
cells

Article

The Chemically-Modified Tetracycline COL-3 and Its Parent
Compound Doxycycline Prevent Microglial Inflammatory
Responses by Reducing Glucose-Mediated Oxidative Stress

Nilson Carlos Ferreira Junior 1,2,3, Maurício dos Santos Pereira 1,2,3 , Nour Francis 1, Paola Ramirez 1,
Paula Martorell 1, Florencia González-Lizarraga 4, Bruno Figadère 5, Rosana Chehin 4, Elaine Del Bel 2,3,
Rita Raisman-Vozari 1,* and Patrick Pierre Michel 1,*

����������
�������

Citation: Ferreira Junior, N.C.; dos

Santos Pereira, M.; Francis, N.;

Ramirez, P.; Martorell, P.;

González-Lizarraga, F.; Figadère, B.;

Chehin, R.; Del Bel, E.;

Raisman-Vozari, R.; et al. The

Chemically-Modified Tetracycline

COL-3 and Its Parent Compound

Doxycycline Prevent Microglial

Inflammatory Responses by

Reducing Glucose-Mediated

Oxidative Stress. Cells 2021, 10, 2163.

https://doi.org/10.3390/

cells10082163

Academic Editor: Dominique Debanne

Received: 29 June 2021

Accepted: 13 August 2021

Published: 22 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière,
75013 Paris, France; juniormb@usp.br (N.C.F.J.); msp_biomed@yahoo.com.br (M.d.S.P.);
francis.nour@icm-institute.org (N.F.); paola.ramirez@icm-institute.org (P.R.);
martorell.paula@icm-institute.org (P.M.)

2 Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no,
Ribeirão Preto 14040-904, Brazil; eadelbel@usp.br

3 USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
4 Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA),

CP 4000 Tucumán, Argentina; mflorenciagl@hotmail.com.ar (F.G.-L.); rosanachehin@gmail.com (R.C.)
5 BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France; bruno.figadere@universite-paris-saclay.fr
* Correspondence: ritaraisman@gmail.com (R.R.-V.); patrick.michel@icm-institute.org (P.P.M.);

Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)

Abstract: We used mouse microglial cells in culture activated by lipopolysaccharide (LPS) or α-
synuclein amyloid aggregates (αSa) to study the anti-inflammatory effects of COL-3, a tetracycline
derivative without antimicrobial activity. Under LPS or αSa stimulation, COL-3 (10, 20 µM) efficiently
repressed the induction of the microglial activation marker protein Iba-1 and the stimulated-release
of the pro-inflammatory cytokine TNF-α. COL-3′s inhibitory effects on TNF-α were reproduced
by the tetracycline antibiotic doxycycline (DOX; 50 µM), the glucocorticoid dexamethasone, and
apocynin (APO), an inhibitor of the superoxide-producing enzyme NADPH oxidase. This last
observation suggested that COL-3 and DOX might also operate themselves by restraining oxidative
stress-mediated signaling events. Quantitative measurement of intracellular reactive oxygen species
(ROS) levels revealed that COL-3 and DOX were indeed as effective as APO in reducing oxidative
stress and TNF-α release in activated microglia. ROS inhibition with COL-3 or DOX occurred together
with a reduction of microglial glucose accumulation and NADPH synthesis. This suggested that
COL-3 and DOX might reduce microglial oxidative burst activity by limiting the glucose-dependent
synthesis of NADPH, the requisite substrate for NADPH oxidase. Coherent with this possibility,
the glycolysis inhibitor 2-deoxy-D-glucose reproduced the immunosuppressive action of COL-3
and DOX in activated microglia. Overall, we propose that COL-3 and its parent compound DOX
exert anti-inflammatory effects in microglial cells by inhibiting glucose-dependent ROS production.
These effects might be strengthened by the intrinsic antioxidant properties of DOX and COL-3 in
a self-reinforcing manner.

Keywords: COL-3; glucose metabolism; microglia; NADPH oxidase; neuroinflammation; oxidative
stress; tetracyclines

1. Introduction

Tetracyclines are a family of antibiotics that inhibit bacterial protein synthesis by
attaching to the ribosomal subunit and consequently blocking the binding of aminoacyl-
tRNAs to the ribosome A site [1]. Although the effects of tetracyclines as antibiotics have
long been known, there has been a renewed interest in this family of molecules. Indeed, in
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addition to their antibacterial activity, they can exert pharmacological effects that may have
clinical applications in various disease states, including cancer [2], inflammation-related
disorders [3], and CNS neurodegenerative pathologies [4,5].

As an illustration of that, doxycycline (DOX), an old tetracycline antibiotic currently
used for the treatment of skin problems [6], combines anti-tumoral [7], anti-inflammatory [8],
and neuroprotective [9,10] activities. In particular, a number of studies reported neuropro-
tective effects of DOX in toxin-induced animal models of Parkinson’s disease (PD) [9,10].
DOX was also found to decrease the expression of several inflammation markers in mi-
croglial cultures activated with the bacterial inflammogen lipopolysaccharide (LPS) [8],
which indicates that DOX’s neuroprotective effects may be due in part to its ability to
limit inflammation-related events [9,10]. The anti-inflammatory properties of DOX may
also explain why this tetracycline provided relief against L-DOPA-induced dyskinesia in
a PD rat model [11]. Interestingly, DOX was also found capable of preventing amyloid
aggregation of α Synuclein (αS) and tau, two seeding-prone proteins involved in PD [12,13]
and Alzheimer’s disease [14] pathologies, respectively, suggesting that this tetracycline has
the potential of a multimodal neuroprotective drug.

COL-3, also named chemically modified tetracycline 3 (CMT-3), 4-dedimethylamin-
osancycline, or incyclinide, belongs to a group of modified tetracyclines that have been
structurally rearranged to suppress their antibacterial properties. Removal of the antimi-
crobial activity obtained by eliminating the dimethylamino group from carbon 4 in the
A ring of the tetracycline core structure (Figure 1) was carried out with the principle of
preserving other activities of interest [15,16]. COL-3 has been tested in clinical trials in
cancer patients [17,18], and its capacity of inhibiting matrix metalloproteinases offers the
possibility to reduce the excessive breakdown of connective tissue in many pathological
conditions [19–21]. COL-3 is highly lipophilic, so it can cross the blood–brain barrier and
exert CNS effects [3,22]. In that respect, systemic administration of COL-3 was reported to
inhibit brain microglial activation induced by the bacterial inflammogen LPS [22]. However,
the mechanism through which COL-3 reduces neuroinflammation is still unclear.

Cells 2021, 10, x FOR PEER REVIEW 2 of 16 

 

1. Introduction 

Tetracyclines are a family of antibiotics that inhibit bacterial protein synthesis by at-

taching to the ribosomal subunit and consequently blocking the binding of aminoacyl-

tRNAs to the ribosome A site [1]. Although the effects of tetracyclines as antibiotics have 

long been known, there has been a renewed interest in this family of molecules. Indeed, 

in addition to their antibacterial activity, they can exert pharmacological effects that may 

have clinical applications in various disease states, including cancer [2], inflammation-

related disorders [3], and CNS neurodegenerative pathologies [4,5].  

As an illustration of that, doxycycline (DOX), an old tetracycline antibiotic currently 

used for the treatment of skin problems [6], combines anti-tumoral [7], anti-inflammatory 

[8], and neuroprotective [9,10] activities. In particular, a number of studies reported neu-

roprotective effects of DOX in toxin-induced animal models of Parkinson’s disease (PD) 

[9,10]. DOX was also found to decrease the expression of several inflammation markers in 

microglial cultures activated with the bacterial inflammogen lipopolysaccharide (LPS) [8], 

which indicates that DOX’s neuroprotective effects may be due in part to its ability to limit 

inflammation-related events [9,10]. The anti-inflammatory properties of DOX may also 

explain why this tetracycline provided relief against L-DOPA-induced dyskinesia in a PD 

rat model [11]. Interestingly, DOX was also found capable of preventing amyloid aggre-

gation of α Synuclein (αS) and tau, two seeding-prone proteins involved in PD [12,13] and 

Alzheimer’s disease [14] pathologies, respectively, suggesting that this tetracycline has 

the potential of a multimodal neuroprotective drug. 

COL-3, also named chemically modified tetracycline 3 (CMT-3), 4-dedimethyla-

minosancycline, or incyclinide, belongs to a group of modified tetracyclines that have 

been structurally rearranged to suppress their antibacterial properties. Removal of the an-

timicrobial activity obtained by eliminating the dimethylamino group from carbon 4 in 

the A ring of the tetracycline core structure (Figure 1) was carried out with the principle 

of preserving other activities of interest [15,16]. COL-3 has been tested in clinical trials in 

cancer patients [17,18], and its capacity of inhibiting matrix metalloproteinases offers the 

possibility to reduce the excessive breakdown of connective tissue in many pathological 

conditions [19–21]. COL-3 is highly lipophilic, so it can cross the blood–brain barrier and 

exert CNS effects [3,22]. In that respect, systemic administration of COL-3 was reported 

to inhibit brain microglial activation induced by the bacterial inflammogen LPS [22]. How-

ever, the mechanism through which COL-3 reduces neuroinflammation is still unclear.  

 

Figure 1. Chemical structures of the non-antibiotic tetracycline COL-3 and of its parent compound 

DOX. COL-3 differs from DOX by the absence of the DCBA naphthacene core structure of dimethyl-

amino-, hydroxyl-, and methyl- groups in C-4, C-5, and C-6, respectively. The loss of antimicrobial 

activity specifically results from the removal of the dimethylamino group at the C4 position. 

Figure 1. Chemical structures of the non-antibiotic tetracycline COL-3 and of its parent com-
pound DOX. COL-3 differs from DOX by the absence of the DCBA naphthacene core structure
of dimethylamino-, hydroxyl-, and methyl- groups in C-4, C-5, and C-6, respectively. The loss
of antimicrobial activity specifically results from the removal of the dimethylamino group at the
C4 position.

In the present study, we wished to further explore the mechanisms underlying the
anti-inflammatory activity of COL-3 towards brain microglial cells, using its parent com-
pound DOX as a reference tetracycline molecule. For this research project, we used
brain microglial cells challenged with LPS and amyloid aggregates of the synaptic pro-
tein αSa in order to model brain inflammatory-type reactions as they may occur in PD
neurodegeneration [23–25]. We found that COL-3 was intrinsically more potent than DOX,
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as it was optimally effective at lower concentrations than its parent compound. Both
COL-3 and DOX seemed to operate by limiting the capacity of microglia of generating
glucose-dependent NADPH and, as a consequence, reactive oxygen species (ROS) via
NADPH oxidase activation.

2. Materials and Methods
2.1. Drugs and Cell Culture Reagents

Lipopolysaccharide (LPS; Escherichia coli strain O26:B6; #L8274), 2-deoxy-D-glucose
(2-DG; #D8375), Trolox (TROL; #238813), dexamethasone (DEX; #D4902), and DOX hyclate
(#D9891) were obtained from Sigma-Aldrich (L’Isle d’Abeau Chesnes, France). COL-3, also
named CMT-3, 4-dedimethyl aminosancycline, or incyclinide (#HY-13648), was purchased
from MedChemExpress (Monmouth Junction, NJ, USA) and apocynin (APO; #4663) from
R&D Systems Europe (Lille, France). Dulbecco’s modified Eagle’s medium (DMEM) and
trypsin (0.05%)-EDTA solution, used to generate microglial subcultures, were obtained
from ThermoFisher Scientific (Saint Aubin, France). Fetal calf serum (FCS) was provided by
Biowest LLC (Eurobio, Les Ulis, France), and 2-[1,2-3H (N)]-deoxy-D-glucose (NET549A)
was purchased from Perkin Elmer (Courtaboeuf, France).

2.2. Microglial Cell Cultures
Ethics Statement

To generate microglial cell cultures, we used newborn C57BL/6J mice obtained from
Janvier LABS (Le Genest St. Isle, France). Mice were kept and cared for, following Euro-
pean Union Council Directives (2010/63/EU). The Committee on the Ethics of Animal
Experiments Charles Darwin no. 5 approved experimental protocols.

2.3. Polyethyleneimine Coating

Polyethyleneimine (PEI; Mw: 750,000; Mn: 60,000; #P3143, Sigma-Aldrich, L’Isle
d’Abeau Chesnes, France) was applied to culture flasks, as previously described [26]. PEI
was diluted in a 40 mM borate buffer solution (1 mg/mL; pH 8.3) prepared with borax
decahydrate (#B3545) [26,27]. After 2 h of incubation (37 ◦C), PEI was discarded, and
culture flasks washed four times with Dulbecco’s phosphate-buffered saline (PBS) were
kept aside until further use.

2.4. Isolation of Microglial Cells and Production of Microglial Subcultures

The brains of mouse pups (postnatal day 1) were mechanically dissociated, as pre-
viously described [26]. Microglial cells in suspension were plated in PEI-coated T-75
culture flasks (Corning) containing 12 mL of DMEM supplemented with FCS (10%) and
a penicillin/streptomycin cocktail. Under these conditions, microglial cell isolation occurs
spontaneously after 14–18 days of culture. When required, purified microglial cells were
maintained for up to 1 more week in culture flasks by adding 2–3 mL of DMEM supple-
mented with penicillin/streptomycin and only 1% of FCS [28]. Subcultures were produced
by trypsinizing purified microglial cell cultures with 0.05% trypsin-EDTA for 5 min. After
trypsin inactivation with 10% FCS, cells were triturated and plated onto uncoated Nunc
48-multiwell plates (105 cells per well), using DMEM supplemented with antibiotics and
1% FCS as maintenance medium.

2.5. Purification and Aggregation of Recombinant αS

The expression and purification of recombinant human αS were performed as pre-
viously described [12,29]. The purity of recombinant αS was evaluated by SDS-PAGE,
and contaminating endotoxins were removed from protein samples using a Pierce Spin
column (#88275; Thermo Fisher Scientific, Courtaboeuf, France). The Limulus amebocyte
lysate assay revealed that monomeric αS stock solutions contain less than 0.1 endotoxin
units (EU)/mL at this stage. The protein solutions were filtered and centrifuged, and the
absorbance of the supernatant was measured at 280 nm using a Nanodrop 8000 spectropho-
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tometer (Thermo Fisher Scientific, Courtaboeuf, France). Finally, protein solutions were
adjusted to obtain appropriate working concentrations.

To generate amyloid aggregates of αS, we used a protocol reported by us before [12,30].
Briefly, αS samples incubated at 37 ◦C were submitted to continuous orbital agitation
for 96 h (Thermomixer Comfort; Eppendorf, Montesson, France). Recovered samples
sonicated for 2 min with a Branson B3510-DTH ultrasonic bath (VWR International,
Fontenay sous Bois, France) were then kept at −20 ◦C until further use [13].

2.6. Transmission Electron Microscopy (TEM)

We used TEM characterization to confirm that the process of αS fibrillization occurred
in agitated samples [30]. Briefly, samples were adsorbed onto glow-discharged 200-mesh-
carbon-film-coated copper grids. Then, samples were stained with 2% uranyl acetate. The
liquid in excess was discarded, and the grids were left to dry at room temperature. TEM
images were captured using a Hitachi HT7700 120 kV system.

2.7. Stimulation Protocols with Inflammogens and Drug Treatments

Microglial cells were treated with either LPS or αSa for 24 h to model brain
inflammatory-type reactions. Treatments with test compounds were initiated 2 h be-
fore adding the inflammogens to the cultures and prolonged until the end of experimental
protocols. Note that none of the test treatments exerted toxic effects on microglial cells
under these conditions.

2.8. Immunofluorescence Detection of Microglial Cell Markers

A MAC-1/CD11b rat monoclonal antibody (clone M1/70.15) from BioRad (Oxford,
UK) and a rabbit antibody raised against ionized calcium-binding adaptor molecule-1
(Iba-1, #019-19741) from Wako Chemicals (Neuss, Germany) were used to monitor mi-
croglial cell responses, at the cellular level. Briefly, we fixed microglial cells in 4% formalde-
hyde in PBS (20 min at room temperature) and then incubated them sequentially with
antibodies against MAC-1/CD11b (1:100 in PBS for 72 h) and Iba-1 (1:500 in PBS 0.2% Triton
X-100 overnight). The immunodetection of MAC-1/CD11b and Iba-1 was performed with
anti-rat Alexa-Fluor 488- and anti-rabbit Alexa-Fluor 555-conjugated antibodies, respec-
tively (Invitrogen, Waltham, MA, USA). Nuclear counterstaining with the cell-permeable
Hoechst-33342 dye (1 µg/mL for 5 min) was performed to enable automated focus for
quantitative image analysis protocols (Arrayscan XTi workstation; Thermo Fisher Scien-
tific, Courtaboeuf, France). Fluorescent images were acquired with a 20× objective, and
variations in immunofluorescence signal intensities were quantified using the HCStudio
software (Thermo Fisher Scientific, Courtaboeuf, France). Approximately 2500 microglial
cells were analyzed for each treatment condition.

2.9. TNF-α Assay

TNF-α was quantified using an ELISA kit from Thermo Fisher Scientific (Courtaboeuf,
France) (#BMS607-3) according to the manufacturer’s protocol. Absorbance was measured
at a wavelength of 450 nm using a SpectraMax i3X microplate reader (Molecular Devices,
Sunnyvale, CA, USA).

2.10. Measurement of Intracellular NADPH

A high-sensitivity NADPH quantitation fluorometric assay kit (#MAK216; Sigma-
Aldrich, L’Isle d’Abeau Chesnes, France) was used to assess intracellular NADPH lev-
els, as previously described [31]. The fluorescent reaction product was evaluated with
a SpectraMax i3X microplate reader (Molecular Devices, Sunnyvale, CA, USA) using
an excitation wavelength of 535 nm and an emission wavelength of 587 nm.
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2.11. Quantification of Intracellular ROS Levels

Intracellular ROS levels were measured using the CellROX Deep Red reagent (Invitro-
gen Life Technologies, Waltham, MA, USA), as previously described [31]. Signal acquisition
was performed on an Arrayscan XTI automated workstation fitted with a 20× objective
(Thermo Fisher Scientific, Courtaboeuf, France). Cellular fluorescence intensity was esti-
mated using HCStudio software.

2.12. Assessment of [3H]-2-DG Uptake

[3H]-2-DG uptake was assessed as previously described [31]. Briefly, after termination
of test treatments, microglial cell cultures were incubated at 37 ◦C for 30 min in PBS
containing 1 µCi [3H]-2-DG. 2-DG accumulation was interrupted by adding ice-cold PBS
to the cultures. Microglial cells in culture were then scrapped in a 1% Triton-X–distilled
water solution, and the radioactivity accumulated intracellularly was measured using
a Tri-Carb 4910TR liquid scintillation counter (Villebon Sur Yvette, France). Blank values
were measured in control wells containing 50 mM glucose.

2.13. Statistical Analysis

Data values were collected from a minimum of two independent experiments, each
performed in duplicate cultures. Experimental data are presented as the mean ± SEM.
Statistical analyses were performed using one-way ANOVA followed by a Bonferroni post-
hoc test using the GraphPad Prism version 8 for Windows (GraphPad Software, La Jolla,
CA, USA).

3. Results
3.1. COL-3 Reduces the Inflammatory Response of Microglial Cells Exposed to LPS or αSa

To assess the anti-inflammatory potential of the non-antibiotic tetracycline COL-3, we
used primary microglial cell cultures treated with LPS (10 ng/mL), a prototypical agonist
of Toll-like receptor (TLR)4 [32,33]. After 24 h of LPS exposure, the production/release
of the pro-inflammatory cytokine TNF-α was strongly increased. In cultures treated
with 10 or 20 µM COL-3, TNF-α production was reduced by more than 40% and 70%,
respectively (Figure 2A). No significant inhibitory effect was observed, however, at 1 µM,
indicating that the anti-inflammatory action of COL-3 was concentration-dependent and
only significant at 10 µM or above. At 20 µM, COL-3 appeared to be as effective as the
reference tetracycline DOX at 50 µM. The reference anti-inflammatory drug DEX at 2.5 µM
was more effective than COL-3 at 20 µM or DOX at 50 µM in reducing TNF-α release.

We also performed immunosignal intensity measurements for the phenotypic activa-
tion marker Iba-1 in the same experimental conditions. As expected, Iba-1 expression was
significantly up-regulated in LPS-treated cultures. COL-3 suppressed Iba-1 induction at
10 and 20 µM but was without significant effect, at 1 µM (Figure 2B). DOX (50 µM) also
efficiently reduced the Iba-1 immunofluorescence signal in LPS-treated cultures. Note that
2.5 µM DEX reduced Iba-1 expression with an efficacy similar to that of 20 µM COL-3 or
50 µM DOX. Photomicrographs in Figure 2C illustrate the impact of COL-3 (20 µM) or
DOX (50 µM) treatments on Iba-1 immunosignal intensities in LPS-treated microglial cells
immunostained with CD11b.

To model inflammatory reactions as they may occur in PD [23,24], we used αSa to
trigger an inflammogenic response in microglial cell cultures. The illustration from the
insert of Figure 2D confirms the presence of amyloid fibrils in αS samples shaken for
96 h (lower image), whereas non-shaken samples are free of such species (upper image).
Figure 2D shows that 24 h of exposure to 70 µg/mL αSa results in a robust increase in
TNF-α release, whereas the monomeric form of the protein (αSm) induced only a limited
but significant response in microglial cells. At 10 or 20 µM, COL-3 significantly reduced
αSa-induced TNF-α release. DOX at 50 µM exerted a comparable repressive effect, while
2.5 µM DEX was as effective as 20 µM COL-3 and 50 µM DOX.
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Consistent with previous observations [24], we found that αSa induced Iba-1 over-
expression. COL-3 (10 or 20 µM), DOX (50 µM), and DEX (2.5 µM) were all effective in
reducing the Iba-1 immunofluorescent signal in αSa-treated microglial cultures (Figure 2E).
Note that the intensity of the Iba-1 immunosignal was not modified by αSm despite the
fact that TNF-α release was slightly increased by such treatment. This may signify that
quantifying TNF-α with an ELISA assay kit may be more sensitive than measuring changes
in cellular Iba-1 expression levels when microglial inflammatory responses are of small
intensity. Photomicrographs in Figure 2F represent microglial cell cultures treated with αSa
in the presence or absence of COL-3 (20 µM) or DOX (50 µM), and then immunostained for
CD11b and Iba-1.

3.2. COL-3 Reduces Glucose Accumulation in Microglial Cells Exposed to LPS or αSa

Recent studies suggest that microglial inflammatory responses are profoundly de-
pendent on glucose availability [31,34,35]. Here, we found that 24 h of treatment with
10 ng/mL of LPS led to an almost 2-fold increase in [3H]-2-DG uptake in microglial cell
cultures (Figure 3A). [3H]-2-DG uptake was significantly reduced when LPS-treated cell
cultures were exposed to either 10 or 20 µM COL-3, whereas a lower COL-3 concentration
(1 µM) had no significant effect on this parameter (Figure 3A). DOX at 50 µM was also
effective in reducing microglial glucose accumulation. Noticeably, DEX at 2.5 µM had no
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impact on [3H]-2-DG uptake, indicating that this compound may exert immunosuppressive
effects in microglial cells without affecting glucose metabolism. In addition, 300 µM of the
NADPH oxidase inhibitor APO or 500 µM of unlabeled 2-DG [a concentration not affecting
microglial cell viability], efficiently reduced [3H]-2-DG uptake in agreement with previous
observations [31]. As expected, 50 mM glucose added acutely to microglial cell cultures to
compete with [3H]-2-DG during uptake assessment also efficiently prevented [3H]-2-DG
uptake (Figure 3B).
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Figure 3. COL-3 reduces glucose accumulation in microglial cells exposed to either LPS or αSa.
(A) Quantification of glucose uptake in microglial cells exposed or not to LPS (10 ng/mL, 24 h) in
the presence or absence of COL-3 (10 or 20 µM), DOX (50 µM), or DEX (2.5 µM). (B) Quantification
of glucose uptake in microglial cells exposed or not to LPS treatment in the presence or absence of
APO (300 µM) or 2-DG (500 µM). The specificity of the assay was confirmed by acutely exposing LPS-
treated cell cultures to an excess of glucose (50 mM). (C) Quantification of glucose uptake in microglial
cells exposed or not to αSa (70 µg/mL, 24 h) in the presence or absence of COL-3 (10 and 20 µM),
DOX (50 µM), or DEX (2.5 µM). (D) Quantification of glucose uptake in microglial cells exposed
or not to αSa in the presence or absence of APO (300 µM) or 2-DG (500 µM). The specificity of the
assay was confirmed by acutely exposing αSa-treated cell cultures to an excess of glucose (50 mM).
Data are the mean ± SEM (n = 6–8). * p < 0.05 vs. control; # p < 0.05 vs. corresponding inflammogen.
One-way ANOVA followed by Bonferroni post-hoc test.

Interestingly, 70 µg/mL αSa also significantly increased [3H]-2-DG uptake in mi-
croglial cell cultures (Figure 3C), suggesting that the inflammatory response of microglial
cells to αS fibril exposure is also fueled by glucose. By contrast, αSm had only a marginal
impact on glucose consumption. Noticeably, COL-3 (10 or 20 µM) significantly reduced
glucose accumulation in cultures exposed to αSa; DOX at 50 µM mimicked this effect. As
described previously for LPS, DEX (2.5 µM) failed to inhibit TNFα release stimulation by
αSa. The treatment of αSa-treated cultures with 300 µM APO or 500 µM 2-DG also led to
a significant reduction in [3H]-2-DG uptake (Figure 3D). Adding glucose in excess when
performing uptake measurements also prevented [3H]-2-DG uptake (Figure 3D).

3.3. COL-3 Prevents the Rise of NADPH in Microglial Cells Exposed to LPS or αSa

Glucose may have a key impact on microglial cell inflammatory processes by activation
of the pentose phosphate pathway and, consequently, by stimulating NADPH synthesis,
a required substrate for the superoxide-producing enzyme NADPH oxidase [31,34]. Con-
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sistent with this view, NADPH levels rose significantly in microglial cells treated with
either 10 ng/mL of LPS or 70 µg/mL αSa (Figure 4A,B). No effect was observed, however,
with αSm. Interestingly, COL-3 (20 µM) significantly reduced NADPH levels in both
inflammation paradigms (Figure 4A,B). As expected, the inhibitory effects of COL-3 in
each activation paradigm were mimicked with DOX at 50 µM.
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Figure 4. COL-3 prevents NADPH synthesis in microglial cells exposed to either LPS or αSa.
(A) Quantification of NADPH in microglial cells exposed or not to LPS (10 ng/mL, 24 h) in the pres-
ence or absence of COL-3 (20 µM), DOX (50 µM), APO (300 µM), or 2-DG (500 µM). (B) Quantification
of NADPH in microglial cells exposed or not to αSa (70 µg/mL, 24 h) in the presence or absence of
COL-3 (20 µM), DOX (50 µM), APO (300 µM), or 2-DG (500 µM). Data are the mean ± SEM (n = 6–8).
* p < 0.05 vs. control; # p < 0.05 vs. corresponding inflammogen. One-way ANOVA followed by
Bonferroni post-hoc test.

Both 2-DG (500 µM) and the NADPH oxidase inhibitor APO (300 µM) mimicked the
inhibitory effect of COL-3 on NADPH production in microglial cells exposed to LPS or αSa
(Figure 4A,B), indicating that the non-antibiotic tetracycline and its parent compound DOX
may interfere with a glucose-dependent mechanism that promotes NADPH synthesis and,
consequently, ROS production via NADPH oxidase activation.

3.4. COL-3 Prevents Microglial Oxidative Stress Elicited by Inflammatory Signals

A quantitative cell-based fluorescence assay was performed to estimate ROS levels in
microglial cells treated with LPS or αSa and other test treatments (Figure 5). As expected,
24 h of treatment with LPS (10 ng/mL) or αSa (70 µg/mL) significantly increased intra-
cellular ROS levels in microglial cells. By contrast, αSm had no effect. Interestingly, ROS
production was maintained near control values when microglial cell cultures exposed to ei-
ther LPS (Figure 5A,B) or αSa (Figure 5C,D) were treated with 20 µM COL-3, confirming the
view that the non-antibiotic tetracycline may exert anti-inflammatory effects by counteract-
ing oxidative-stress-dependent mechanisms. As expected, the inhibitory effect of COL-3 on
ROS generation was mimicked by DOX at 50 µM. In each activation paradigm, the NADPH
oxidase inhibitor APO (300 µM) and the antioxidant TROL (10 µM) reduced microglial
ROS production with an efficacy similar to that demonstrated by COL-3 and DOX.
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Figure 5. COL-3 prevents intracellular microglial oxidative stress generated by LPS or αSa exposure.
(A) Quantification of ROS levels in microglial cells exposed or not to LPS (10 ng/mL, 24 h) in the
presence or absence of COL-3 (20 µM), DOX (50 µM), APO (300 µM), or TROL (10 µM). Data are the
mean± SEM (n = 6–8). * p < 0.05 vs. control; # p < 0.05 vs. LPS. One-way ANOVA followed by Bonfer-
roni post-hoc test. (B) Visualization of intracellular ROS levels in LPS (10 ng/mL)-treated microglial
cell cultures receiving or not COL-3 (20 µM) or DOX (50 µM). Scale bar = 50 µm. (C) Quantification
of ROS levels in microglial cells exposed or not to αSa (70 µg/mL, 24 h) in the presence or absence
of COL-3 (20 µM), DOX (50 µM), APO (300 µM), or TROL (10 µM). Data are the mean ± SEM
(n = 6–8). * p < 0.05 vs. control; # p < 0.05 vs. αSa. One-way ANOVA followed by Bonferroni post-hoc
test. (D) Visualization of intracellular ROS levels in αSa (70 µg/mL)-treated microglial cell cultures
exposed or not to COL-3 (20 µM) or DOX (50 µM) treatment. Scale bar = 50 µm.

3.5. The Suppressive Effect of COL-3 on TNF-α Release Is Reproduced by Interfering with Glucose
Metabolism or NADPH Oxidase Activation

Given the repressive action of COL-3 on microglial glucose consumption and ROS
production, we wished to compare its effect to that of 2-DG and APO, using TNF-α
release as reference inflammation marker. Similar to COL-3, APO (300 µM) and 2-DG
(500 µM) were highly effective in reducing LPS- (Figure 6A) or αSa-induced (Figure 6B)
TNF-α release, further supporting the view that COL-3 exerts its anti-inflammatory effect
by interfering with a glucose-dependent mechanism that promotes oxidative stress via
NADPH oxidase activation (Figure 6B).
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Figure 6. Inhibitory effects of COL-3 on TNF-α release are reproduced by inhibition of either glucose
metabolism or NADPH oxidase activity. (A) Quantification of TNF-α levels in microglial cell cultures
exposed or not to LPS (10 ng/mL, 24 h) in the presence or absence of COL-3 (20 µM), APO (300 µM),
or 2-DG (500 µM). Data are the mean± SEM (n = 6). * p < 0.05 vs. control; # p < 0.05 vs. LPS. One-way
ANOVA followed by Bonferroni post-hoc test. (B) Quantification of TNF-α levels in microglial cell
cultures exposed or not to αSa (70 µg/mL, 24 h) in the presence or absence of COL-3 (20 µM), APO
(300 µM), or 2-DG (500 µM). Data are the mean ± SEM (n = 6). * p < 0.05 vs. control; # p < 0.05 vs.
αSa. One-way ANOVA followed by Bonferroni post-hoc test.

4. Discussion

COL-3 is a non-antibiotic tetracycline with a number of interesting pharmacological
properties, most of them related to its anti-inflammatory and anti-cancer activities. Using
microglial cell cultures, we demonstrated, here, that COL-3 and its parent compound DOX
can efficiently restrain inflammatory responses triggered by either the bacterial cell wall
component LPS or amyloid fibrils of the PD protein αS. COL-3 appeared more potent
than its parent compound DOX in mitigating microglial inflammatory responses. The
anti-inflammatory potential of COL-3 to limit microglial activation appeared to be closely
associated with its capacity to restrain glucose-dependent ROS production. DOX appears
to operate in a similar manner.

4.1. COL-3 Performs as a Potent Anti-Inflammatory Drug in LPS- and αSa-Treated Microglial Cells

We wished to evaluate the anti-inflammatory potential of COL-3 in microglial cells
challenged with two inflammatory triggers, the bacterial cell wall component LPS and
amyloid aggregates of the synaptic protein αS. We established that concentrations of
COL-3 comprised between 10 and 20 µM were quite effective in limiting microglial in-
flammatory responses. Specifically, we found that COL-3 reduces the expression of the
microglial/macrophage activation marker Iba-1 and the secretion of the pro-inflammatory
cytokine TNF-α in both activation paradigms. LPS operating by activation of TLR4 [32]
and αSa by stimulation of TLR2/ P2X7 purinergic receptors [24,30], one may assume that
COL-3 inhibited signaling events that are common to these two activation pathways. The
reference tetracycline DOX was not only effective against LPS-induced inflammation as
reported before by us [8], but it also reduced inflammogenic effects of αS fibrils, confirm-
ing the view that DOX closely mimicked COL-3′s immunosuppressive action. COL-3
appeared, however, intrinsically more potent than its parent compound DOX in repressing
microglial cell responses, as lower concentrations of COL-3 were needed for optimal anti-
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inflammatory effects. Incidentally, this confirms that the anti-inflammatory potential of
tetracyclines is totally dissociated from their antimicrobial properties.

Present findings are also consistent with studies reporting on the effects of COL-3 in
experimental models of inflammation. For instance, COL-3 was found to inhibit paclitaxel-
induced thermal hyperalgesia [36], a condition with a strong inflammatory component [37].
Cazalis et al. [38] showed that COL-3 was also capable of reducing cytokine secretion in an
ex vivo human whole-blood model used to study periodontitis inflammation. In addition,
COL-3 was reported to be effective in limiting microglial cell activation and TNF-α (but
not IL-1β) production in the brain of mice receiving LPS intraperitoneal injections [22].

4.2. Anti-Inflammatory Properties of COL-3 Derive from Its Ability to Inhibit Glucose Uptake

Together with others, we reported that inflammatory conditions cause dramatic
changes in microglial glucose metabolism [31,34,39]. Precisely, we found that glucose
(i.e., 2-DG) uptake was strongly enhanced in microglial cells activated by the bacterial
inflammogen LPS [31]. We confirmed here this initial observation and showed that mi-
croglial cells responded similarly to αSa, suggesting that changes in glucose metabolism
are not restricted to TLR4-dependent mechanisms but also pertain to activation paradigms
relying on TLR2/ P2X7 purinergic receptors [24,30]. Remarkably, COL-3 (10–20 µM) ro-
bustly inhibited glucose uptake in both LPS- and αSa-treated microglial cells, suggesting
that COL-3 may repress both inflammatory responses by reducing glucose utilization. At
a concentration of 50 µM, the reference antibiotic tetracycline DOX mimicked the inhibitory
effects of COL-3 on glucose uptake, which indicates that a reduction in glucose availability
may also contribute to the anti-inflammatory effects of DOX. Incidentally, the fact that
glucose uptake was measured after removal of COL-3 and DOX from the cultures indicates
that these compounds did not repress glucose accumulation through a simple competitive
inhibition mechanism.

Note that DEX failed to repress microglial glucose uptake in activated microglia,
regardless of the inflammation trigger. This is unexpected since it has been reported
that DEX can inhibit glucose uptake in contracting myotubes [40]. Yet, glucocorticoids
classically inhibit the transcription of several genes that encode pro-inflammatory cy-
tokines and chemokines [41], suggesting that alternative mechanisms are involved in
DEX-immunosuppressive effects for microglial cells.

4.3. COL-3 Prevents Glucose-Dependent NADPH Production

Glucose is known to fuel glycolysis and oxidative phosphorylation through glycolytic
pyruvate [42]. In microglial cells, our group and others [31,34] have shown that a substantial
fraction of glucose entering glycolysis is diverted at the level of Glucose-6-P to the pentose
monophosphate shunt for regenerating NADPH, a dinucleotide operating as a requisite
substrate for NADPH oxidase [42,43]. Interestingly, we show here that the increase in
glucose consumption induced by LPS and αSa treatments resulted in a rise in NADPH
synthesis that is preventable by COL-3. This indicates that the immunosuppressive action
of COL-3 observed against the two inflammatory signals may result from its ability to limit
the glucose-dependent synthesis of NADPH and, as a consequence, ROS production by
NADPH oxidase. As expected, DOX also suppressed NADPH synthesis in microglial cells
challenged with LPS and αSa, confirming the view that the two tetracyclines operate in
a similar manner to mitigate microglial inflammatory reactions. Even if our results suggest
that COL-3 and DOX act principally by reducing NADPH, generated via the pentose
phosphate pathway, additional effects of the two tetracyclines on glycolytic enzymes
cannot be totally excluded [39].

4.4. COL-3 Operates by Preventing Glucose-Dependent ROS Production

The use of the fluorogenic probe CellROX Deep reagent revealed that ROS production
was robustly increased in LPS and αSa-activated microglial cells in good agreement with
previous reports [24,30,44]. Interestingly, ROS induction was efficiently inhibited by COL-3
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and DOX. Both the antioxidant vitamin E derivative TROL and the inhibitor of the ROS
producing enzyme NADPH oxidase APO mimicked the suppressive action of COL-3 and
DOX on ROS production. This signifies that COL-3 and DOX may operate by preventing
a sequence of signaling events in which glucose promotes NADPH oxidase-mediated ROS
production and subsequent inflammatory responses such as TNFα production. Coherent
with this view, blocking NADPH oxidase activity with APO prevented TNFα release after
exposure to LPS or αSa. We may assume that the inhibitory effect of COL-3 on TNFα release
resulted from the inhibition of the redox-sensitive nuclear transcription nuclear factor-κB,
a master regulator of cytokine production in microglial cells [31,44]. As a matter of fact,
DOX was reported previously to inhibit NF-kB activation in different model systems [8,45].

The efficacy of COL-3 and DOX to restrain glucose-dependent NADPH synthesis
suggests that both tetracyclines mitigate microglial inflammatory responses by reducing the
amount of NADPH available as a cofactor for NADPH oxidase. Pointing to the importance
of such a mechanism, we found that restraining glucose metabolism and NADPH synthesis
with the non-metabolizable glucose analogue 2-DG was sufficient per se to reproduce
the suppressive effects of COL-3 and DOX on TNF-α release. Unexpectedly, Fodelianaki
and colleagues reported that 2-DG was unable to prevent LPS-induced TNF-α release in
microglial cell cultures [39]. The reason for such a discrepancy between the two studies is
rather unclear at this stage.

It is also worth noting that NADPH oxidase inhibition by APO caused a drop in
glucose uptake in activated microglia, indicating that ROS might represent an activation
signal for microglial glucose accumulation via a specific transport system. As a matter of
fact, ROS production by NADPH oxidase was reported to stimulate glucose accumulation
via a mechanism implicating glucose transporter-4 in muscle cells [46]. This means that
the inhibitory effects of COL-3 and DOX on glucose uptake may also partly depend on
the intrinsic antioxidant properties of these two compounds [47,48]. Therefore, one may
assume that the capacity of COL-3 and DOX to inhibit glucose-dependent ROS production
via a suppressive effect on NADPH synthesis is strengthened by intrinsic antioxidant
properties of the two tetracyclines in a self-reinforcing manner. A schematic drawing
illustrating how COL-3 and DOX may limit microglial inflammatory responses is provided
in Figure 7.
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Figure 7. Schematic drawing illustrating how the non-antibiotic tetracycline COL-3 and its parent
compound DOX may limit microglial inflammatory responses. LPS and αSa activate TLR4 [33] and
TLR2/P2X7 [24,30] signaling pathways, respectively. This results in the activation of the superoxide
producing enzyme NADPH oxidase. ROS produced through NADPH oxidase activation stimulate
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the release of the pro-inflammatory cytokine TNF-α and enhance the uptake of glucose through
a mechanism that is preventable by the NADPH oxidase inhibitor APO. The rise in microglial glucose
stimulates the synthesis of NADPH through the activation of the pentose phosphate shunt [31].
Increased levels of NADPH, the required substrate for NADPH oxidase [42,43], stimulate ROS
production by this enzyme. The inhibition of glucose uptake by COL-3 and DOX leads to a reduction
in glucose-derived synthesis of NADPH, which limits ROS production by NADPH oxidase. These
effects may be strengthened by intrinsic antioxidant properties of COL-3 and DOX [47] in a self-
reinforcing manner. Limiting glucose-dependent NADPH synthesis with the non-metabolizable
analogue of glucose, 2-DG restrains microglial inflammatory reactions, indicating that the control of
glucose metabolism by COL-3 and DOX is pivotal for their immunosuppressive effects. Note that
DEX prevents efficiently TNF-α release but has no inhibitory effect on glucose uptake, suggesting
that the glucocorticoid operates through a mechanism of action that is distinct from that of COL-3 or
DOX. Inhibitory and activation signals are represented in green and red, respectively.

Overall, the present data confirm that the non-antibiotic tetracycline COL-3 and its
parent compound DOX can efficiently mitigate microglial inflammatory responses. The
anti-inflammatory effects of COL-3 and DOX appear to primarily result from their capacity
to restrain glucose-dependent NADPH synthesis and, as a consequence, ROS production
via NADPH oxidase activation. Present data provide further confirmation that COL-3
and DOX may have therapeutic utility in chronic CNS pathological conditions such as PD,
where long-term neuroinflammatory processes play a contributive role. COL-3 might have,
however, an advantage over DOX, as it does not possess antibiotic activity.
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Abbreviations

αS α-synuclein
αSa αS aggregates
αSm αS monomers
APO Apocynin
CMT-3 Chemically modified tetracycline
COL-3 4-dedimethylaminosancycline or incyclinide
2-DG 2-deoxy-D-glucose
DMEM Dulbecco’s modified Eagle’s medium
DOX Doxycycline
FCS Fetal calf serum
Iba-1 ionized calcium-binding adaptor molecule-1
LPS Lipopolysaccharide
PD Parkinson’s disease
PEI Polyethyleneimine
ROS Reactive oxygen species
TLR Toll-like receptor
TROL Trolox
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