
S1 Supplementary methods
S1.1 Model specifications

The morphology of the autoencoder is highlighted in the following, along with the technical
specifications and reasoning behind these specifications. The autoencoder was implemented in
Python v.3.6.8 using the PyTorch v.1.3.0 deep learning framework.

S1.1.1 Morphology autoencoder
The autoencoder is a fully connected autoencoder, constituted by an input, output and three

hidden layers. The bottleneck layer has the lowest dimension of the hidden layers, and the two
neighbouring layers have a higher but equal dimension.

S1.1.2 Loss function and orthogonality contraint
The autoencoder was trained using a negative log-likelihood (NLL) Poisson loss function,

which is widely used on count data [1], [2]. The loss functions is from the PyTorch library and was
used with the parameter log_input = True, due to the log normalization. The simple loss function
is highlighted in the following equation, where the target value refers to the original input and the
predicted value refers to the value estimated by the autoencoder, see equation S1.

loss = exp(predicted)− target · predicted (S1)

Loss function with orthogonality constraint

The model was trained using a soft orthogonality, imposed on the bottleneck layer. λ is the
hyperparameter that determines the amount of orthogonality added. Equation (S2) is the L2 norm
of the orthogonality constraint.

λ ||W TW − I||2L (S2)

W is the weight matrix of bottleneck layer, W T the transpose matrix of W. I is the identity
matrix of W [3], [4]. The orthogonality constraint was added to the loss function since it shows
encouraging improvement when training an autoencoder [3], [5]. The full loss function is therefore
represented by the NLL Poisson loss function and the orthogonality constraint, see equation (S 3).

loss = exp(predicted)− target× predicted + λ ||W TW − I||2L(S3)

S1.1.3 Weight initialization
The weights was initialized using a normal Xavier initializer, with the addition of a small bias

[6]
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S1.1.4 Stochastic gradient decent
The autoencoder was trained with Stochastic gradient decent (SGD) with Nesterov momen-

tum (0.9) [7]. SGD is well suited for large data sets [8] and combined with momentum should
allow finding the gradient that minimizes the loss function faster than other methods [7].

S1.1.5 Softplus activation function
The Softplus activation function has previously shown to be useful in relation to orthogonal

autoencoders modelling single-cell data [2], and was used throughout this project.

So f t plus(xj) = ln(1+ einputi)

S1.1.6 Regularization
Different regularization method was utilized to avoid overfitting and to enhance the models

ability to capture essential features in a large scRNA-seq data.

Weight decay

Weight decay, is a way to penalize the weights of a model [9]. In this case weight decay, was
utilized in the hyperparameter optimization, based on previous method [7].

L1 norm

The L1 norm, was used during the hyperparameter optimization. L1 regularization encourages
more sparse coefficients by computing the L1 norm of the weights [9]

L1 regularization = ||W ||1L

Early stopping

Early stopping was implemented to assure that the best observed model constitutes the final
model used for further downstream analysis [9].

S1.2 Hyper parameters optimization
This project made use of an automated hyperparameter optimization technique, to avoid man-

ual exploration of the hyperparameter space and simultaneously create a more hollistic model. The
hyperparameter optimization, was performed with Bayesian optimization (BO), implemented us-
ing the Ax platform v.0.1.6, which is highlighted as a popular framework [10]. Ax is developed by
Facebook and is an open source framework.
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S1.3 Saliency maps
Traditional gradient based Saliency maps was prone to noise. This let to the development of

a variety of adapted methods one of them being Guided backpropagation [11]. Guided backpropa-
gation was used, due to its cleaner visualization [12], additionally Kinalis et al. 2019 showed that
Guided backpropagation can be applied to an autoencoder [2]

Guided backpropagation consist of computing adapted gradients, where all negative gradients
are set to zero. This was done for each node of the bottleneck layer, one by one, by assuming
all the gradients in the node being tested is equal to one and all other gradients being zero. This
method was developed by Springenberg et al. 2015 [12].

Table S1: Structure of features in a single node

Gene 1 Gene 2 Gene 3 Gene 4
Cell 1 ∇1,1 ∇1,2 ∇1,3 ∇1,4
Cell 2 ∇2,1 ∇2,2 ∇2,3 ∇2,4
Cell 3 ∇3,1 ∇3,2 ∇3,3 ∇3,4
Cell 4 ∇4,1 ∇4,2 ∇4,3 ∇4,4
Cell 5 ∇5,1 ∇5,2 ∇5,3 ∇5,4
Cell 6 ∇6,1 ∇6,2 ∇6,3 ∇6,4

After computing the adapted gradients for all nodes in the bottleneck layer, there are two
methods to proceed with: 1) Extracting information on gene level and 2) extracting information
on Hallmark pathway level 2). Extracting information of gene-level was done by finding the mean
value of the gradients of each gene (mean of the columns in table S1). The gradients matrix in
table S1 represent one node in the bottleneck layer, and the mean computation was done for all of
these gene matrices. The final Saliency map thereby contains information on the average gradient
values for all genes, for each node in the bottleneck layer, see table S2. If extracting information
on Hallmark pathway level [13], the median was taken for all genes in the Hallmark pathway (me-
dian of the columns in table S1 present in a given Hallmark pathway. Followed by the mean of the
median values. This computation was similarly done for all nodes in the bottleneck layer which
jointly constitute the Saliency map represented in figure S2.

Table S2: Representation of Saliency map

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6
Node 1 ∇1,1 ∇1,2 ∇1,3 ∇1,4 ∇1,5 ∇1,6
Node 2 ∇2,1 ∇2,2 ∇2,3 ∇2,4 ∇2,5 ∇2,6
Node 3 ∇3,1 ∇3,2 ∇3,3 ∇3,4 ∇3,5 ∇3,6
Node 4 ∇4,1 ∇4,2 ∇4,3 ∇4,4 ∇4,5 ∇4,6
Node 5 ∇5,1 ∇5,2 ∇5,3 ∇5,4 ∇5,5 ∇5,6
Node 6 ∇6,1 ∇6,2 ∇6,3 ∇6,4 ∇6,5 ∇6,6
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Saliency maps was used to investigate underlying patterns, to achieve a comprehensible un-
derstanding of the underlying biological features activated in a model, when exposed to a given
dataset.

S1.4 Gene set enrichment analysis
The Gene set enrichment analysis (GSEA) was implemented using the R package FGSEA

Simple. FGSEA is known to be a faster implementation, since the algorithm reuse sampling from
different query genesets [14]. It is based on a method developed by Subramanian et al. 2005 [15].
That is efficient in estimating p-values, for testing a whole collection of genesets, but limited in its
accuracy. Due to the fact that estimating P-values less than 10−6 can be difficult [14]. FGSEA was
implemented in R v.3.6.1, with the parameters minSize = 15, maxSize = 2000, nperm = 100000,
where resulting pathways was considered significant if padj < 0.05.

S1.5 K nearest neighbourg classifier
To explore the trained autoencoders ability to captures cell type relations in the bottleneck

layer, a K nearest neighbour (KNN) classifier was trained. KNN algorithm uses the (K) number
of nearest neighbor points, to assigns a cell type. Each cell is connected to its (K) closets or most
similar points, and the most present cell type will constitute the predicted cell type [16]. The KNN
model was trained on one dataset and used to predict the cell type labels of another dataset. This
was done for the original gene expression values (x) and the gene expression values encoded by
the autoencoder.

In the first scenario: The original gene expression data was used to train the KNN model.
Another dataset was then tested in the KNN model. In the second scenario: The original gene
expression data was encoded using the autoencoder (encode(x)) and these encoded values was
then used to train the KNN model. Likewise was the tested dataset encoded (encode(x)). In both
cases the trained and tested dataset was within the same dataset category (Smart-seq2, Drop-seq,
Harmony or Seurat). The dataset tested in the KNN model was filtered for the cell types present
in the dataset that trained the KNN model, in order to find the prediction accuracy, using equation
(S4).

Accuracy =
number of correct prediction

(number of correct predictions + number of false predictions)
(S4)

This was done using the KNeighborsClassifier from the scikit-learn,with default parameters
and varied n_neighbors [17].

S1.6 Procedure
• Data loading and data processing
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• Training the autoencoder

• Implementation of hyperparameter optimization

• Running new data trough a trained model

– Imputation of missing values

• Saliency maps

• Gene set enrichment analysis

S1.6.1 Data loading and data processing
First step in running the autoencoder, is loading the data and processing the data. this is seen

in figure S1. In step 2) cells were randomly shuffled and the genes with no count value above two
was removed. To train on genes with a specific known function the Hallmark genes was extracted
from the dataset for subsequent training. These Hallmark genes is constituted by the genes present
in the Mus Musculus Hallmark pathways from MSigDB [13]. The Seurat and Harmony datasets
had already gone trough normalization during the pre-processing step, therefore only the Smart-
seq2 and Drop-seq datasets where normalized using counts per million (CPM).

Figure S1: A stepwise description of the data loading process. Step 1) highlights the pre-processing
step and step 2) the subsequent loading and processing, prior to training the model.

Thereafter, the data was divided into test data and training data. The training data constituted
95 % of cells, and the test dataset constituted 5 % of the cells in the dataset. The autoencoder was
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trained with a batch size of 1, since the aim of the model, is to learn underlying features for each
single-cell and not for a batch of cells.

S1.6.2 Training the autoencoder
To capture dependencies in data and possibly derive novel biological information. The au-

toencoder needs to be trained. This is briefly touched upon in the following.
Training is done is a stepwise process, where each cell in the training data, is feed trough the

autoencoder, in the following steps.

• Run cell (x) trough the autoencoder to predict y, y = decode(encode(x))

• Compute the loss between x and y using the loss function (Negative log likelihood Poisson
loss function)

• Add regularization to the loss e.g. orthogonality constraint

• Backpropogate trough the network to compute all gradients

• Use these gradient to update the weights in a direction that minimize the loss.

• Do this for all cells in the dataset.

The above described process constitutes the training of 1 epochs. After every 10 epochs the
test loss is computed. This is done by running all cells in the test dataset (x_test), trough the
autoencoder (y_test = decode(encode(x_test))) and computing the average loss between x_test and
y_test, using the NLL Poisson loss function and the added regularization. If the computed test loss
decreases, compared to previous lowest test loss, the model was saved. If the test loss between 20
epochs did not change by more than 10−8 the training was stopped. Thereby the network completed
its training after a total amounts of epochs or if network stopped improving. The optimal model
was then re-loaded, for the purpose of clustering the cells using UMAP and PCA and computing
Saliency maps. Prior to training the autoencoder, hyperparameter optimization took place, which
uses the same concept for training, while simultaneously optimizing hyperparameters.

S1.6.3 Implementation of hyperparameter optimization
Hyperparameter optimization was performed, to minimize the test loss and enhance the change

of extracting useful biological information from the bottleneck layer. The hyperparameter op-
timization was done over 40 trials, where different hyperparameter values was tested in a prior
defined range. Each trial trained for 100 epochs and returned the test loss and the associated hy-
perparameters. After all trials, the best model and associated hyperparameters was reloaded for
subsequent training of 400 epochs following the training procedure highlighted in section S1.6.2.
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S1.6.4 Running new data trough a trained model
In order to investigate how the trained model was able to model unseen datasets. A dataset

within the same dataset category (Smart-seq2, Drop-seq or Seurat) was loaded. In this process
the genes from the dataset used for training was intersected with the new dataset, and ordered
accordingly. If values were missing for some genes they were imputed.

Imputation of missing values

The imputation of missing gene values consists of finding the percentage of zero values. This
is done by computing the minimum values of all genes, in the new dataset and taking the mean of
these values. The min.mean() value is then considered the new threshold for "zero value". This
threshold is then used to calculate the average percentage of values below the threshold, which is
considered "zero values". The estimated percentage of "zero values", for the missing gene, was
randomly added by inferring the min.mean() and all other values constituted mean.min() of the
new dataset.

This method was chosen since scRNA-seq data contain many zero values, but the batch cor-
rected dataset might not have zero as the most occurring value. Instead the most occurring value
can be represented by another number. Therefore this imputation is a more general way to impute
missing gene values and simultaneously account for the Poisson distribution.

S1.6.5 Saliency maps
When the autoencoder had completed its training. The optimal model was re-loaded, for the

purpose of computing the Saliency maps, for each individual cell type and for the whole dataset,
see section S1.3. This was initially done for the dataset used to train the model, but subsequently
for a new unseen dataset. Thereby the optimal model of a given dataset was loaded. Then a new
dataset was run trough the model and intersected with the dataset used to train the model. Finally
the resulting gene-level Saliency maps was used for the GSEA analysis.

S1.6.6 Gene set enrichment analysis
Recall that GSEA takes a pre-ranked geneset as input and investigates if members of query

geneset are randomly distributed throughout the geneset being tested or primarily found at the top
[15] (refer to section S1.4 for more information on GSEA). In this case each node in the Saliency
map constitutes the pre-ranked geneset that was used for GSEA analysis. The pre-ranked geneset
corresponds to the gene-level statistics of a node in the Saliency map, this is highlighted in table
S3. Where the gene-level statistics, in each node has been converted into z-values (x - mean(x)) /
standard deviation(x)).
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Table S3: Snip of Saliency map

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7
Node 1 z1 z1 z1 z1 z1 z1 z1

Node 2 z2 z2 z2 z2 z2 z2 z2

Node 3 z3 z3 z3 z3 z3 z3 z3

Node 4 z4 z4 z4 z4 z4 z4 z4

However a dataset, representing a certain organ or tissue, requires finding a Saliency map for
each individual cell type and the whole dataset. The Saliency map for the whole dataset was then
substracted all cell type specific Saliency maps, prior to computing the z-values. To account for
overall biological signals that the model learned and enhance the chances of pin pointing signals
significant for a certain organ, and not just general signals that the model has learned. The corrected
cell specific Saliency maps, then constitutes the input to the GSEA analysis. The GSEA analysis
compares a pre-ranked geneset from the Saliency map to query pathways in the MSigDB. If a
given pre-ranked geneset had a padj < 0.05, the geneset was considered significant if upregulated.

The uniting of GSEA and Saliency maps, was used to explore if specific biological features
were activated certain places in the neural network model and to get a better understanding of how
biological features is captured in the bottleneck layer.
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Section A
Dataset specifications

Table S4: Smart-seq2, Data information after extracting the Hallmark genes and filtering genes
that had a sum of expression less than 2

Tabula Muris Smart-seq2
Organ Amount of Genes Amount of Cells Amount of cell types Percentage of zeroes pr. Cell
Bladder 3900 1287 3 59.49%
Heart 4130 4534 9 78.53%
Kidney 3762 517 6 85.02%
Liver 3779 710 5 70.08%
Lung 3974 1620 16 78.92%
Mammary 3969 2304 4 69.01%
Marrow 3992 4897 8 75.56%
Muscle 3968 1937 7 79.67%
Spleen 3708 1689 3 83.92%
Thymus 3772 1283 2 83.08%
Tongue 3904 1394 2 61.47%
Trachea 4022 846 4 70.71%
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Table S5: 10xgenomics, Data information after extracting the Hallmark genes and filtering genes
that had a sum of expression less than 2

Tabula Muris 10xgenomics
Organ Amount of Genes Amount of Cells Amount of cell types Percentage of zeroes pr. Cell
Bladder 10926 3186 4 67.33%
Heart_and_Aorta 8081 2529 4 70.25%
Kidney 11645 3339 8 78.21%
Limb_Muscle 9202 2937 6 81.19%
Liver 6950 2266 4 77.11%
Lung 10666 3117 13 81.28%
Mammary_Gland 11495 3368 7 80.44%
Marrow 10445 2984 14 73.97%
Spleen 8798 2645 5 83.44%
Thymus 7808 2357 3 69.91%
Tongue 7538 10757 3 65.86%
Trachea 10584 3237 5 83.31%

Table S6: Combined 10xgenomics and Smart-seq2,Data information after batch correction and
extracting the Hallmark genes and filtering genes that had a sum of expression less than 2

Combined 10xgenomics and Smart-seq2 data batch corrected using Seurat
Amount of Genes Amount of Cells Amount of cell types

Bladder 653 3787 6
Heart 745 5060 9
Kidney 774 3298 13
Liver 653 2555 7
Lung 738 7024 23
Mammary 829 6785 7
Muscle 834 5846 7
Marrow 771 8549 18
Spleen 848 11241 6
Thymus 726 2712 5
Tongue 498 8932 3
Trachea 822 12094 7
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Section B
Experiment testing simple and complex model

Table S7: Smart-seq2, Compares the mean test loss of the complex (lr, orthogonality, hidden_size,
bottleneck_size, L1, weight decay and the simple model (lr, orthogonality, hidden_size, bottle-
neck_size)

Smart-seq2
Organ Simple model loss Complex model los
Bladder 0.328127561 -0.67577557
Heart 0.558011589 0.603821717
Kidney 0.594373616 0.698023797
Liver -0.37875915 -0.592997629
Lung 0.466990837 0.432692507
Mammary 0.087807704 0.075413681
Marrow 0.452254044 0.444665979
Muscle 0.491863511 0.461258427
Spleen 0.663175052 0.666026653
Thymus 0.626973583 0.661040656
Tongue -0.665483642 -0.539805402
Trachea -0.167571426 -0.281279303

Table S8: 10xgenomics, Compares the mean test loss of the complex (lr, orthogonality, hid-
den_size, bottleneck_size, L1, weight decay and the simple model (lr, orthogonality, hidden_size,
bottleneck_size)

10xgenomics
Organ Simple model loss Complex model los
Bladder -0.13859364 -0.178374164
Heart and Aorta -0.497399108 -0.337941112
Kidney 0.298035188 0.37422153
Limb Muscle 0.524737142 0.507086877
Liver 0.220362172 0.268167226
Lung 0.602095967 0.604511011
Mammary Gland 0.509200782 0.469836471
Marrow 0.219094117 0.121379251
Spleen 0.718774260 0.735692292
Thymus -0.269887634 -0.310725786
Tongue 0.143107637 0.944072607
Trachea 0.733077296 0.744878366
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Section C
Cell type distributions from kNN
Section C.1 Smart-seq2

Table S9: Cell type distribution of the Smart-seq2 Marrow dataset that was used to train the kNN
model

Marrow Frequency Percentage
B cell 1848 37.74
Hematopoietic stem cell 1291 26.36
Neutrophil 599 12.23
Granulocyte 380 7.76
Monocyte 324 6.62
Fraction A pre-pro B cell 177 3.61
T cell 142 2.90
Natural killer cell 136 2.78
Sum 4897 100.0
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Table S10: Cell type distribution of the Smart-seq2 Lung dataset that was tested in the kNN model

Lung Frequency Percentage
Endothelial cell 738 45.56
Stromal cell 366 22.59
type II pneumocyte 94 5.80
dendritic cell 69 4.26
Macrophage 69 4.26
Monocyte 65 4.01
B cell 55 3.40
T cell 55 3.40
Natural killer cell 36 2.22
Leukocyte 31 1.91
Ciliated cell 14 0.86
Clara cell 13 0.80
Epithelial cell 9 0.56
Type I pneumocyte 2 0.12
Mesothelial cell 2 0.12
Lung neuroendocrine cell 2 0.12
Sum 1620 100

Table S11: Cell type distribution of the Smart-seq2 Muscle dataset that was tested in the kNN
model

Muscle Frequency Percentage
Skeletal muscle satellite cell 546 28.19
Mesenchymal stem cell 486 25.09
skeletal muscle satellite stem cell 442 22.82
Endothelial cell 206 10.64
B cell 151 7.80
Macrophage 71 3.67
T cell 35 1.81
Sum 1937 100

Table S12: Cell type distribution of the Smart-seq2 Thymus dataset that was tested in the kNN
model

Thymus Frequency Percentage
T cell 1250 97.43
Mesenchymal stem cell 33 2.57
Sum 1283 100
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Table S13: Cell type distribution of the Smart-seq2 Liver dataset that was tested in the kNN model

Liver Frequency Percentage
Hepatocyte 399 56.20
Endothelial cell of hepatic sinusoid 196 27.61
Kupffer cell 51 7.18
Natural killer cell 35 4.93
B cell 29 4.08
Sum 710 100.00
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Section C.2 Seurat

Table S14: Cell type distribution of the combined Smart-seq2 and 10xgenomics Lung dataset that
was used to train the kNN model with Seurat data

Lung Frequency Percentage
Stromal cell 2906 41.37
Natural killer cell 860 12.24
Endothelial cell 738 10.51
Lung endothelial cell 462 6.58
Alveolar macrophage 345 4.91
T cell 302 4.30
B cell 259 3.69
Non-classical monocyte 220 3.13
Leukocyte 183 2.61
Type II pneumocyte 183 2.61
Classical monocyte 161 2.29
Myeloid cell 87 1.24
Macrophage 69 0.98
Dendritic cell 69 0.98
Monocyte 65 0.93
Ciliated columnar cell of tracheobronchial tree 49 0.70
Mast cell 24 0.34
Ciliated cell 14 0.20
Clara cell 13 0.19
Epithelial cell 9 0.13
Lung neuroendocrine cell 2 0.03
Mesothelial cell 2 0.03
Type I pneumocyte 2 0.03
Sum 7024 100
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Table S15: Cell type distribution of the combined Smart-seq2 and 10xgenomics Bladder that was
tested in the kNN model

Bladder Frequency Percentage
Bladder cell 1735 45.81462899
Bladder urothelial cell 1167 30.8159493
Mesenchymal cell 656 17.3224188
Basal cell of urothelium 99 2.614206496
Leukocyte 73 1.927647214
Endothelial cell 57 1.505149195
Sum 3787 100

Table S16: Cell type distribution of the combined Smart-seq2 and 10xgenomics Marrow that was
tested in the kNN model

Marrow Frequency Percentage
B cell 1848 21.62
hematopoietic stem cell 1291 15.10
Granulocyte 1105 12.93
Monocyte 849 9.93
Neutrophil 599 7.01
hematopoietic precursor cell 392 4.59
granulocytopoietic cell 378 4.42
T cell 304 3.56
late pro-B cell 265 3.10
proerythroblast 265 3.10
promonocyte 257 3.01
Fraction A pre-pro B cell 243 2.84
Macrophage 223 2.61
Erythroblast 155 1.81
Natural killer cell 136 1.59
Immature B cell 113 1.32
Early pro-B cell 65 0.76
Basophil 61 0.71
Sum 8549 100.00
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Table S17: Cell type distribution of the combined Smart-seq2 and 10xgenomics Thymus that was
tested in the kNN model

Thymus Frequency Percentage
immature T cell 1354 49.93
T cell 1250 46.09
DN1 thymic pro-T cell 44 1.62
Mesenchymal stem cell 33 1.22
Leukocyte 31 1.14
Sum 2712 100

Table S18: Cell type distribution of the combined Smart-seq2 and 10xgenomics Trachea that was
tested in the kNN model

Trachea Frequency Percentage
Mesenchymal cell 7848 64.89
Blood cell 1139 9.42
Endothelial cell 1061 8.77
Epithelial cell 999 8.26
Stromal cell 569 4.70
Neuroendocrine cell 362 2.99
Leukocyte 116 0.96
Sum 12094 100

Table S19: Cell type distribution of the combined Smart-seq2 and 10xgenomics Spleen that was
tested in the kNN model

Spleen Frequency Percentage
B cell 8124 72.27
T cell 2333 20.75
Macrophage 464 4.13
Natural killer cell 230 2.05
Myeloid cell 48 0.43
Dendritic cell 42 0.37
Sum 11241 100
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Table S20: Cell type distribution of the combined Smart-seq2 and 10xgenomics Kidney that was
tested in the kNN model

Kidney Frequency Percentage
Kidney proximal straight tubule epithelial cell 1198 36.33
Kidney loop of Henle ascending limb epithelial cell 471 14.28
Kidney collecting duct epithelial cell 443 13.43
Kidney capillary endothelial cell 392 11.89
Kidney tubule cell 261 7.91
Macrophage 139 4.21
Leukocyte 80 2.43
Fenestrated cell 69 2.09
Fibroblast 65 1.97
Mesangial cell 51 1.55
Kidney cell 45 1.36
Kidney collecting duct cell 44 1.33
Endothelial cell 40 1.21
Sum 3298 100.00

Table S21: Cell type distribution of the combined Smart-seq2 and 10xgenomics Liver that was
tested in the kNN model

Liver Frequency Percentage
Hepatocyte 2163 84.66
Endothelial cell of hepatic sinusoid 224 8.77
Kupffer cell 51 2.00
Natural killer cell 35 1.37
B cell 29 1.14
Duct epithelial cell 27 1.06
Leukocyte 26 1.02
Sum 2555 100

Table S22: Cell type distribution of the combined Smart-seq2 and 10xgenomics Mammary that
was tested in the kNN model

Mammary Frequency Percentage
T cell 1750 25.79
Basal cell 1667 24.57
Stromal cell 1128 16.62
Luminal epithelial cell of mammary gland 1011 14.90
B cell 743 10.95
Endothelial cell 300 4.42
Macrophage 186 2.74
Sum 6785 100
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Table S23: Cell type distribution of the combined Smart-seq2 and 10xgenomics Muscle that was
tested in the kNN model

Muscle Frequency Percentage
Mesenchymal stem cell 1622 27.75
Endothelial cell 1536 26.27
Skeletal muscle satellite cell 900 15.40
B cell 612 10.47
Skeletal muscle satellite stem cell 442 7.56
Macrophage 379 6.48
T cell 355 6.07
Sum 5846 100

Table S24: Cell type distribution of the combined Smart-seq2 and 10xgenomics Heart that was
tested in the kNN model

Heart Frequency Percentage
Fibroblast 2313 45.71
Endothelial cell 1445 28.56
Leukocyte 488 9.64
Smooth muscle cell 255 5.04
Endocardial cell 238 4.70
Cardiac muscle cell 200 3.95
Epicardial adipocyte 93 1.84
Hematopoietic cell 17 0.34
Erythrocyte 11 0.22
Sum 5060 100.00
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Section D
Batch correction

Figure S2 highlighting the combined Marrow datasets from Smart-seq2 and 10Xgenomics
after Seurat batch correction.

Figure S2: Combines Smart-seq2 and 10Xgenomics dataset from Marrow after batch correction.
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Section E
Loss of model trained on one dataset

while initializing an unseen dataset
Table S25: Combined datasets Smart-seq2 and 10XGenomics (Seurat). Table highlighting the loss
when passing an entire dataset trough a pretrained model and then computing the mean loss.

Model used to test loss of other datasets
Bladder Heart Kidney Liver Lung Mammary Marrow Muscle Spleen Thymus Tongue Trachea

Bladder 0.962991 0.964969 1.006564 1.010277 0.979975 0.986827 1.003034 1.003608 1.006263 1.005678 1.010527 0.972455
Heart 0.98041 0.963591 0.995004 1.013166 0.993267 0.992322 1.001604 0.974789 1.011841 1.00527 1.002127 0.994327
Kidney 1.009506 0.970997 0.962901 1.02125 1.002956 0.998612 1.002243 0.991229 1.011263 1.00471 1.011639 0.992795
Liver 1.00619 1.001828 1.006839 0.958677 1.003829 0.996457 1.001526 1.005507 0.998042 1.003379 1.009158 1.002372
Lung 0.975633 0.994729 0.998711 1.020311 0.965123 0.986624 1.001779 0.985898 1.005702 1.007295 1.009135 0.991078
Mammary 0.97993 0.965682 1.004285 1.011161 0.973639 0.966046 0.999557 0.997255 1.003229 1.004757 1.008219 1.000525
Marrow 1.008467 1.001427 1.006272 1.012516 1.005536 1.002565 0.978043 0.996591 1.006852 0.992527 1.011814 1.003005
Muscle 1.006434 0.986018 0.985477 1.017745 0.990823 0.993208 1.004094 0.91518 1.001118 1.005435 1.006649 0.957935
Spleen 1.008785 0.996874 1.003569 1.004442 0.992019 0.989158 0.993563 0.990733 0.973677 0.999803 1.005547 0.99954
Thymus 1.006467 1.000429 1.006874 1.012241 1.008001 1.002022 0.997833 1.004976 1.009062 0.989049 1.013673 1.002187
Tongue 1.002108 0.996942 0.99818 1.006087 0.997781 0.995673 1.00052 0.993459 1.005064 1.001221 0.94344 0.997394
Trachea 1.003216 0.997523 1.002763 1.011465 0.981995 0.990636 1.001667 0.996266 1.018151 1.005542 1.009235 0.965983
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Section F
Auto encoder modelling data with

no overlapping cell types
Below is seen four UMAPs. 1) The original Bladder dataset Smartseq-2. 2) The UMAP

of the encoded bladder dataset by a model trained on the Bladder data. 3) Umap of the Bladder
dataset, when encoded by a model trained on the Heart dataset.4) The Heart dataset encoded by
the model trained on the heart data. This highlight that all though the Heart and Bladder dataset
has no overlapping cell types the heart model is still able to learn features related to the cell types
in the Bladder dataset.

Figure S3: UMAP of Smart-seq2 Bladder dataset
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Figure S4: UMAP of Smart-seq2 Bladder dataset encoded by the model trained on the Bladder
dataset

Page 23 of 33



Figure S5: UMAP of Smart-seq2 Bladder dataset encoded by the model trained on the Heart
dataset
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Figure S6: UMAP of Smart-seq2 heart dataset encoded by the model trained on the heart data
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Section G
F1 scores of kNN cell type prediction

After predicting the cell type labels for a new unseen dataset using the kNN model. The
mean F1 score across the different cell types was ccalculated for 1), 2) and 3). 1) training the
KNN on encoded data based on trained autoencoder, 2) encoded data based on solely an initialized
autoencoders random weights (Xavier) and 3) the full dataset.
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Figure S7: Mean F1 scores for the cell types in the Lung dataset from combined Smart-seq2 and
10xgenomics
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Figure S8: Mean F1 scores for the cell types in the Marrow dataset from Smart-seq2
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Section H
Gene set enrichment analysis of

saliency maps
GSEA was performed on the input using the gradient of the back-propagated saliencies.
Model trained on Muscle dataset from Smart-seq2 without orthogonality constraint, was used

to compute the Saliency maps for the each cell type in the Mammary dataset.

Figure S9: Heatmap is showing frequency that each pathway was significant. The Saliency map
from each bottleneck layer was thereby used as an input to the GSEA analysis to compute the
amount of times a given pathway was significant. The x-axis represents the (nth-bottleneck layer)
and the color of the meatmap displays how many times the given Hallmark pathway was found
significant, considering that the mammary dataset has 4 cell types. Only hidden units with at least
one significant pathway are displayed
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Section I
The autoencoders ability to project

Human data
To investigate the autoencoders ability to project data from other species than mus musculus.

We tested scRNA-seq data from homo sapiens in the trained mouse models using 10Xgenomics
data as both train and test. The human data is available at Human Cell Atlas Data Portal Single-
cell transcriptome profiling of an adult human cell atlas of 15 major organs, see [18]. The human
data’s gene symbols was converted to mouse symbols using the biomaRt package from R. Sub-
sequently we tested the trained autoencoders ability to project the scRNA-seq data from homo
sapiens in the bottleneck layer. Below is seen the the autoencoder trained on 10Xgenomics from
Mammary_Gland from mouse projecting the human data from the Muscle.

Figure S10: TSNE of the original Human Muscle data
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Figure S11: TSNE of the Human Muscle data projected on model trained on mouse data from
Mammary_Gland
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