithm was used to project all cells onto
the two dimensions, based on the binary regulon activity matrix, to examine whether it
can accurately identify cellular types. Consistent with the Seurat tSNE algorithm, cell clus-
tering using regulon activity clearly distinguished different cell populations (Figure 5c,d),
confirming the characterization of cell identity by tSNE based on the activities of regulons
by integrating the expression of TFs and their targets. Cell clustering using activities of
regulons, rather than by gene expression, resulted in t-SNE projections to distinct cell
populations. The activation of cell-type-specific networks was conserved between human
and mouse (Figure 5e,f), which was evident from conserved regulon activities for human
and mouse in the same cell populations.



Cells 2021, 10, 973 14 of 18

Cells 2021, 10, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 5. (a) A heatmap of the AUCell scores for the activities of regulons in each cell of human; the regulators for same cell
populations were clustered together. Right are transcription factor and number of target genes. (b) A heatmap of the AUCell
scores for the activities of regulons in each cell of mouse, the regulators for same cell populations were clustered together.
(c) Binary regulon activity scores based tSNE plots for human (t-SNE was run with the binary regulon activity matrix as
input). Each dot is a cell, which is colored by cell types. (d) Binary regulon activity scores based tSNE plots for mouse. Each
dot is a cell, which is colored by cell types. (e,f) Same as (c,d), but cells are colored by AUCell scores of regulons, with red
meaning high AUCell scores.



Cells 2021, 10, 973 15 of 18

4. Discussion

Our comparative transcriptomic analysis of the hematopoietic system revealed evolu-
tionary conservation in the hematopoietic hierarchy across human and mouse. We found
that HSPC compartments in the two species were composed of populations characterized
by lineage-specific regulators. The lineage differentiation patterns and transcriptional
profiling were well conserved between human and mouse, indicating evolutionary sim-
ilarity in their hematopoietic systems. Further, we examined the TF activities that may
contribute in maintaining differentiation during hematopoiesis and linked those to target
genes [41]. A set of TF regulons, defined by TF-to-target correlation and TF motif analysis,
was identified for different cell populations, and the regulons of human and mouse are
highly conserved.

In comparing human and murine transcriptomes in hematopoiesis, one challenge is
a lack of appropriate, species-matched reference gene lists, which are needed to assign
cell type; the complicated hierarchical relationships between cell lineages exacerbates this
problem [42]. Although characterization of the transcriptional status of individual cells
enables imputation of differentiation trajectories, scRNA-seq measurements are limited by
large fractions of dropouts. A new algorithm to impute dropout, and technology to increase
coverage, help to improve the accuracy of trajectory inference. the integration of different
types of data is a further advance. A recent study applied scRNA-seq and scATAC-seq
data from bone marrow to gain deeper insight into differentiation trajectories [43]. Species
conservation of a differential trajectory should be better elucidated when scRNA-seq and
scATAC-seq data are available for both human and mouse.

We used regulon’s activities to elucidate cellular differentiation lineages, and the result
supports computational approaches to analyzing gene activation in comparing species.
There is a smaller batch effect in TF regulon activation than in gene expression in single
cell data, so that conclusions concerning network activity are robust and can be exploited
to overcome batch or technical effects [18]; further, cell alignment is unnecessary, which
is challenging due to computational complexity when integrating mega-scale single cell
datasets in the future [16]. A gene regulation-based approach is a good complement to
expression analysis on single cell data.

When we calculated motif enrichment and estimated regulon activities, gene regu-
lation showed lineage conservation between human and mouse. scATAC-seq provides a
more direct measurement of genome-wide activity of enhancers and promoters [44]. Chro-
matin accessibility is also evolutionarily conserved [45]. Thus, a joint measurement of gene
expression and chromatin accessibility of the same cells in human and mouse will enable
a deep comparison of the regulatory and transcriptomic landscape of hematopoiesis [46].
The current study only analyzed protein coding genes; inclusion of miRNA and lncRNA
will add more layers of complexity to gene regulation to assess species conservation of
haematopoiesis [15,47,48].

We also downloaded the datasets from GSE81682 (mouse) and The Human Cell Atlas
(human), and analyzed them with comparable computational strategies [2,49]. Similar re-
sults were obtained when we compared hematopoietic transcriptome between human and
mouse. Part of our results, including the cell lineage assignment and differential trajectories,
are shown in Figure S6. The cells in these two datasets follow the same differentiation
trajectories as those obtained with our datasets. The results of our and third-party datasets
showed that the conservation of gene regulation resulted in the similarity of gene expres-
sion in human and mouse. Transcription similarity can help in guiding the exploration of
human physiological and pathological hematopoiesis with mouse models [50].



Cells 2021, 10, 973 16 of 18

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10050973/s1, Figure S1: tSNE plots of HSPCs from human and mouse before and after
alignment, Figure S2: Typical genes and their expression in cell populations, Figure S3: Expression of
characteristic genes for lineages, Figure S4: Monocle 2 identifies major branches of human and mouse
hematopoiesis, Figure S5: Shared targets between regulons from human and mouse, Figure S6: tSNE
plots and trajectories from human cell atlas and GSE81682, Supplementary File 1: cell type specific
genes, Supplementary File 2: regulatory motifs, sequence logos and their corresponding cell types,
Supplementary File 3: identified regulons by SCENIC with gmt format, Supplementary File 4: cell
type specificity of regulons, Supplementary File 5: functional annotations of regulons.

Author Contributions: Conceptualization, S.G. and N.S.Y.; methodology, S.G.; analysis, S.G.; writing
and editing, S.G., J.K., L.M., Z.W., X.F., S.K. and N.S.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Heart, Lung, and Blood Institute [Intramural
Research Program].

Institutional Review Board Statement: Bone marrow samples were obtained from individuals
after written informed consent in accordance with the Declaration of Helsinki, enrolled as controls
under protocol NCT00001620 at the National Heart, Lung, and Blood Institute, and approved by
the institutional review boards of the National Heart, Lung, and Blood Institute. All animal studies
were approved by Institutional Animal Care and Use Committees at the National Heart, Lung, and
Blood Institute.

Informed Consent Statement: Written informed consent was obtained from all subjects before
the study.

Data Availability Statement: The datasets generated and analyzed during the current study are
available in the GEO repository, with accession numbers GSE135194 and GSE142235.

Acknowledgments: We acknowledge the Biowulf PC/Linux cluster at the NIH, (http://biowulf.nih.
gov) used for the data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laurenti, E.; Doulatov, S.; Zandi, S.; Plumb, I.; Chen, J.; April, C.; Fan, J.B.; Dick, J.E. The transcriptional architecture of early

human hematopoiesis identifies multilevel control of lymphoid commitment. Nat. Immunol. 2013, 14, 756–763. [CrossRef]
[PubMed]

2. Nestorowa, S.; Hamey, F.K.; Pijuan Sala, B.; Diamanti, E.; Shepherd, M.; Laurenti, E.; Wilson, N.K.; Kent, D.G.; Gottgens, B. A
single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 2016, 128, e20–e31. [CrossRef]

3. Zhao, X.; Gao, S.; Wu, Z.; Kajigaya, S.; Feng, X.; Liu, Q.; Townsley, D.M.; Cooper, J.; Chen, J.; Keyvanfar, K.; et al. Single-cell
RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood 2017, 130, 2762–2773. [CrossRef]

4. Buenrostro, J.D.; Corces, M.R.; Lareau, C.A.; Wu, B.; Schep, A.N.; Aryee, M.J.; Majeti, R.; Chang, H.Y.; Greenleaf, W.J. Integrated
Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell 2018, 173,
1535–1548.e16. [CrossRef]

5. Notta, F.; Doulatov, S.; Laurenti, E.; Poeppl, A.; Jurisica, I.; Dick, J.E. Isolation of single human hematopoietic stem cells capable of
long-term multilineage engraftment. Science 2011, 333, 218–221. [CrossRef]

6. Notta, F.; Zandi, S.; Takayama, N.; Dobson, S.; Gan, O.I.; Wilson, G.; Kaufmann, K.B.; McLeod, J.; Laurenti, E.; Dunant, C.F.; et al.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016, 351, aab2116. [CrossRef]

7. Baron, M.; Veres, A.; Wolock, S.L.; Faust, A.L.; Gaujoux, R.; Vetere, A.; Ryu, J.H.; Wagner, B.K.; Shen-Orr, S.S.; Klein, A.M.; et al. A
Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst.
2016, 3, 346–360.e4. [CrossRef] [PubMed]

8. Yu, Z.; Liao, J.; Chen, Y.; Zou, C.; Zhang, H.; Cheng, J.; Liu, D.; Li, T.; Zhang, Q.; Li, J.; et al. Single-Cell Transcriptomic Map of the
Human and Mouse Bladders. J. Am. Soc. Nephrol. 2019, 30, 2159–2176. [CrossRef]

9. Shami, A.N.; Zheng, X.; Munyoki, S.K.; Ma, Q.; Manske, G.L.; Green, C.D.; Sukhwani, M.; Orwig, K.E.; Li, J.Z.; Hammoud, S.S.
Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian
Spermatogenesis. Dev. Cell 2020, 54, 529–547.e12. [CrossRef] [PubMed]

10. Hodge, R.D.; Bakken, T.E.; Miller, J.A.; Smith, K.A.; Barkan, E.R.; Graybuck, L.T.; Close, J.L.; Long, B.; Johansen, N.; Penn, O.; et al.
Conserved cell types with divergent features in human versus mouse cortex. Nature 2019, 573, 61–68. [CrossRef]

11. Lai, S.; Huang, W.; Xu, Y.; Jiang, M.; Chen, H.; Cheng, C.; Lu, Y.; Huang, H.; Guo, G.; Han, X. Comparative transcriptomic analysis
of hematopoietic system between human and mouse by Microwell-seq. Cell Discov. 2018, 4, 34. [CrossRef]

https://www.mdpi.com/article/10.3390/cells10050973/s1
https://www.mdpi.com/article/10.3390/cells10050973/s1
http://biowulf.nih.gov
http://biowulf.nih.gov
http://doi.org/10.1038/ni.2615
http://www.ncbi.nlm.nih.gov/pubmed/23708252
http://doi.org/10.1182/blood-2016-05-716480
http://doi.org/10.1182/blood-2017-08-803353
http://doi.org/10.1016/j.cell.2018.03.074
http://doi.org/10.1126/science.1201219
http://doi.org/10.1126/science.aab2116
http://doi.org/10.1016/j.cels.2016.08.011
http://www.ncbi.nlm.nih.gov/pubmed/27667365
http://doi.org/10.1681/ASN.2019040335
http://doi.org/10.1016/j.devcel.2020.05.010
http://www.ncbi.nlm.nih.gov/pubmed/32504559
http://doi.org/10.1038/s41586-019-1506-7
http://doi.org/10.1038/s41421-018-0038-x


Cells 2021, 10, 973 17 of 18

12. Shay, T.; Jojic, V.; Zuk, O.; Rothamel, K.; Puyraimond-Zemmour, D.; Feng, T.; Wakamatsu, E.; Benoist, C.; Koller, D.; Regev, A.; et al.
Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl. Acad. Sci.
USA 2013, 110, 2946–2951. [CrossRef]

13. Gao, S.; Wu, Z.; Feng, X.; Kajigaya, S.; Wang, X.; Young, N.S. Comprehensive network modeling from single cell RNA sequencing
of human and mouse reveals well conserved transcription regulation of hematopoiesis. BMC Genom. 2020, 21 (Suppl. 11), 849.
[CrossRef]

14. Chen, J.; Zhang, S.; Feng, X.; Wu, Z.; Dubois, W.; Thovarai, V.; Ahluwalia, S.; Gao, S.; Chen, J.; Peat, T.; et al. Conventional
Co-Housing Modulates Murine Gut Microbiota and Hematopoietic Gene Expression. Int. J. Mol. Sci. 2020, 21, 6143. [CrossRef]

15. Wu, Z.; Gao, S.; Diamond, C.; Kajigaya, S.; Chen, J.; Shi, R.; Palmer, C.; Hsu, A.P.; Calvo, K.R.; Hickstein, D.D.; et al. Sequencing of
RNA in single cells reveals a distinct transcriptome signature of hematopoiesis in GATA2 deficiency. Blood Adv. 2020, 4, 2656–2670.
[CrossRef]

16. Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [CrossRef]

17. Guo, M.; Wang, H.; Potter, S.S.; Whitsett, J.A.; Xu, Y. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis. PLoS
Comput. Biol. 2015, 11, e1004575. [CrossRef]

18. Aibar, S.; Gonzalez-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts,
P.; Aerts, J.; et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 2017, 14, 1083–1086. [CrossRef]

19. Alexa, A.; Rahnenfuhrer, J.; Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO
graph structure. Bioinformatics 2006, 22, 1600–1607. [CrossRef]

20. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

21. Doulatov, S.; Notta, F.; Laurenti, E.; Dick, J.E. Hematopoiesis: A human perspective. Cell Stem Cell 2012, 10, 120–136. [CrossRef]
[PubMed]

22. Kasraie, S.; Werfel, T. Role of macrophages in the pathogenesis of atopic dermatitis. Mediat. Inflamm. 2013, 2013, 942375.
[CrossRef] [PubMed]

23. Sonnhammer, E.L.; Ostlund, G. InParanoid 8: Orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res.
2015, 43, D234–D239. [CrossRef]

24. Han, X.; Zhou, Z.; Fei, L.; Sun, H.; Wang, R.; Chen, Y.; Chen, H.; Wang, J.; Tang, H.; Ge, W.; et al. Construction of a human cell
landscape at single-cell level. Nature 2020, 581, 303–309. [CrossRef] [PubMed]

25. Kiselev, V.Y.; Yiu, A.; Hemberg, M. scmap: Projection of single-cell RNA-seq data across data sets. Nat. Methods 2018, 15, 359–362.
[CrossRef]

26. Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 2019,
37, 547–554. [CrossRef]

27. Qiu, X.; Hill, A.; Packer, J.; Lin, D.; Ma, Y.A.; Trapnell, C. Single-cell mRNA quantification and differential analysis with Census.
Nat. Methods 2017, 14, 309–315. [CrossRef]

28. Suzuki, M.; Kobayashi-Osaki, M.; Tsutsumi, S.; Pan, X.; Ohmori, S.; Takai, J.; Moriguchi, T.; Ohneda, O.; Ohneda, K.;
Shimizu, R.; et al. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells 2013,
18, 921–933. [CrossRef]

29. Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 2017, 14, 979–982. [CrossRef] [PubMed]

30. Setty, M.; Kiseliovas, V.; Levine, J.; Gayoso, A.; Mazutis, L.; Pe’er, D. Characterization of cell fate probabilities in single-cell data
with Palantir. Nat. Biotechnol. 2019, 37, 451–460. [CrossRef]

31. Hoppe, P.S.; Schwarzfischer, M.; Loeffler, D.; Kokkaliaris, K.D.; Hilsenbeck, O.; Moritz, N.; Endele, M.; Filipczyk, A.; Gambardella, A.;
Ahmed, N.; et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 2016, 535, 299–302.
[CrossRef] [PubMed]

32. Ferreira, R.; Ohneda, K.; Yamamoto, M.; Philipsen, S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol.
Cell. Biol. 2005, 25, 1215–1227. [CrossRef] [PubMed]

33. Unnisa, Z.; Clark, J.P.; Roychoudhury, J.; Thomas, E.; Tessarollo, L.; Copeland, N.G.; Jenkins, N.A.; Grimes, H.L.; Kumar, A.R.
Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood 2012, 120, 4973–4981. [CrossRef]

34. Zargari, S.; Negahban Khameneh, S.; Rad, A.; Forghanifard, M.M. MEIS1 promotes expression of stem cell markers in esophageal
squamous cell carcinoma. BMC Cancer 2020, 20, 789. [CrossRef]

35. Papoudou-Bai, A.; Hatzimichael, E.; Barbouti, A.; Kanavaros, P. Expression patterns of the activator protein-1 (AP-1) family
members in lymphoid neoplasms. Clin. Exp. Med. 2017, 17, 291–304. [CrossRef]

36. Fan, F.; Bashari, M.H.; Morelli, E.; Tonon, G.; Malvestiti, S.; Vallet, S.; Jarahian, M.; Seckinger, A.; Hose, D.; Bakiri, L.; et al.
The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow
microenvironment. Leukemia 2017, 31, 1570–1581. [CrossRef]

37. Sandler, V.M.; Lis, R.; Liu, Y.; Kedem, A.; James, D.; Elemento, O.; Butler, J.M.; Scandura, J.M.; Rafii, S. Reprogramming human
endothelial cells to haematopoietic cells requires vascular induction. Nature 2014, 511, 312–318. [CrossRef]

http://doi.org/10.1073/pnas.1222738110
http://doi.org/10.1186/s12864-020-07241-2
http://doi.org/10.3390/ijms21176143
http://doi.org/10.1182/bloodadvances.2019001352
http://doi.org/10.1038/nbt.4096
http://doi.org/10.1371/journal.pcbi.1004575
http://doi.org/10.1038/nmeth.4463
http://doi.org/10.1093/bioinformatics/btl140
http://doi.org/10.1101/gr.1239303
http://doi.org/10.1016/j.stem.2012.01.006
http://www.ncbi.nlm.nih.gov/pubmed/22305562
http://doi.org/10.1155/2013/942375
http://www.ncbi.nlm.nih.gov/pubmed/23533313
http://doi.org/10.1093/nar/gku1203
http://doi.org/10.1038/s41586-020-2157-4
http://www.ncbi.nlm.nih.gov/pubmed/32214235
http://doi.org/10.1038/nmeth.4644
http://doi.org/10.1038/s41587-019-0071-9
http://doi.org/10.1038/nmeth.4150
http://doi.org/10.1111/gtc.12086
http://doi.org/10.1038/nmeth.4402
http://www.ncbi.nlm.nih.gov/pubmed/28825705
http://doi.org/10.1038/s41587-019-0068-4
http://doi.org/10.1038/nature18320
http://www.ncbi.nlm.nih.gov/pubmed/27411635
http://doi.org/10.1128/MCB.25.4.1215-1227.2005
http://www.ncbi.nlm.nih.gov/pubmed/15684376
http://doi.org/10.1182/blood-2012-06-435800
http://doi.org/10.1186/s12885-020-07307-0
http://doi.org/10.1007/s10238-016-0436-z
http://doi.org/10.1038/leu.2016.358
http://doi.org/10.1038/nature13547


Cells 2021, 10, 973 18 of 18

38. Guo, H.; Barberi, T.; Suresh, R.; Friedman, A.D. Progression from the Common Lymphoid Progenitor to B/Myeloid PreproB and
ProB Precursors during B Lymphopoiesis Requires C/EBPalpha. J. Immunol. 2018, 201, 1692–1704. [CrossRef]

39. Bhullar, J.; Sollars, V.E. YBX1 expression and function in early hematopoiesis and leukemic cells. Immunogenetics 2011, 63, 337–350.
[CrossRef]

40. Yokoyama, H.; Harigae, H.; Takahashi, S.; Furuyama, K.; Kaku, M.; Yamamoto, M.; Sasaki, T. Regulation of YB-1 gene expression
by GATA transcription factors. Biochem. Biophys. Res. Commun. 2003, 303, 140–145. [CrossRef]

41. Hao, S.; Yan, K.K.; Ding, L.; Qian, C.; Chi, H.; Yu, J. Network Approaches for Dissecting the Immune System. Iscience 2020, 23, 101354.
42. Lahnemann, D.; Koster, J.; Szczurek, E.; McCarthy, D.J.; Hicks, S.C.; Robinson, M.D.; Vallejos, C.A.; Campbell, K.R.; Beerenwinkel,

N.; Mahfouz, A.; et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020, 21, 31. [CrossRef]
43. Ranzoni, A.M.; Tangherloni, A.; Berest, I.; Riva, S.G.; Myers, B.; Strzelecka, P.M.; Xu, J.; Panada, E.; Mohorianu, I.;

Zaugg, J.B.; et al. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis. Cell
Stem Cell 2021, 28, 472–487.e7. [CrossRef]

44. Bravo Gonzalez-Blas, C.; Minnoye, L.; Papasokrati, D.; Aibar, S.; Hulselmans, G.; Christiaens, V.; Davie, K.; Wouters, J.; Aerts, S.
cisTopic: Cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 2019, 16, 397–400. [CrossRef] [PubMed]

45. Minnoye, L.; Taskiran, I.I.; Mauduit, D.; Fazio, M.; Van Aerschot, L.; Hulselmans, G.; Christiaens, V.; Makhzami, S.; Seltenhammer,
M.; Karras, P.; et al. Cross-species analysis of enhancer logic using deep learning. Genome Res. 2020, 30, 1815–1834. [CrossRef]

46. Cao, J.; Cusanovich, D.A.; Ramani, V.; Aghamirzaie, D.; Pliner, H.A.; Hill, A.J.; Daza, R.M.; McFaline-Figueroa, J.L.; Packer,
J.S.; Christiansen, L.; et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science
2018, 361, 1380–1385. [CrossRef]

47. Yang, Q.; Wan, Q.; Zhang, L.; Li, Y.; Zhang, P.; Li, D.; Feng, C.; Yi, F.; Zhang, L.; Ding, X.; et al. Analysis of LncRNA expression in
cell differentiation. RNA Biol. 2018, 15, 413–422. [CrossRef]

48. Shim, J.; Nam, J.W. The expression and functional roles of microRNAs in stem cell differentiation. BMB Rep. 2016, 49, 3–10.
[CrossRef]

49. Rozenblatt-Rosen, O.; Stubbington, M.J.T.; Regev, A.; Teichmann, S.A. The Human Cell Atlas: From vision to reality. Nature 2017,
550, 451–453. [CrossRef]

50. Saito, Y.; Shultz, L.D.; Ishikawa, F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation
Humanized Mice. Trends Immunol. 2020, 41, 706–720. [CrossRef]

http://doi.org/10.4049/jimmunol.1800244
http://doi.org/10.1007/s00251-011-0517-9
http://doi.org/10.1016/S0006-291X(03)00296-1
http://doi.org/10.1186/s13059-020-1926-6
http://doi.org/10.1016/j.stem.2020.11.015
http://doi.org/10.1038/s41592-019-0367-1
http://www.ncbi.nlm.nih.gov/pubmed/30962623
http://doi.org/10.1101/gr.260844.120
http://doi.org/10.1126/science.aau0730
http://doi.org/10.1080/15476286.2018.1441665
http://doi.org/10.5483/BMBRep.2016.49.1.217
http://doi.org/10.1038/550451a
http://doi.org/10.1016/j.it.2020.06.004

	Introduction 
	Materials and Methods 
	Results 
	scRNA-Seq Identified a Comprehensive and Conserved List of HSPC Types 
	Conserved Cell-Type Expression between Human and Mouse 
	Projection by Scmap and Conservation of Cell Populations between Human and Mouse 
	Developmental Trajectories in Human and Mouse Hematopoiesis 
	Conserved Cell Type Specific Regulatory Elements/Motifs between Human and Mouse 
	Conserved Cell Type Specific Regulatory Networks between Human and Mouse 

	Discussion 
	References

