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Abstract: Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslink-
ing between Gln and Lys residues and involved in various pathophysiological events. Besides
this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold,
protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and
serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death,
inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its
subcellular localization and biological activity, leading to cell death or survival. In normal unstressed
cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions.
However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open confor-
mation, demonstrating a transamidase activity involved in cell death or survival. These functional
discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of
splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the
mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in
fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial
roles of TG2, focusing on cell death/survival and fibrosis.

Keywords: transglutaminase; crosslinking; TG2; cell death; cell survival; macrophage activation; fi-
brosis

1. Introduction

Transglutaminases (TGase) are multifunctional enzymes and constitute a family of
eight isozymes designated as blood coagulation factor XIII and TG1–7. In this family, TG2
is widely distributed and involved in multiple biological processes. It catalyzes a Ca2+-
dependent acyl transfer reaction between the γ-carboxamide group of glutamine present
in a particular sequence and either primary amines, such as polyamines and histamine, or
the ε-amino group of a lysine residue, intra- or inter-molecularly. Water replaces the amine
donor substrates, leading to the deamidation of glutamine. In addition, TG2 and factor
XIIIa exhibit a Ca2+-dependent isopeptidase activity and can hydrolyze the isopeptide
bond, at least under test tube conditions. TG2 exerts additional enzymatic activities that do
not require Ca2+, i.e., it hydrolyzes ATP and GTP to mediate signal transduction through
G-protein-coupled receptors, protein disulfide isomerases, and protein kinases, as well as
interacts with several proteins as an adhesion or scaffold protein [1] (Figure 1).

TG2 is ubiquitously distributed inside (in the nucleus, cytoplasm, plasma membrane,
and mitochondria) and outside the cell, where it appears in the extracellular matrix (ECM)
and exosome [2–4]. In mammals, TG2 is detected across the body, including the blood,
extracellular spaces, and intracellular compartments of nearly all tissues. It is involved in
cell death, growth, and differentiation as well as tissue repair by tissue remodeling/wound
healing and ECM assembly [5]. In this article, we focus on the role of TG2 in cell death,
macrophage activation, and tissue repair processes, which are involved in several patho-
geneses, including tissue injury, inflammation, and fibrosis. This review aims to summarize

Cells 2021, 10, 1842. https://doi.org/10.3390/cells10071842 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-0059-9677
https://doi.org/10.3390/cells10071842
https://doi.org/10.3390/cells10071842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10071842
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10071842?type=check_update&version=2


Cells 2021, 10, 1842 2 of 18

the recent knowledge on the mechanisms activated by TG2 to regulate cell death/survival
and fibrosis in the tissue repair process.
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Figure 1. TG2 multifunctional roles. TG2 contributes to the posttranslational modification of several substrate proteins via
multiple mechanisms, acting as a transamidase, deamidase, crosslinking protein, isopeptidase, GTPase, adhesion/scaffold
protein, disulfide isomerase, and kinase. The mechanisms of some TG2 functions remain unclear. Thanks to its multiple
roles, TG2 exerts various biological functions depending on the stimulus, leading to cell death or survival and tissue repair.

2. Multifunctional Activity and Regulation of TG2
2.1. Crosslinking (Transamidase) Activity

When cells are exposed to increased intracellular Ca2+ concentrations (>700–800 nM)
in response to certain stimuli, including injury and inflammation signals, TG2 structural
conformation is dramatically altered and changes from a closed to an opened form that
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exerts crosslinking and transamidase activities [6,7]. In the appropriate redox condition, a
TG2 intermediate thioester is formed through the attack of an acyl donor (γ-carboxamide
group of a protein glutamine residue) by the nucleophilic active thiolate (cysteine residue
at the active site of TG2), with release of ammonia. Then, the thiolate is restored via
the nucleophilic attack of an acyl acceptor (ε-amino group of a protein lysine residue),
leading to the formation of a covalent intra- or inter-molecular Nε-(γ-glutamyl)lysine
isopeptide bond, which is resistant to degradation [8]. It has been suggested that the
isopeptide bond contributes to the stabilization of the ECM and the prevention of the
release of the intracellular content from apoptotic cells into the extracellular milieu. A
similar reaction also occurs through the incorporation of primary amines and polyamines
into the γ-carboxamide group of a protein glutamine residue.

2.2. Deamidation Activity

If the aforementioned intermediate thioester bond is attacked by a water molecule
as the acyl acceptor, a deamidation reaction occurs, in which the site-specific acyl-donor
glutamine is converted to a glutamate residue [3]. For many years, the deamination
reaction was believed to occur as a side reaction of the absence of primary amines or at
low pH, when amine availability was limited. In these conditions, water would play a
role owing to its abundance [9,10]. However, site-specific deamidations of heat shock
protein [11] and βB2/3-crystallines [12] have been reported, suggesting that the substrate
affinity for TG2 and the reaction conditions influence the propensity toward deamidation
or transamidation [13].

2.3. GTPase and ATPase Activities

Aside from its transamidase activity, TG2 possesses several other enzymatic functions
independent of Ca2+. When the intracellular Ca2+ concentration is as low as 10–20 nM,
TG2 binds and hydrolyzes GTP and ATP, participating in the transmembrane signaling of
phospholipase Cδ as a component of α1B/α1D adrenergic, thromboxane A2, and oxytocin
receptors [4]. The transamidase and GTPase activities are mutually exclusive, whereas
ATP binding has no effect on the transamidase activity. The GTP-binding form of TG2
sustains the closed conformation, which prevents the formation of the Ca2+-binding open
form exerting the transamidase activity and vice versa.

2.4. Isopeptidase Activity

The reversible crosslinking of α2-plasmin inhibitor to fibrinogen and fibrin by fac-
tor XIIIa was reported and is potentially involved in the regulation of fibrinolytic pro-
cesses [14,15]. Biochemical studies demonstrated that TG2 also exhibits an isopeptidase
activity targeting Nε-(γ-glutamyl)lysine [16]. Therefore, an unknown regulatory system of
TG2 might exist to separately switch on or off the transamidase and isopeptidase activities.
Specific TG2 mutants, which exhibit deficient transamidase (W332F) and isopeptidase
(W278F) activities, have been identified [17]. Further research might help elucidate the role
of the TG2 isopeptidase activity in physiological and pathological processes.

2.5. Adapter/Scaffold Activity (Enhanced Integrin–Fibronectin Interaction)

TG2 has originally been investigated as a cytosolic protein. However, it is secreted
on the cell surface and in the extracellular space. It has been reported that TG2 promotes
the stabilization and deposition of ECM proteins through its crosslinking activity [18–21].
In addition, TG2 forms a heterocomplex with fibronectin and interacts with integrins and
heparan sulfate proteoglycans in a crosslinking activity-independent manner [22,23]. The
TG2–fibronectin complex promotes fibril formation and RGD (arginine–glycine–aspartic
acid)-independent focal adhesion through syndecans and integrins [23]. Moreover, it
contributes to cell survival in osteoblasts [24], mesenchymal stem cells [25], and various
tumor cells [26,27].
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2.6. Other Functions

TG2 was reported to demonstrate a protein disulfide isomerase (PDI) activity, which
has been implicated in mitochondrial-dependent apoptosis [28,29]. TG2 also exerts an in-
trinsic serine/threonine kinase activity to phosphorylate insulin-like growth factor binding
protein-3 [30], p53 tumor suppressor protein [31], histones H1–4 [32], and retinoblastoma
(Rb) protein [33]. Furthermore, TG2 affects hypusine metabolism, regulating the activity of
eukaryotic initiation factor 5A and cell proliferation [34]. Recently, TG2 was reported to
serotonylate histone H3 trimethylated lysine 4 (H3K4me3)-marked nucleosomes, control-
ling the recruitment of transcription factors, including TFIID [35].

3. Regulation of TG2 Expression and Activity
3.1. Regulation of TG2 Expression

TGM2 gene expression is regulated by various cellular events, including apoptotic
stimuli [36,37], viral infection [38], endoplasmic reticulum (ER) stress [39,40], hypoxia/
ischemia [41–43], inflammation [44], tissue remodeling [45], and cancer [46–48]. It is
mediated by several related factors and cytokines, such as retinoids [49,50], lipopolysac-
charides [51], transforming growth factor (TGF)-β/bone morphogenetic protein 4 [52],
nuclear factor-κ B (NF-κB) [48,53], glucocorticoids [54], interleukin (IL)-1 [55], IL-6 [56],
hypoxia-inducible factor-1 [57], tumor necrosis factor (TNF)-α [58], and epidermal growth
factor (EGF) [46]. Retinoic acid is a well-known inducer of TG2 expression and pro-
motes the cellular differentiation of neutrophil granulocytes [59,60] and neuroblastoma
cells [61,62] through the heterodimer retinoid acid receptor (RAR)/retinoid X receptor
(RXR) and transcription factor Sp1 [50]. TG2 expression is upregulated in cancer cells
resistant to chemotherapy or with high metastatic potential. TGM2 promoter contains
response elements to inflammation and hypoxia, which are greatly elevated in the envi-
ronment surrounding malignant tumors, leading to an increased expression of TG2 [57].
Ischemia also promotes TG2 expression [41]. In addition, n-Myc and c-Myc contribute
to the regulation of TG2 expression by recruiting histone deacetylase 1 protein to the
TGM2 promoter in cancer cells [63]. Interestingly, the antiproliferative effects of histone
deacetylase inhibitors in cancer cells are impaired by the induction of TG2 mRNA and
protein expression, suggesting that TG2 is involved in the resistance of cancer cells [64].
Since the half-life of TG2 is about 10 h in colorectal cancer HT29 cells, the sustained protein
synthesis of TG2 is necessary for cancer proliferation and resistance to anticancer drugs
such as histone deacetylase inhibitors [64]. TG2 influences TGF-β activation and signaling,
whereas TGF-β1 was reported to promote and suppress TG2 expression [52,65]. TG2
expression is increased by several cytokines, such as IL-6, TNF-α, and NF-κB, in many cell
types, including human hepatoblastoma cells [56,58] and macrophages [66,67]. AF4/FMR2
family member 1, known as a central scaffolding protein of super elongation complex,
was recently reported to contribute to TG2 expression after being recruited to the TGM2
promoter in mouse adipocytes [68].

Human and murine TGM2 promoters are well characterized and contain various
response elements for retinoic acid (−1731 bp and −1720 bp), glucocorticoids (−1399 bp),
NF-κB (−1338 bp), IL-6 (−1190 bp), TGF-β1 (−900 bp), estrogens (−656 bp) [69,70], acti-
vator protein-2 (AP-2, −634 bp), AP-1 (−183 bp), hypoxia (−367 bp), and nuclear factor-1
(+4 bp, +12 bp) [50,71], as well as motif regions, such as CAAT box (−96 bp), TATA box
(−29 bp), and GC box, for Sp1 binding (−54 bp, −43 bp, +59 bp, +65 bp) [72]. Figure 2A
presents the regulatory elements previously reported for the human TGM2 promoter. In
addition, TG2 expression is directly downregulated by micro-RNA 19, which is respon-
sible for the increased invasion and metastasis of colorectal cancer cells [73]. In addition,
enhancer RNA molecules of TG2 expression were identified to regulate the recruitment
of the transcriptional repressor CTCF in the intergenic region of thymocytes treated with
retinoids and TGF-β to induce their death [74]. Furthermore, a recent review summarized
the various potential binding sites of transcription factors and single-nucleotide polymor-
phisms of the TGM2 promoter using information obtained from the public database of
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chromatin immunoprecipitation sequencing [75]. Finally, several splicing variants of TGM2
exhibit different regulatory properties and catalytic activities, affecting the global TG2
activity [76]. Therefore, TGM2 gene expression is regulated by multiple signaling pathways
involved in physiological and pathological events, although these functional roles have
not been fully elucidated.
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Figure 2. Regulation of TG2 expression and activity. (A) Several factors bind to the TGM2 promoter and regulate TGM2
expression. Response elements binding sites for retinoic acid, RXR/RAR (−1731 bp and −1720 bp), glucocorticoids, GRE
(−1399 bp), NF-κB (−1338 bp), IL-6 (−1190 bp), TGF-β1 (−900 bp), estrogens, ERE (−656 bp), activator protein-2, AP-2
(−634 bp), hypoxia: HRE (−367 bp), activator protein-1, AP-1, and nuclear factor-1 (+4 bp, +12 bp) as well as motif regions
such as CAAT box (−96 bp), TATA box (−29 bp), GC box, (Sp1, −54 bp, −43 bp, +59 bp, +65 bp) are indicated. (B) The
balance between open and closed TG2 structural conformations is mainly regulated by Ca2+ and GTP concentrations.
In the open conformation, TG2 transamidase activity is enhanced by thioredoxin, SUMOylation, and membrane lipids
(sphingosylphosphocholine), whereas it is inhibited by S-nitrosylation and acetylation.

3.2. Regulation of TG2 Activity

A few studies have focused on the regulation of TG2 activity compared with the
number of investigations on its transcriptional regulation. Ca2+ and GTP are known
as a competitive activator and a suppressor of TG2 transamidase activity, respectively.
Ca2+ binding alters TG2 structural conformation by moving the β-barrel domains 3 and
4 away from the catalytic domain 2, opening the active center and facilitating access to
the substrate. TG2 appears to be inactive in cells in the absence of stress (~100 nM free
cytoplasmic [Ca2+]). In addition, a free cytoplasmic GTP concentration higher than 100 µM
is required to maintain the closed GTP-bound conformation of TG2, which inhibits its
transamidase activity [77].

The conditions in the extracellular space are suitable for TG2 activation as Ca2+ and
GTP are present at high and low levels, respectively. However, a highly oxidative state was
reported to keep TG2 in the inactive state in the absence of stress due to the formation of
disulfide bonds as a posttranslational modification [78], which was reversed by thioredoxin-
mediated reduction [79]. Furthermore, extracellular TG2 can be negatively regulated by
S-nitrosylation, indicating that nitric oxide is also a potent inhibitor of TG2 activation
and might be involved in age-related vascular stiffness [80,81]. TG2 acetylation was also
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reported to suppress its activity in vitro [82]. Finally, TG2 is stabilized by SUMOylation,
which inhibits TG2 ubiquitination, leading to enhanced protein levels and activity [83,84].

The interaction between TG2 and membrane lipids might be another regulatory factor
of TG2 transamidase activity. Sphingosylphosphocholine reduces the Ca2+ requirement for
TG2 activation, which might allow TG2 transamidase activity resulting from the confor-
mational changes induced by locally increased Ca2+ levels [85]. The alternative splicing of
TGM2 is also involved in the regulation of the transamidase activity. Indeed, C-terminal-
truncated variants lack part of or the entire GTP-binding pocket. Therefore, it is expected
that the transamidase activity is not suppressed even by high GTP concentrations, result-
ing in an increased sensitivity and level of TG2 activation by Ca2+ under physiological
conditions. Figure 2B presents the previously reported regulatory factors of TG2 activity.

4. TG2 Functions in Cell Death and Survival

The multifunctional activity, genetic variants, and conformational changes of TG2
complicate the understanding of its role in physiological and pathological events. The
various functions of TG2, i.e., as a GTPase, PDI, kinase, and adapter/scaffold, and its
role in transamidase activity are associated with both cell death and survival in various
cellular environments. In addition, TG2 is localized in several subcellular spaces, such as
the ECM, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus,
which influence its biological activities (Figure 3).
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Figure 3. Cellular distribution of TG2 multiple functions and cell types involved in tissue injury processes. Enzymatic
activities such as crosslinking, amine incorporation including hypusine and serotonin, GTPase/ATPase, PDI, and kinase
as well as non-enzymatic adapter/scaffold activities are shown for TG2 localized in the nucleus, cytosol, underneath the
plasma membrane, and in the extracellular compartment. TG2 functions in macrophage engulfment and tissue repair events
following cell death induction are also demonstrated.

TG2 accumulation has been demonstrated in various cellular and tissue types undergo-
ing cell death [86]. For example, initial studies investigating the relationship between TG2
and cell death indicated that an enhanced TG2 crosslinking activity was correlated with
the extent of cell death [87], whereas TG2 inhibition reduced apoptosis [88]. Transfection of
TG2, but not of mutated TG2 lacking crosslinking activity, enhances caspase-dependent cell
death [89]. TG2-induced cell death was also associated with the release of both cytochrome
c [36] and apoptosis-inducing factor [90] from the mitochondria.

Previously, we reported that crosslinking of transcription factors by nuclear TG2
caused caspase-independent cell death. TG2 crosslinks and inactivates the general tran-
scription factor Sp1, which results in a reduced expression of growth factor receptors, such
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as c-Met and EGF receptors, which are essential for cell survival [91,92]. Another group also
demonstrated that TG2 polymerizes and inactivates Rb protein, which inhibits its interac-
tion with E2F1 and enhances its degradation, accelerating cell growth arrest/apoptosis [93].
Contrarily, in fibroblast cells treated with retinoids, TG2 prevents Rb protein degrada-
tion by caspase-7 probably through its GTP-binding activity, leading to an attenuation of
apoptosis [94].

By investigating liver diseases, we previously demonstrated that TG2 transamidase
activity significantly increases in the nucleus of hepatocytes treated with alcohol or free
fatty acid, promoting the crosslinking and inactivation of Sp1. The defect in Sp1 activity
causes the downregulation of the hepatocyte growth factor c-Met, leading to caspase-
independent hepatic cell death in cultured hepatocytes and animal models as well as in
patients with alcoholic and non-alcoholic steatohepatitis [39,91]. This proapoptotic role
of TG2 crosslinking activity was investigated by other groups in carbon tetrachloride-
(CCl4) and ethanol-induced liver injury, non-alcoholic fatty liver disease, and acute human
liver injury [53,95–99]. However, a prosurvival role of TG2 has also been reported and
attributed to both GTP-binding and crosslinking activities [100]. TG2 provides protection
against liver injury, as the injuries induced by CCl4 or anti-Fas antibody are more severe
in TG2-deficient mice than in wild-type controls [101,102]. These reports are inconsistent
with our previous work. We speculate such an inconsistency to be caused by differences in
the stimulant reagent doses and mice genetic backgrounds [91,103].

The relationship between TG2 and cell death has been investigated in several neuronal
models [104]. TG2 expression is increased in the human brain in various chronic or acute
neuropathological conditions [105]. Enhanced TG2 activity and expression are observed in
the ischemic hippocampus after reperfusion [106,107] and cultured astrocytes exposed to
oxidative stress [108], leading to neurodegeneration. TG2-deficient mice or those treated
with a TG2 inhibitor present a smaller infarction volume after reperfusion than control
mice [109]. However, controversial evidence indicated that TG2 might play a protective role
in response to stress. In hypoxic conditions induced by ischemia and stroke [41,110,111],
TG2 binds to hypoxia-inducible factor 1β independently of its transamidase activity and
prevents the upregulation of proapoptotic factors, such as Bnip3 [112] and Noxa [113],
thereby preventing neuronal cell death.

Transgenic mice overexpressing human TG2 selectively in neurons exhibited a dra-
matic increase in neuronal damage in the sensitive hippocampal regions after treatment
with kainic acid, even though these mice presented no apparent phenotype in the absence of
stress [114]. Enhanced TG2 expression and/or activity, especially of nuclear TG2, has been
observed in several neurodegenerative disorders, such as Alzheimer’s disease (AD), Hunt-
ington’s disease (HD), and Parkinson’s disease (PD) [115]. TG2 was reported to crosslink
both amyloid-β peptide and tau protein in vitro [116,117]. The resultant polyaminated tau
protein is more resistant to proteolytic degradation by calpain, which indicates that TG2
may contribute the aggregation processes of amyloid-β and tau in AD patients [118]. In
addition, the levels of truncated alternative spliced TG2 variants lacking GTPase activity
are also enhanced in AD patients and possess potential proapoptotic properties [119,120].
In the frontal cortex of postmortem HD brains, 99% colocalization is observed between
Nε-(γ-glutamyl)lysine crosslinks and huntingtin aggregates in the nucleus [121], indicating
the involvement of nuclear TG2 in HD. Furthermore, TG2-deficient HD mouse models
experience a significant delay of motor dysfunction onset and a prolonged survival. TG2
inhibitors also ameliorated HD symptoms via transcriptional dysregulation [122,123]. Mu-
tant huntingtin binds to other polyglutamine-enriched proteins, such as transcription
factors, including Sp1 or its coactivator TAFII130 [124–126], and interferes with their in-
activation. This might repress the Sp1-mediated expression of prosurvival factors and
metabolic-related genes, such as brain-derived neurotrophic factor [127], dopamine D2
receptor [124,125], preproenkephalin [124], peroxisome proliferator-activated receptor-γ
coactivator-1α [122], and cytochrome c [122]. These results indicate that TG2 is potentially
an important factor aggravating HD symptoms through the transcriptional dysregulation
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of several survival factors and key metabolic genes, although TG2 is not critical for induc-
ing HD. Moreover, normal huntingtin protein localizes to nuclear actin–cofilin rods during
stress and is required for a proper stress response involving actin remodeling. Defective
nuclear actin remodeling leads to faster cell death and is correlated with disease progres-
sion [128]. It was associated with mutant huntingtin, and stress-activated TG2 crosslinks
actin–cofilin in HD, leading to neurodegeneration. TG2 appeared to be highly expressed in
the substantia nigra of PD patients and colocalized with α-synuclein, a potential substrate
for TG2 in vivo [129], in the brain of patients with dementia with Lewy bodies [130], and
mediated toxicity of α-synuclein in vivo [131].

In addition to the regulation of cell death and survival, TG2 is involved in the acti-
vation of several immune cells such as dendritic cells [132], T cells [133–135], B cells [136],
macrophages [137], and neutrophils [60]. The intake of deamidated gluten modified by
TG2 through food also causes an adaptive immune response in celiac disease patients,
accompanied by massive cell death in small intestinal epithelial cells [138–140]. The rela-
tionship between celiac intestinal barrier defect and hepatitis has been reported [141], and
it is thought that an amplifying loop in liver diseases is initiated, with cytokine secretion
by hepatocytes and consecutive intestinal barrier defect [142]. With regard to the clearance
of apoptotic cells, TG2 promotes dimerization of the monocyte chemotactic factor S19 and
consequently monocyte infiltration [143]. Furthermore, a defective clearance of apoptotic
cells or lipids by macrophages in the thymus and Kupffer cells in the liver of TG2-deficient
mice has been reported [144–146]. Because these mice still demonstrated inflammatory
infiltration of macrophages at the apoptosis sites and developed autoimmunity, TG2 was
proposed to be required for the engulfment of apoptotic cells by macrophages but not for
their recognition and binding. Subsequent studies demonstrated that the role of TG2 in
phagocytosis depends on GTP-binding sites but not on its transamidase activity [147,148].
In addition, TG2 contributes to the formation of a complex with milk fat globule-EGF factor
8 and integrin β3 on the surface of macrophages and microglia and thus was required
for the formation of engulfing portals [148,149]. These relationships between TG2 and
macrophages have been well summarized in Kaartinen’s review [150].

5. TG2 Functions in Fibrosis

The TG2 transamidase activity contributes to the wound healing process and fibro-
sis. The reaction products form an Nε-(γ-glutamyl)lysine isopeptide bond resulting from
the crosslinking. This is an important step for the maturation and stabilization of ECM
components, such as collagens, exacerbating scarring and fibrosis in various tissues, in-
cluding the liver [96,151–153], kidney [154–159], lung [160–165], and heart [166,167]. The
other enzymatic crosslinker, lysyl oxidase (LOX), has also been reported to contribute to
collagen stabilization. LOX oxidizes certain lysine residues in collagen to produce alde-
hydes, which react to form covalent bonds and stabilize molecules within the collagen
fibers [168]. Impaired crosslinking by LOX results in weak collagen fibers and fragile
collagenous tissue [169]. In the remodeling of fibroblast-populated collagen lattices, TG2
predominantly contributes to the Ca2+-dependent early entrenchment (initial remodeling)
by crosslinking of the extant matrix, whereas LOX implicates Ca2+-independent contractil-
ity at later times [170]. These results suggest that, in fibrosis, TG2 is involved in early ECM
remodeling, while LOX contributes to subsequent modification.

Aside from the direct ECM stabilization, the TG2 transamidase activity appears to play
a significant role in the fixation and activation of the profibrotic cytokine TGF-β. TGF-β is
released in a latent form and converted to an active one. Enhanced TG2 activity is required
for TGF-β activation from the latency binding complex as it promotes crosslinking of the
large latent TGF-β binding protein to fibronectin or other ECM components on the cell
surface [165,171–174]. The secretion of TG2 into the ECM is important for its function in
TGF-β activation. The secretion mechanisms are unclear, as TG2 lacks the signal peptide
necessary for ER targeting and the classical protein secretion mechanism through the ER–
Golgi system. Moreover, no Golgi-associated protein modification, such as glycosylation,
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has been evidenced for TG2 [175]. Recent studies demonstrated that TG2 interacts with the
heparan sulfate chains of proteoglycans, forms a complex with fibronectin, and interacts
with integrins and heparan sulfate proteoglycans in the ECM to promote cell adhesion and
spreading [176,177]. The interaction between TG2 and the heparan sulfate chains of cell
surface syndecans is a potential mechanism implicated in the pathophysiological role of
TG2, including in fibrosis [23,178,179].

As previously described, we demonstrated that nuclear TG2 inactivated Sp1 by
crosslinking, leading to reduced expression of c-Met and consequently activation of hepatic
apoptosis in a hepatic injury mouse model and in patients with alcoholic steatohepatitis [91].
TG2-mediated reduction of c-Met expression might be involved in the impaired hepatocyte
regeneration observed in patients with alcoholic liver diseases [103,180,181]. Furthermore,
hepatocyte-specific c-Met-deficient mice demonstrated more extensive liver cell damages
and fibrosis, indicating that the induction of nuclear TG2/crosslinked Sp1/downregulated
c-Met axis accompanied liver fibrosis. In agreement with our findings, TG2 nuclear accu-
mulation and crosslinked Sp1 were observed in the fibrotic area of patients with alcoholic
steatohepatitis [182].

However, TG2-deficient mice demonstrated no alteration of the fibrosis levels in the
liver after treatment with CCl4 or thioacetamide [183]. This contradictory result might be
due to discrepancies in the method used to target the TGM2 gene, in the mouse background,
and in the disease model. We obtained similar results using TG2-deficient mice. Indeed,
liver fibrosis induced by bile duct ligation was not inhibited in these mice [152], although
these mice presented a significant reduction of fibrosis induction in other fibrosis models,
such as kidney fibrosis induced by unilateral ureteral obstruction [158] and lung fibrosis
resulting from bleomycin treatment [162]. Interestingly, TG2 or pan-TGase inhibitors,
including competitive or reversible/irreversible inhibitors, have been demonstrated to be
consistently protective in several fibrosis models, including liver fibrosis induced by both
CCl4 and bile duct ligation [98,152,158,184–189].

6. Conclusions and Prospects

Since the TGase family is multifunctional and contains numerous isozymes and
splicing variants, an integrated understanding of TGase functions in pathophysiological
events is often difficult to achieve. The role of TG2 in cell death and survival remains
controversial. However, TG2 may be generally involved in the positive effect of apoptotic
cell phagocytosis by macrophages and fibrosis induction. At low Ca2+ levels and high
GTP concentrations in normal cellular condition without stress, TG2 exists as a closed
form and exerts GTPase, PDI, and kinase activities to maintain homeostasis, which is
crucial for cell survival. Contrarily, abnormal cellular conditions with stress and high
Ca2+ concentrations allow TG2 change of conformation to the open form, which exhibits
crosslinking activity, leading to alterations of its subcellular localization and extracellular
release. Activated TG2 in the cytoplasm or nucleus of stressed cells crosslinks and regulates
the activity and proteostasis by ubiquitination and autophagy of a number of target
substrate proteins involved in several signaling events. Nuclear TG2 mainly regulates
the activity of transcription factors and chromatin remodeling, which are involved in the
expression of various downstream proteins important in cell death and survival.

In addition to the activation of TG2 during cell death induction, TG2 is upregulated
in macrophages and is important for the clearance by phagocytosis of dead cells. After or
following cell death and inflammation events, TG2 is secreted into the extracellular space
and contributes to the enhancement of fibrogenesis, which allows filling the gaps resulting
from cell death. In the ECM, TG2 forms a complex with fibronectin and interacts with
integrins and heparan sulfate proteoglycans, contributing to the stabilization of the ECM
mediated by crosslinking and to sustained TGF-β activation, leading to the development
of fibrosis linked to organ dysfunctions (Figure 3).

Treatment with inhibitors of the TG2 crosslinking activity appeared to consistently
suppress pathogenic fibrosis, although their effects on cell death and survival are not
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consistent, probably due to different experimental conditions and stimuli. Considering
the ubiquitous and multifunctional nature of TG2, the development of a drug with no
side effects might be difficult. Therefore, clinical compounds and antibodies that are more
specific and allow controlling the drug distribution in the whole body are currently being
developed. Effective TG2 inhibitors were developed by Zedira GmbH and are now in
advanced clinical trials for the treatment of celiac disease. Recently, novel candidates for
the treatment of kidney fibrosis were also successfully developed. In the future, these TG2
inhibitors will also be tested in patients with fibrosis in other organs such as lung and liver.

In our recent work, we conducted a comprehensive analysis of TG2-mediated crosslink-
ing of substrate proteins in models of fibrosis targeting the liver, kidney, and lungs. Based
on these results, we will create a database of the substrate proteins crosslinked in fibrosis,
specifically, in each organ, which will support the development of novel preventive drugs
against fibrosis acting by suppressing the crosslinking of substrate proteins.
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