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Abstract: Obesity is characterized by an increase in body weight associated with an exaggerated
enlargement of the adipose tissue. Obesity has serious negative effects because it is associated with
multiple pathological complications such as type 2 diabetes mellitus, cardiovascular diseases, cancer,
and COVID-19. Nowadays, 39% of the world population is obese or overweight, making obesity
the 21st century epidemic. Obesity is also characterized by a mild, chronic, systemic inflammation.
Accumulation of fat in adipose tissue causes stress and malfunction of adipocytes, which then initiate
inflammation. Next, adipose tissue is infiltrated by cells of the innate immune system. Recently, it
has become evident that neutrophils, the most abundant leukocytes in blood, are the first immune
cells infiltrating the adipose tissue. Neutrophils then get activated and release inflammatory factors
that recruit macrophages and other immune cells. These immune cells, in turn, perpetuate the
inflammation state by producing cytokines and chemokines that can reach other parts of the body,
creating a systemic inflammatory condition. In this review, we described the recent findings on the
role of neutrophils during obesity and the initiation of inflammation. In addition, we discuss the
involvement of neutrophils in the generation of obesity-related complications using diabetes as a
prime example.

Keywords: neutrophil; obesity; adipose tissue; inflammation; diabetes; neutrophil-to-lymphocyte
ratio; macrophage; microbiota

1. Introduction

Obesity is a clinical condition defined as a lopsided body weight associated with
an exaggerated enlargement of the adipose tissue [1,2]. In simple terms, obesity appears
when people have low physical activity (a sedentary lifestyle) and increased ingestion of
food, particularly of high-energy-yielding groceries [3]. However, obesity is more complex
than an imbalance between caloric intake and energy requirements. External factors,
such as genetics, socioeconomic status, and environment, influence food consumption,
nutrient assimilation, thermogenesis, and fat storage in various adipose tissues [4]. At
the present time, 39% of the world population is obese or overweight. The prevalence
of these conditions has steadily increased globally during the last 30 years [5], and it is
expected that, if this tendency continues, by 2025, obesity prevalence in the world will
be 18% in men and 21% in women [6]. This tendency makes obesity the 21st century
epidemic [7,8] with an important economic burden on health costs because obesity is
associated with the development of multiple pathological conditions also known as obesity-
related complications, including type 2 diabetes mellitus, cardiovascular diseases, some
types of cancer, and coronavirus disease 2019 (COVID-19) [3,9–11].

Obesity is also characterized by a mild, chronic, systemic inflammation. The excessive
accumulation of fat in the adipose tissue is due to either an increase in adipocyte size
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(hypertrophy) or the growth of new adipocytes (hyperplasia). Both conditions cause
adipocyte stress and malfunction leading to inflammation [12]. As obesity worsens, the
initial mild (low-grade) inflammation becomes chronic, and later it turns systemic [13–15].
The adipose tissue is composed not only of adipocytes (mature fat cells), but also of
different types of immune cells, which are important for tissue homeostasis [16,17]. During
obesity, stressed adipocytes produce adipokines, which recruit and activate innate immune
cells [18]. These immune cells in turn perpetuate the inflammation state via production
of cytokines and chemokines that can even influence other parts of the body, creating a
systemic inflammatory condition [19,20].

The vast majority of immune cells infiltrating the adipose tissue are macrophages [21,22].
These immune cells accumulate around adipocytes in crown-like structures [23] where
macrophages can proliferate and further maintain the adipose tissue inflammation [24].
However, recently it has become evident that neutrophils, the most abundant leukocytes
in blood and the primary effector cells of acute inflammation, are also the first immune
cells infiltrating the adipose tissue [25]. Neutrophils then get activated [26–28] and release
multiple inflammatory factors and chemokines that recruit macrophages and other immune
cells including B cells, T cells, and NK cells [29]. The crosstalk between adipocytes and
neutrophils further promotes the adipose tissue inflammation [30]. In this review, we
describe the recent findings on the role of neutrophils during obesity and the initiation of a
low-grade systemic inflammation. In addition, we discuss the involvement of neutrophils
in the generation of obesity-related complications using diabetes as a prime example.

2. Obesity

Obesity is associated not only with an excessive accumulation of fat in the adipose
tissue [1,2], but also with a mild, chronic, systemic inflammation [12]. Increased fat accu-
mulation results from an imbalance between the energy derived from food ingestion and
the energy used for body functions. However, this simple view (based on thermodynamics)
does not take into consideration the complexity of body weight control. Body weight is
influenced not only by the quality of the diet and the amount of physical activity, but also
by work schedules, ambient temperature, lack of sleep; drugs that modify endocrine and
reproductive functions, gut microbiota, and epigenetic effects [4]. The complexity of weight
control makes the etiology of obesity an intricate mix of personal choices, socioeconomic
level, and environmental factors [2]. As a result, obesity has become a pandemic health
problem [7,8]. In 2016, the World Health Organization (WHO) estimated that more than
1.9 billion people, 18 years and older, were overweight. Of these, over 650 million were
obese. In addition, over 340 million children and adolescents aged 5–19 were also over-
weight or obese [31].

Assessment of obesity is not easy since there are multiple ways to accumulate fat in
tissues. This variation creates two principal types of obesity: subcutaneous and visceral. In
subcutaneous obesity (which is more common in women), excess fat is found under the
skin surrounding the hip and thigh areas, while in visceral obesity (which is more common
in men), fat is concentrated in the abdominal region, primarily in the mesenteric adipose
tissue. In order to assess obesity, several indicators have been used. The body mass index
(BMI) is one such indicator that estimates overweight and obesity based on the weight of
the individual expressed in kilograms (kg) divided by the square height of the individual
in meters (m2) [31]. In addition, other indicators besides the BMI should be considered to
fully assess the severity of obesity. For example, waist circumference helps to discriminate
between subcutaneous obesity and visceral obesity, and it is a good indicator of poor health.
A strong correlation of waist circumference with all-cause mortality was found for men
(with waist circumferences larger than 110 cm) and for women (with waist circumferences
larger than 95 cm) [32].

Obese individuals are at a greater risk of developing numerous health problems that
play a role in premature death [5,31,32], including features of the metabolic syndrome [1,33],
and other obesity-related complications such as type 2 diabetes mellitus, cardiovascular
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diseases, some types of cancer [3], and COVID-19 [11]. In addition, obesity has a negative
influence on psychological and cognitive functions [34,35].

3. Microbiota and Obesity

Obesity is usually accompanied by a mild, chronic, systemic inflammation. This in-
flammatory state is initiated by damage to the adipose tissue due to excessive fat deposition
(see later), and also by increased intestinal permeability due to alterations to the gut mi-
crobiota [36]. The gut microbiota is the community of microorganisms (including bacteria,
archaea, fungi, protozoa, and viruses) that reside in the digestive tract. The dominant
phyla in the gut are Firmicutes (Gram-positive) (60–65%), Bacteroidetes (Gram-negative)
(20–25%), Proteobacteria (such as Escherichia and Enterobacteriaceae) (10%), and Actinobac-
teria (Gram-positive) (3%) [37,38].

Recent years have seen an increasing evidence of the association of changes in gut
microbiota with the development of obesity (reviewed in [39–43]). This association was
evidenced through initial reports showing that germ-free mice fed a high-fat diet had
reduced body fat and did not develop obesity [44,45]. However, these mice recuperated
fat and developed insulin resistance and glucose intolerance after reconstitution with
the gut microbiota from normal mice [45]. Then, a metagenomic analysis showed that
the two main bacterial phyla, Firmicutes and Bacteroidetes [37], maintain a relatively
constant balance both in lean mice and humans; but in obese individuals, higher levels
of Firmicutes and lower levels of Bacteroidetes were found [46,47]. Interestingly, after
eliminating the high-fat diet, the ratio of Firmicutes/Bacteroidetes was reverted to the
levels found in lean individuals [46]. Most other studies have had similar results [40].
However, numerous reports of opposite results suggest that the Firmicutes/Bacteroidetes
ratio not always increases in obesity, and thus, further studies are required to resolve this
issue [48]. Nevertheless, it seems that changes in specific bacteria, more than the ratio of
the phyla, are better associated with obesity [49].

Altering the gut microbiota composition has important metabolic consequences. For
example, obesity-associated microbiotas have been found to be more efficient at obtain-
ing energy from the diet by producing enzymes that degrade food more efficiently, thus
favoring a larger caloric intake [47]. Another significant consequence of an altered mi-
crobiota during obesity is the increased intestinal permeability [50], which leads to the
escape of bacteria and bacterial products across the intestinal barrier into the blood cir-
culation [36]. A major bacterial product found to cross the intestinal barrier in obese
individuals is lipopolysaccharide (LPS), which triggers innate immune cells, leading to
inflammation [51,52]. A high-fat diet increases the growth of Gram-negative bacteria
and promotes LPS absorption across the intestinal barrier [51,53]. Thus, LPS absorption
caused by ingestion of high-fat diets is related to obesity-induced low-grade systemic
inflammation [54].

In contrast, other bacterial products such as short-chain fatty acids (SCFAs) have been
associated with maintenance of reduced weight [55]. SCFAs, predominantly butyrate,
acetate, and propionate, are produced by fermentation of nondigestible carbohydrates
(dietary fiber) by various gut bacteria [56] and serve as an energy source for the colonic
epithelia (butyrate), liver (propionate), and peripheral tissues (acetate) [57]. In particular,
butyrate and propionate induce the production of gut hormones, such as hormone peptide
tyrosine (PYY) and glucagon-like peptide-1 (GLP-1) from colonic L cells [58] via their
cognate free fatty acid receptors (FFARs) [59]. In this way, SCFAs lead to reduced food
intake, resulting in weight loss and the maintenance of reduced weight [50,59,60]. In
addition, SCFAs can diminish inflammation by modulating several leukocyte functions,
including reduced production of inflammatory cytokines and eicosanoids, inhibition of
leukocyte migration to inflammation sites [61], and induction of neutrophil apoptosis [62].

Based on the evidence that microbiota composition can modulate body weight and in-
flammation, a growing interest exists to modify the gut microbiota by different approaches.
The use of probiotics (live microorganisms which in proper quantities could provide a
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health benefit) or of prebiotics (nondigestible food ingredients that favor growth of health-
promoting bacteria) has been extensively tried [63–65]. Furthermore, fecal microbiota
transplantation is now considered as a feasible therapy for treating obesity by influencing
the composition of the gut microbiota [66]. Although some reports suggest that these
approaches can reduce obesity and other associated complications [41,67], in general, only
a limited success is achieved by microbiota-related interventions for body weight control
in humans [68]. Therefore, future research is needed combining different approaches to
improve the beneficial effects of microbiota modification on obesity.

Nevertheless, it is clear that an altered microbiota during obesity can induce a low-
grade systemic inflammation by increasing intestinal permeability [50] and allowing bacte-
rial products, such as LPS, to cross the intestinal barrier into the blood circulation [36].

4. Changes of the Adipose Tissue during Obesity

There are two principal types of adipose tissue: brown adipose tissue and white adipose
tissue. Together, these tissues are involved in maintaining the energy balance of the body [69].
Adipocytes (adipose cells) in brown adipose tissue are involved in the regulation of body
temperature by generating heat (thermogenesis) using lipid reserves. This tissue is abundant
in newborn babies and is found in the interscapular and supraclavicular regions, and around
critical organs such as the heart, the kidneys, the trachea, and the pancreas. It is believed
that this anatomical distribution of brown adipose tissue is important for protecting vital
organs from hypothermia [70]. Brown adipose tissue is present not only in newborns, but
also in adult humans, and its mass correlates with leanness [71]. White adipose tissue is the
most abundant one throughout the body of adult humans. The main function of this tissue
is the storage of energy in the form of lipids (triglycerides). However, recent studies have
shown that adipocytes not only accumulate fat, but also are capable of secreting bioactive
substances, collectively known as adipocytokines or adipokines [72,73]. In addition, a third
type of adipose tissue is also found within white adipose tissue. This minor type is known
as “beige” or “brite” adipose tissue, and it is also involved in thermogenesis [69,71]. As
mentioned before, adipose tissues are also classified according to their location in the body as
subcutaneous or visceral. Visceral adipose tissue is more cellular (adipocytes) and vascular
than subcutaneous tissue and contains more immune cells (see later) [74]. Visceral adipose
tissue is of particular interest because accumulation of fat in this tissue correlates with the
development of the metabolic syndrome [75].

During obesity, the principal change observed in adipose tissue is the accumulation of
fat. As a result of energy surplus, adipose tissues must store more lipids. This is achieved
by first inducing adipose tissue hyperplasia. The increased number of adipocytes expands
the tissue, which then serves as a “metabolic sink” distributing the excess fat in the growing
tissue. Later, when the tissue cannot expand anymore (due to causes that are not well-
identified), stored lipids (triglycerides) induce adipocyte hypertrophy. Adipocytes enlarge
until they become saturated and are no longer functional [2] (Figure 1).

In addition, when adipose tissue has no more room for storing the excess of triglycerides,
an abnormal deposition of lipids begins to appear in other normally lean tissues, such as the
heart, the liver, and the kidneys. This event is known as ectopic fat deposition [75], and it has
harmful effects on metabolism, including insulin sensitivity and dyslipidemia (high levels
of triglycerides or low levels of high-density lipoprotein cholesterol) [76,77]. Interestingly,
visceral obesity is more frequently associated with ectopic fat deposition than subcutaneous
obesity [78].
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larger and stressed. These adipocytes then become dysfunctional, releasing proinflammatory adi-
pokines that recruit and activate more macrophages into the tissue. Macrophage activation results 
in an increase in macrophages with the M1 (proinflammatory) phenotype and a decrease in M2 
(anti-inflammatory) macrophages. Due to hypoxia and stress, adipocytes also become apoptotic. 
Macrophages concentrate around apoptotic and dead adipocytes, forming crown-like structures 
where defective adipocytes are eliminated by phagocytosis. 
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may explain why visceral obesity is clearly associated with obesity-related complications. 
An important molecular alteration observed in dysfunctional adipocytes is the endoplas-
mic reticulum (ER) stress response, which is activated by incorrectly folded proteins 
within the ER [80], and it is connected to inflammatory pathways [81]. Another molecular 
alteration observed in stressed adipocytes is the response to hypoxia. As adiposity be-
comes severe, lower levels of oxygen are present in adipose tissues. This results in activa-
tion of the hypoxia-inducible factor (HIF) signaling cascade, which in turn upregulates 
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Figure 1. Changes in the adipose tissue. (a) In normal adipose tissue, adipocytes store limited
amounts of fat (triglycerides). Some anti-inflammatory M2 macrophages are distributed through-
out the tissue. (b) In obese adipose tissue, adipocytes accumulate excessive amounts of fat and
become larger and stressed. These adipocytes then become dysfunctional, releasing proinflammatory
adipokines that recruit and activate more macrophages into the tissue. Macrophage activation results
in an increase in macrophages with the M1 (proinflammatory) phenotype and a decrease in M2
(anti-inflammatory) macrophages. Due to hypoxia and stress, adipocytes also become apoptotic.
Macrophages concentrate around apoptotic and dead adipocytes, forming crown-like structures
where defective adipocytes are eliminated by phagocytosis.

Adipocytes with excessive lipid storage become severely stressed. The increase in size
is tolerated up to a certain (threshold) point, beyond which adipocytes develop molecular
alterations resulting in dysfunction and death [79]. Interestingly, visceral adipocytes become
dysfunctional at a smaller size than subcutaneous adipocytes [21]. This fact may explain
why visceral obesity is clearly associated with obesity-related complications. An important
molecular alteration observed in dysfunctional adipocytes is the endoplasmic reticulum
(ER) stress response, which is activated by incorrectly folded proteins within the ER [80],
and it is connected to inflammatory pathways [81]. Another molecular alteration observed
in stressed adipocytes is the response to hypoxia. As adiposity becomes severe, lower levels
of oxygen are present in adipose tissues. This results in activation of the hypoxia-inducible
factor (HIF) signaling cascade, which in turn upregulates proinflammatory responses [82].
Therefore, stressed adipocytes can release large amounts of proinflammatory adipokines,
such as leptin [83], and cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin
(IL) 6, monocyte chemoattractant protein 1 (MCP-1), IL-1, and IL-8, which further promote
inflammation [72,73]. All these changes create a low-grade inflammatory state in obese
adipose tissue that is further amplified by cells of the immune system.

Macrophages are an abundant population of immune cells in adipose tissue. Some
macrophages exist in lean adipose tissue, but their numbers increase dramatically during
obesity. In obese adipose tissue, macrophages concentrate around apoptotic and dead
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adipocytes, forming crown-like structures where defective adipocytes are eliminated by
phagocytosis [23] (Figure 1b). The increase in macrophage numbers is due to a combina-
tion of recruitment, retention, and proliferation of these cells. Recruitment is mediated
by myeloid C–C motif chemokine receptor-2 (CCR2), the receptor for MCP-1 [22], al-
though other chemotactic agents also participate in macrophage recruitment to the adipose
tissue [84]. Macrophage retention entails the direct contact of macrophages with adipocytes.
This cell–cell contact is mediated by adhesion of integrin α4β1 on macrophages with vas-
cular cell adhesion molecule-1 (VCAM-1) on adipocytes [85] (Figure 2). Macrophages
are also capable of proliferating, particularly in the crown-like structures [24] where
the inflammatory microenvironment provides Th2 cytokines, such as IL-4, IL-13, and
granulocyte/monocyte colony-stimulating factor (GM-CSF), that stimulate macrophage
growth [86].
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Figure 2. Interaction of adipocytes and macrophages in obese adipose tissue. Macrophages enter
in direct contact with adipocytes through adhesion of integrin α4β1 on macrophages with vascular
cell adhesion molecule-1 (VCAM-1) on adipocytes. Free fatty acids (FFA) produced by lipolysis are
released by adipocytes and bind to fetuin-A, which is then recognized by toll-like receptor 4 (TLR-4)
on macrophages. This leads to the activation of proinflammatory signals like the nuclear factor
kappa B (NF-κB) pathway that induces secretion of cytokines such as tumor necrosis factor alpha
(TNF-α) by macrophages. The leptin released by adipocytes also induces macrophages to produce
TNF-α. Further activation of macrophages by TNF-α creates a self-sustained inflammation in obese
adipose tissue.

Accumulation of macrophages in obese adipose tissue goes together with the activation
of these cells. Activation results in an increase in macrophages with the M1 (proinflamma-
tory) phenotype and a decrease in M2 (anti-inflammatory) macrophages [22,87,88]. The



Cells 2022, 11, 1883 7 of 27

proinflammatory activation of macrophages in the adipose tissue involves many different
extracellular factors, including lipids, adipokines, and cytokines [23,89,90]. Lipids, such as
free fatty acids, deriving from enhanced lipolysis of dysfunctional adipocytes, are capa-
ble of activating macrophages via the interaction with toll-like receptor 4 (TLR-4) [90,91],
resulting in the activation of proinflammatory signaling pathways, like the nuclear fac-
tor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways [16]. Mechanistically,
free fatty acids, however, do not directly engage TLR-4. Instead, they bind fetuin-A,
which then binds to TLR-4, leading to the activation of proinflammatory signals [92,93]
(Figure 2). Adipokines such as leptin, the hormone that inhibits hunger, are important acti-
vators of macrophages. Leptin induces macrophages to produce TNF-α, IL-6, MCP-1, and
IL-1β [83,94]. Cytokines such as TNF-α, IL-6, and IL-1β are also important activators of
macrophages [20,95]. Because all these proinflammatory factors are produced either by
dysfunctional adipocytes [20] or by activated macrophages themselves, the activation of
macrophages in obese adipose tissue becomes self-sustained. This is probably one of the
reasons for the continuous low-grade inflammation of obesity [9,96].

So far, most studies on obesity have focused on the role of activation of macrophages
and their accumulation in adipose tissues (reviewed in [89,95,97]). However, many other
immune cells are also found in adipose tissues, including neutrophils, CD4 T cells, CD8 T
cells, B cells, dendritic cells (DCs), and mast cells [17,98]. Recently, it has become evident
that neutrophils are the first innate immune cells infiltrating obese adipose tissues and
important regulators of the obesity-associated inflammation. We describe next the novel
findings on the role of neutrophils in obesity.

5. Neutrophils in Obesity
5.1. Circulating Neutrophils Increase in Obesity

Neutrophils are the most abundant leukocytes in human blood, the primary effector
cells of acute inflammation and the first responders to infections [99,100]. Neutrophils are
typically considered to be the major leukocytes against infections due to their capacity to act
as phagocytic cells [101], degranulate releasing lytic enzymes, perform an oxidative burst
producing reactive oxygen species (ROS), and produce neutrophil extracellular traps (NETs)
with antimicrobial potential [102,103]. Neutrophils are also considered as the main effector
cells of acute inflammatory reactions since they are the first leukocytes to be recruited to
inflammation sites where they are capable of producing large quantities of cytokines and
chemokines including TNF-α, IL-1β, IL-8, and MCP-1 [104]. Consequently, neutrophils
induce the second wave of immune cells, such as macrophages and lymphocytes, to
inflammation sites [105,106].

Conspicuously, circulating neutrophils are increased in obesity [107–111], with a clear
association between the level of neutrophil blood counts and the higher BMI [107,108,110].
Furthermore, overweight individuals with neutrophilia presented elevated serum C-reactive
protein (CRP) concentrations and larger waist circumferences [107,108]. In addition, neu-
trophil counts were significantly higher in individuals with metabolic syndrome than in lean
individuals [108]. In animal models, neutrophils have also been found to be elevated in blood
vessels and infiltrating adipose tissue and the endothelium at atherosclerotic lesions [112].
Moreover, neutrophils in obese individuals present an activated phenotype as indicated by ele-
vated plasma concentrations of myeloperoxidase (MPO) and neutrophil elastase (NE) [26,113],
as well as an increased expression of CD66b, a marker of neutrophil degranulation [26,27].
Activation of neutrophils from obese individuals was also indicated by stimulation of the
NF-κB signaling pathway [27] and by a higher ROS generation and enhanced release of
proinflammatory cytokines [114].

Importantly, weight loss following gastric band surgery resulted in a decrease in
neutrophil blood counts [115] and in proinflammatory activities of peripheral blood neu-
trophils [114]. These results suggest that the inflammatory condition of obesity also leads
to the expansion of neutrophils [9,13,94]. In fact, elevated concentrations of acute-phase
proteins have been reported in obese individuals [14,116]. As mentioned before, the adipose
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tissue in obese individuals is capable of producing increased levels of mediators of inflam-
mation like TNF-α, IL-1β, IL-6, and IL-8 [117–122]. These inflammatory mediators increase
bone marrow granulopoiesis [123–125], releasing neutrophils from the bone marrow to the
peripheral circulation. Moreover, these inflammatory mediators induce de-margination of
neutrophils from endothelial walls, resulting in neutrophilia [126]. In addition, the adipose
tissue also produces leptin which has been shown to promote hematopoiesis [127–129].
Leptin can additionally stimulate the oxidative burst of neutrophils, induce chemotaxis,
and inhibit apoptosis in these cells [127]. Together, these reports support the notion that,
indeed, obese adipose tissue is responsible for promoting a systemic inflammation that re-
sults in the generation, increase in numbers, and activation of neutrophils. In consequence,
these leukocytes are the first cells to infiltrate adipose tissues.

5.2. Neutrophil-to-Lymphocyte Ratio (NLR)

The clear connection between obesity and an elevated neutrophil blood count has
motivated people to look for simple biomarkers of obesity and inflammation. The hemato-
logical parameter for systemic inflammation known as the neutrophil-to-lymphocyte ratio
(NLR) is an easy biomarker of immune response to various infectious and noninfectious
stimuli [130]. The NLR is commonly used in many medical areas as an indicator of dynamic
changes of neutrophils and lymphocytes in blood during systemic inflammation. The NLR
reflects the relationship between innate (neutrophils) and adaptive (lymphocytes) immune
responses in various pathological conditions. Because the NLR correlates with CRP con-
centrations, it becomes a simple cost-effective biomarker for the detection of subclinical
inflammation [131].

Accordingly, the NLR has been found to be significantly higher in obese individuals than
in healthy lean individuals [132–135], with a positive correlation to the BMI [132,135–138]. As
expected, the NLR is also associated with higher plasma CRP concentrations [111,132,139,140].
The same trend has been reported in mice fed with an obesogenic diet. The effect on the NLR
seems to be due to changes in the gut microbiota, which affects blood leukocyte numbers [134].
The significant association between obesity and a high NLR (higher than 4) was a good
predictor of increased breast cancer risk. Patients with a high NLR and a high BMI also
had the worst disease-free survival [133,138]. More importantly, NLR values were found to
correlate significantly with the degree of abdominal obesity [141,142]. Furthermore, in morbid
obese patients, a high NLR was reported to be a powerful and independent predictor of type
2 diabetes mellitus (T2D) [143]. Hence, the NLR is a simple and accessible biomarker that
provides information about the inflammatory state of obese individuals. Importantly, the NLR
seems to be able to identify an ongoing systemic inflammation in overweight individuals that
otherwise appear healthy [139,140]. Therefore, a higher NLR in overweight individuals may
reflect the subclinical inflammation already present in this group of people.

5.3. Neutrophil Infiltration into Adipose Tissue

During obesity-induced inflammation in animal models, neutrophil numbers increase
in the peripheral circulation. From there, neutrophils can infiltrate the adipose tissue [25]
and blood vessel endothelium [112]. This suggested that neutrophils have an important
role at the early stages of obesity by infiltrating the abdominal adipose tissue. Neutrophils
are found in the adipose tissue of lean mice in very small numbers, approximately 1% of all
immune cells in the adipose tissue [144]. Yet, in mice fed a high-fat diet, a 20-fold increase in
adipose tissue neutrophils was observed as early as three days after initiation of the diet [25].
In contrast, macrophage infiltration can be detected after 7 days of a high-fat diet [145,146].
These results indicated that neutrophils are the first immune cells to be recruited into
adipose tissues. Neutrophil infiltration was first described as transient because after an
initial remarkable increase, the neutrophil numbers decreased [25]. However, the neutrophil
numbers were higher for up to 12 weeks in the adipose tissue of the mice fed with a high-
fat diet than in the adipose tissue of the mice fed a normal diet [25]. Moreover, it was
later shown that early recruitment of neutrophils could be prolonged over 90 days with
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a constant high-fat diet [19,147]. Hence, in the early phases of adipocyte disfunction, the
initial inflammatory response is characterized by neutrophil infiltration into adipose tissues.

Neutrophils are recruited to the adipose tissue via the action of several chemotactic
factors produced in the obese adipose tissue. Inflamed adipocytes produce larger amounts
of IL-8, a potent neutrophil chemoattractant [19,117]. Once in the adipose tissue, neu-
trophils can recruit more blood neutrophils by releasing C–X–C motif chemokine ligand
2 (CXCL2), another important neutrophil chemoattractant [148] (Figure 3). Furthermore,
lipids extracted from human adipocytes were shown to induce migration of neutrophils
and macrophages, and also secretion of other cytokines [149]. In addition, free fatty acids
derived from adipocyte lipolysis could also attract neutrophils and stimulate them to pro-
duce more IL-1β, which in turn activates other adipocytes and immune cells [30] (Figure 3).
The exact molecular nature of the various lipid chemotactic factors is not yet known. Future
studies will help elucidate these chemotactic factors and the mechanisms they use to recruit
neutrophils into adipose tissues.

5.4. Neutrophil Activation and Inflammation

Once in the adipose tissue, neutrophils interact with adipocytes via the binding of inte-
grin αMβ2 (Mac-1) on the neutrophil to intercellular adhesion molecule 1 (ICAM-1) on the
adipocyte [25] (Figure 3). This interaction activates neutrophils and induces them to produce
IL-1β and TNF-α, which further stimulate inflammation in the adipose
tissue [98,150,151]. Neutrophils also secrete NE, which impairs the energy expenditure
in the adipose tissue [152]) and promotes insulin resistance by degrading insulin receptor
substrate 1 (IRS-1) [147]. As the number of infiltrated neutrophils augments, the activity of
NE is also increased in the adipose tissue of high-fat diet mice [19,147]. Importantly, genetic
deletion of NE reduces macrophage infiltration into the adipose tissue of obese mice and
reverts insulin resistance [147,153], indicating that NE is a key activator of macrophages
(Figure 3). An important connection between IL-1β and the NLRP3 inflammasome was
found in mice fed a high-fat diet. In the adipose tissue of these mice, the mRNA levels
of both IL-1β and NLRP3 were positively correlated to body weight and adiposity [154].
Furthermore, when the mice were fed a calorie-restricted diet, the mRNA levels of both
molecules were significantly decreased [154]. Together, these results suggest that the in-
teraction of neutrophils with adipocytes induces IL-1β expression via the NF-κB pathway
and that free fatty acids released after lipolysis of adipocytes also stimulate neutrophils to
produce high levels of IL-1β via the inflammasome pathway [30] (Figure 3).

Therefore, the chronic low-grade inflammation of the adipose tissue leads to the acti-
vation of neutrophils [17]. Neutrophil activation was first inferred from the observation
that serum NE concentrations [26] or plasma MPO concentrations [155] were increased in
obese individuals. More recently, these observations were confirmed at the cellular level.
In peripheral blood leukocytes, the NE and MPO mRNA levels were found to be positively
correlated to the BMI and serum triglyceride concentrations [113]. Furthermore, bariatric
surgery, which leads to weight loss in patients, partially reduced neutrophil activation [26].
Another evidence of neutrophil activation in adipose tissues is the fact that leptin can delay
apoptosis of mature neutrophils. The antiapoptotic properties of leptin on neutrophils
involve activation by the leptin receptor of the NF-κB and MEK1/2 MAPK signaling path-
ways [127,156] (Figure 3). Activation of neutrophils is also detected by the altered responses
neutrophils of obese patients have to various stimuli. In general, these neutrophils display
elevated ROS production and release of proinflammatory cytokines [114]. The elevated
ROS production observed in neutrophils from obese people has also been reported in
neutrophils from obese individuals of other species, including dogs [157] and horses [158].
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Figure 3. Stressed adipocytes in obese adipose tissue recruit neutrophils, which then further promote
inflammation. Adipocytes produce adipokines such as leptin and cytokines such as interleukin-8
(IL-8). IL-8 is a potent chemoattractant for neutrophils. Once in the adipose tissue, neutrophils can
recruit more blood neutrophils by releasing C–X–C motif chemokine ligand 2 (CXCL2), another
important neutrophil chemoattractant. Neutrophils directly interact with adipocytes via the binding
of integrin αMβ2 on the neutrophil to intercellular adhesion molecule 1 (ICAM-1) on the adipocyte.
This interaction activates neutrophils and induces them to produce interleukin 1 beta (IL-1β) via
the nuclear factor kappa B (NF-κB) and inflammasome (NLRP3) pathways. IL-1β is an important
activator of macrophages. Neutrophils also produce tumor necrosis factor alpha (TNF-α), which
further stimulates macrophages. Leptin, through its receptor, also activates the NF-κB pathway,
resulting in the inhibition of neutrophil apoptosis. Free fatty acids (FFA) derived from adipocyte
lipolysis can also attract neutrophils and stimulate them to produce more IL-1β. Neutrophils also
produce elastase (NE) which impairs energy expenditure in the adipose tissue and directly activates
macrophages. Granule protein cathelicidin (LL-37) can also activate the release of more proinflam-
matory cytokines from macrophages. Activated neutrophils can also recruit monocytes through the
release of azurocidin, LL-37, cathepsin G, proteinase 3 (PR3), and human neutrophil peptides 1–3
(HNP1–3). In addition, lactoferrin, azurocidin, and HNP1–3 can induce polarization of macrophages
towards the M1 proinflammatory phenotype.

Another important antimicrobial function of neutrophils is phagocytosis. There are
only a handful of reports describing this function in neutrophils from obese individuals.
In one study, neutrophils from obese noninsulin-dysregulated horses had a significantly
increased ROS production, but no changes were observed in terms of phagocytosis [158].
In another very early study, the phagocytosis and killing of Candida albicans by neutrophils
from healthy (control) and diabetic individuals were compared. Phagocytosis occurred
at similar levels in neutrophils from diabetic and control individuals [159]. However, the
killing of Candida by diabetic neutrophils was impaired [159]. In contrast, a recent report of
neutrophils from mice on a high-fat diet showed that the phagocytosis of Klebsiella pneumonia
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was reduced [160]. In most instances, independently of the level of phagocytosis reported,
the killing capacity of neutrophils from obese individuals seems to be diminished. These
findings agree with clinical observations consistently reporting that individuals with obesity
are physiologically frail and have a higher risk of infections and mortality than normal-
weight individuals [161,162]. Clearly, much work on neutrophil phagocytosis in obese
individuals is needed to fully understand why the activated state of neutrophils from obese
individuals does not translate into a more effective antimicrobial function.

Because activated neutrophils have the ability to increase their secretion of cytokines and
chemokines, they are also described as the prime effectors of inflammatory responses [98].
As such, they are able to induce the recruitment and activation of the second wave of im-
mune cells, including macrophages, dendritic cells, and lymphocytes [146,163]. Once
at the inflamed adipose tissue, neutrophils recruit monocytes through the release of
LL-37 (cathelicidin/CRAMP), azurocidin (heparin-binding protein), cathepsin G, pro-
teinase 3 (PR3), and human neutrophil peptides 1–3 (HNP1–3) [164,165] (Figure 3). Neu-
trophils can then induce monocyte differentiation and macrophage polarization and ac-
tivation. Lactoferrin [166], azurocidin [167], and HNP1–3 [168] can induce polarization
of macrophages towards the M1 proinflammatory phenotype (Figure 3). In addition, LL-
37 induces M1 macrophage polarization and release of proinflammatory cytokines [169]
(Figure 3). Similarly, alarmin S100A9 also induces the release of proinflammatory cytokines
from synovial macrophages [170]. Thus, neutrophil proteins contribute to inflammation
intensification by promoting macrophage activation and release of proinflammatory cy-
tokines (Figure 3).

5.5. Neutrophil Extracellular Traps (NETs)

As mentioned, another way neutrophils control infections is the production of neu-
trophil extracellular traps (NETs), which are fibers of decondensed chromatin (DNA)
decorated with histones and antimicrobial proteins from neutrophil granules. NETs are
formed and released by a dynamic cell death program known as NETosis. In addition
to infections, NETosis can take place during noninfectious sterile inflammation, where
neutrophils help repair damaged tissues. However, during persistent inflammation, NETs
can aggravate the tissue damage [171,172]. Because obesity is associated with chronic
systemic inflammation, it is possible that NETosis is activated, and NETs may contribute to
some of the medical complications associated with obesity.

The role of NETs in obesity is not clear since there are conflicting reports. For example,
in a diet-induced obesity mouse model, endothelial dysfunction was observed. In these
mice, plasma concentrations of LL-37 were increased in mesenteric arterial walls. LL-
37 was used as a marker for NETs [173]. Disruption of NETs with DNase restored the
endothelium function, suggesting that NETs are increased in obesity and are responsible
for endothelial dysfunction [173]. Similarly, in obese persons, plasma concentrations of
MPO–DNA complexes (assessed by ELISA) were higher than in lean persons. Moreover,
NETs concentrations correlated with the BMI [174]. In addition, recent bioinformatics
studies found a strong relationship between obesity, inflammatory markers, such as TNF-α,
IL-6, IL-8, heat shock protein 90 (HSP90), and NETs formation [175,176]. Moreover, it
was also found that exercise reduces NETs [175]. Together, these reports suggest that
obesity-induced inflammation is associated with elevated NETs formation. However, in
other studies, an opposite relationship was reported. Using purified neutrophils from
obese individuals and in vitro testing, it was found that although neutrophils displayed an
activated phenotype (elevated ROS production), they exhibited lower NETs formation than
neutrophils from lean individuals [114]. Similarly, using intravital microscopy in mice kept
on a high-fat diet, it was revealed that neutrophils produce fewer NETs in liver vasculature
than neutrophils from lean mice (kept on a normal diet) [177].

Extending these observations to neutrophils from diabetic individuals, it is also found
that the role of NETs in this obesity-related condition is, again, not clear. Detecting NE–DNA
complexes as an indicator of NETs, it was reported that recently diagnosed T2D patients
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had higher plasma levels of NETs than healthy (control) individuals [178]. Furthermore,
measuring NE and histone/DNA complexes in serum, it was concluded that NETs were
increased in patients with diabetic retinopathy [179]. In another report, neutrophils from
diabetic patients with proliferating retinopathy also presented increased NETs production,
particularly when exposed to high levels of glucose [180]. These results are similar to those
reported in a previous study, where diabetic patients had elevated NETs components in
serum, and neutrophils presented enhanced NETosis in case of high levels (25 mM) of
glucose [181]. Together, these reports suggest that diabetic conditions, particularly high
glucose, lead to enhanced NETosis. However, other reports indicate that high glucose
concentrations decrease the formation of NETs [182,183].

Nevertheless, the role for NETs in diabetic wound healing seems more clearly estab-
lished [184–186]. Diabetic patients frequently have foot lesions that do not heal. These
individuals are referred to as diabetic foot patients [187]. In a model of wound healing,
skin wounds were inflicted on mice. Healing of these lesions was longer in diabetic mice
than in normoglycemic (control) mice [184]. Furthermore, when the wounds were treated
with DNase 1 to degrade NETs, wound healing was improved both in the diabetic mice
and the control mice [184]. In addition, the wounds of diabetic animals presented larger
amounts of citrullinated histone H3 (H3Cit), a marker for NETosis. In contrast, no H3Cit
was observed in the wounds from the Padi4−/−-mice (deficient in enzyme peptidylarginine
deiminase 4 (PAD4) that causes histone citrullination), despite many neutrophils present.
More importantly, the wounds of the Padi4−/−-mice healed very fast [184]. In another
study, neutrophils were stimulated with PMA to induce NETosis, and NETs formation was
abolished by treatment with hydrogen sulfide (H2S) [186]. Furthermore, diabetic mice with
wounds were treated intraperitoneally with H2S. The wounds in these mice had decreased
NETs markers (NE, MPO, H3Cit, and PAD4) and healed better than the wounds in the con-
trol mice [185]. In a more recent study, intravital microscopy detected enrichment of NETs
components in the bed of excisional wounds, and inhibition of PAD4 with BB-Cl-amidine
improved wound healing in diabetic mice [186]. Together, these results suggested that
diabetes slows down wound healing by activating NETosis. Mechanistically, NETs slow
down wound healing in diabetic animals by triggering NLRP3 inflammasome activation
via the TLR-4/TLR-9/NF-κB signaling pathway in macrophages. As a result, macrophages
release IL-1β and prolong the inflammatory response in the diabetic wound [188,189].

At the present time, it is not possible to decide with confidence whether NETs forma-
tion is enhanced or reduced in obesity. The discrepancy among the various studies may
be related to the different methodological approaches used to evaluate NETs. In some
studies, indirect assessments were made by detecting some NETs components in plasma
or serum. In other studies, NETs formation was evaluated directly in vitro with purified
neutrophils. Yet, in other studies, intravital microscopy was used to detect NETs. Methods
detecting NETs components do not necessarily confirm that NETosis took place. Elevated
circulating DNA or neutrophil granule proteins may be caused by several other reasons
besides NETosis. In vitro assays with purified neutrophils are more reliable to detect NETs.
In either case, authors should be aware of the limitations of the methodology used and
take them into consideration when interpreting the experimental results. Another possible
reason for the discrepancy among the reported results is that neutrophil function may
be affected by the metabolic and inflammatory states of the individual. Earlier, it was
shown that NETs formation is dependent on glucose. Upon PMA stimulation, neutrophils
increased glucose uptake and their glycolysis rate (as measured with a Seahorse analyzer).
In the absence of glucose, PMA induced neutrophils to decondense chromatin, but they
did not release NETs. However, if glucose was added at this time, NETs release took place
within minutes [190]. Based on these data, the authors suggested that NETs formation
could be metabolically divided into two phases: the first, independent from exogenous glu-
cose (chromatin decondensation), and the second (NETs release), dependent on exogenous
glucose and glycolysis [190]. More recently, it was reported that neutrophils from mice
fed a normal diet used glycolysis for NETs release in both physiological and inflammatory
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(sepsis) conditions. However, neutrophils from mice fed a high-fat diet could not release
NETs after a secondary ex vivo activation despite the high glycolytic potential and the
flexibility to oxidize fatty acids [191]. Thus, the metabolic and inflammation states of the
individual can influence the neutrophil function. In the future, extensive well-controlled
studies will be required to elucidate the role of NETs in obesity.

6. Neutrophils in Type 1 Diabetes (T1D)

Diabetes mellitus, commonly referred to only as diabetes, is a group of metabolic
disorders characterized by hyperglycemia over long periods of time. Diabetes is due to
either lack of insulin secretion from the β cells in the pancreas or insulin resistance, a
condition in which cells of the body do not respond properly to insulin [192]. There are two
main types of diabetes: type 1 (insulin deficiency) and type 2 (insulin resistance) [193]. Both
diabetes types are associated with serious clinical complications such as cardiovascular
disorders, heart failure, atherosclerosis, diabetic neuropathy, diabetic retinopathy, and
diabetic kidney disease [194–196].

Type 1 diabetes mellitus (T1D) is considered a T cell-mediated autoimmune disease, in
which autoreactive T lymphocytes destroy the insulin-producing β cells in the pancreatic
islets [197]. Much progress has been made in understanding T1D thanks to the nonobese
diabetic (NOD) mouse animal model [198]. Similar to human T1D, NOD mice exhibit
an autoimmune response towards β cells, resulting in the dysfunction and destruction
of these cells. However, a limitation of this model is that in NOD mice, the initial anti-
gen is insulin [199], while in humans, anti-islet autoantibodies are the most frequently
detected autoantibodies [200]. In a study of Japanese T1D patients, it was reported that
the main antigens recognized by autoantibodies were glutamic acid decarboxylase (GAD),
insulinoma-associated antigen-2 (IA-2), zinc transporter 8 (ZnT8), and insulin [201].

Pioneering work with NOD mice demonstrated that physiological β cell death in-
duced the recruitment and activation of B-1a cells and plasmacytoid dendritic cells to
the pancreas [202]. These events represent the initial immunological steps for developing
T1D. Importantly, in this first study, a significant early infiltration of neutrophils to the
pancreas was also reported [202]. At the same time, it was found that circulating neutrophil
numbers were reduced in T1D patients and that neutrophils were present in the pancreas
of patients with T1D but not in patients with T2D or in nondiabetic controls [203]. A
reduction in circulating neutrophils has been confirmed in other studies and it is consid-
ered a hallmark of T1D [204–208]. Moreover, this reduction of neutrophils correlates with
lower serum levels of NE and PR3 [209] and with faster disease progression [206,210].
The reduction of circulating neutrophils is due mainly to neutrophil infiltration into the
pancreatic tissue [203,206]. In neonatal NOD mice, neutrophil infiltration [211,212] and NE
concentrations in the pancreas [211,213] are already higher than in control mice as early as
at two weeks of age. Macrophages and β cells produce chemokines CXCL1 and CXCL2,
which in turn recruit CXCR2-expressing neutrophils to the pancreas [212] (Figure 4). Thus,
neutrophils emerge as important cells participating in the early stages of T1D development.
This is not too surprising, since recently neutrophils have been recognized as key compo-
nents of both the innate and adaptive immune systems [105] and as important participants
in the immunization and the effector phases of autoimmune diseases [214].

As seen in several autoimmune diseases, NETosis might contribute to promoting both
inflammation and tissue damage. In the case of T1D, NETs components have been detected
in circulation. However, there are contradictory reports. Increased NETs components (NE
and PR3 proteins) were reported in the serum of patients with T1D [206,215]. Yet, in a
previous report, reduced circulating levels of NETs components were found to correlate
with the reduced number of circulating neutrophils [209]. However, NETosis within the
pancreas clearly contributes to disease progression [216]. Neutrophil infiltration into
pancreatic islets of NOD mice correlates with higher levels of citrullination [217]. Thus,
by inhibiting NE with sivelestat or elafin [211] or PAD4 with BB-Cl-amidine [217], the
development of diabetes was prevented in NOD mice. Similarly, by degrading NETs with
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staphylococcal nuclease (SNase) (delivered to NOD mice by oral administration of modified
Lactococcus lactis), pancreatic inflammation was reduced, β cell numbers increased, and
glucose tolerance was improved [218]. Moreover, neutrophils isolated from T1D patients
had an increased expression of PAD4 and showed enhanced NETosis after stimulation [184].
In vitro, NETs isolated from T1D pediatric patients induced monocyte-derived dendritic cell
activation, leading to the production of interferon gamma (IFN-γ) by T cells [219] (Figure 4).
Although NETs do not seem to directly induce the production of autoantibodies, they favor
β cell damage resulting in exposure of the antigens recognized by anti-islet autoantibodies.
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Figure 4. Type 1 diabetes mellitus (T1D) is characterized by neutrophil infiltration in the pancreas. In
the pancreas, macrophages and insulin-producing β cells release chemokines CXCL1 and CXCL2,
which in turn recruit neutrophils to the pancreas. Neutrophils can then directly activate B-1a cells
via secreted cytokines such as BAFF (B cell-activating factor of the TNF family). BAFF is one
of the main prosurvival factors for B cells as well as for antibody-producing plasma cells. Most
plasma cells activated this way in the pancreas produce autoreactive antibodies (Auto Ab). The main
antigens recognized by autoantibodies are glutamic acid decarboxylase (GAD), insulinoma-associated
antigen-2 (IA-2), zinc transporter 8 (ZnT8), and insulin. Many neutrophils also release neutrophil
extracellular traps (NET), which can activate dendritic cells (DCs). Activated DCs then stimulate T
cells, leading to the production of interferon gamma (IFN-γ).

Neutrophils can also directly activate B cells via secreted cytokines such as BAFF (B
cell-activating factor of the TNF family). BAFF, acting through its receptor [220], is one of
the main prosurvival factors for B cells as well as for antibody-producing plasma cells [221]
(Figure 4). Hence, neutrophils and NET components have an evident contribution to
the development of T1D. These findings may open new opportunities for innovative
therapeutic approaches in the future.

In addition, several neutrophil functions, including phagocytosis, degranulation, and
production of ROS, have been reported to be reduced in patients with T1D [159,222,223].
All these defects are thought to be caused by hyperglycemia [224,225]. However, it was
recently found that in vitro neutrophil migration was impaired in neutrophils from T1D but
not from T2D patients [207]. This functional defect was associated with the expression of
L-selectin (CD62L) but not with high glucose concentrations [207]. Thus, it may be possible
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that certain neutrophil defects are specific features of T1D and not a general glucose-
dependent defect. Future studies should look more carefully into neutrophil functions at
different stages of diabetes.

7. Neutrophils in Type 2 Diabetes (T2D)

Type 2 diabetes mellitus (T2D) is a chronic disease characterized by an elevated
concentration of glucose in blood as a result of limited insulin secretion and/or insulin
resistance. As a consequence, in T2D, the metabolism of carbohydrates, lipids, and proteins
is dysregulated [226].

T2D is associated with obesity-induced chronic systemic inflammation [13,15]. As
described above, neutrophil infiltration into adipose tissues contributes to the development
of insulin resistance. In mice fed a high-fat diet, neutrophils in the adipose tissue release
NE which degrades IRS1, resulting in impaired insulin signaling [147] (Figure 5).

Therefore, genetically NE-deficient mice showed reduced adipose tissue inflammation
and increased glucose tolerance, including better insulin sensitivity [147,152]. Furthermore,
activated neutrophils from diabetic patients released more IL-1, IL-6, IL-8, and TNF-α than
neutrophils from healthy individuals [227], leading to the increased level of circulating
inflammatory cytokines. These elevated cytokines may then impact multiple organs in
the body. One cytokine that has been repeatedly implicated in T2D is TNF-α [119,228].
Neutrophils from T2D patients secrete higher amounts of IL-6 and TNF-α in response to
lipopolysaccharide (LPS) stimulation, resulting in insulin resistance, which then increases
the blood glucose concentration [227]. Similarly, in the serum of obese patients with
cardiovascular disease, larger TNF-α concentrations have been reported [229].

TNF-α has also been implicated in other mechanisms that contribute to the develop-
ment of T2D, for example, altered function of endothelial cells [230,231]. Changes in the
expression of adhesion molecules by vascular endothelial cells are observed in patients
with T2D, and these changes seem to occur even before the onset of T2D [232]. Altered
adhesion function of endothelial cells has also been associated with the progression of
atherosclerosis [233]. TNF-α seems to be responsible for these alterations by inducing an
increased low-density lipoprotein uptake in vascular endothelial cells [234] (Figure 5). This
process can then promote atherosclerosis and extend inflammation [234]. Consequently,
genetically TNF-α-deficient mice show less endothelial cell dysfunction in diabetes animal
models [231,235]. In addition, TNF-α has been linked to β cell dysfunction and insulin
resistance. TNF-α and IL-1 induced β cell dedifferentiation in cultured human and mouse
pancreatic islets by downregulating transcription factor Fox01, which regulates β cell
proliferation [236,237] (Figure 5).

The elevated levels of circulating inflammatory cytokines found in diabetic patients
and animals also have important effects on neutrophil function. Neutrophils of diabetic
individuals display lower phagocytic activity [159], lower production of ROS [225], and
lower chemotactic capacity [238] than neutrophils from healthy control individuals. Some
of these functions (migration and bacteria killing) also seem to be compromised in hy-
perglycemia, and can be induced in vitro upon exposure of neutrophils to serum from
diabetic patients [182]. Finally, recent experiments showed that neutrophils can release
microvesicles, which are involved in cell–cell communication. The neutrophil microvesicles
concentration increased in the mice fed a high-fat diet. These microvesicles also accumu-
late in certain regions of arteries and promote vascular inflammation and atherosclerosis.
In vitro, neutrophil microvesicles promoted inflammatory gene expression by endothelial
cells [239]. Together, these reports suggest that neutrophils actively contribute to main-
taining systemic inflammation and originating some pathological consequences found
in T2D.
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Figure 5. Neutrophils in obesity-related complications. Neutrophils in obese adipose tissue release
large amounts of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α). These
cytokines have important systemic effects leading to obesity-related complications. IL-8 recruits
more neutrophils into the adipose tissue, creating an amplification cycle. Neutrophil elastase (NE)
and IL-6 contribute to the development of insulin resistance by impairing insulin signaling. IL-1β is
an important activator of macrophages in multiple parts of the body. Furthermore, IL-1β, together
with TNF-α in pancreatic islets, induces β cell dedifferentiation by downregulating transcription
factor Fox01, which regulates β cell proliferation. Together, these events may result in type 2 diabetes
mellitus. In addition, TNF-α can alter the adhesion function of endothelial cells by inducing increased
low-density lipoprotein (LDL) uptake. These changes have been associated with the progression
of atherosclerosis.

8. Concluding Ideas

Obesity is a growing health problem of pandemic proportions. Obese people develop
many pathological conditions, collectively referred to as obesity-related complications,
including, among others, diabetes mellitus, cardiovascular diseases, and cancer. These
conditions are thought to be initiated or worsened by the mild, chronic, systemic inflam-
mation characteristic of obesity. This inflammatory condition is initiated by dysfunctional
adipocytes, but later it is perpetuated by cells of the innate immune system, primarily neu-
trophils and macrophages. In recent years, it has become apparent that neutrophils are the
first immune cells infiltrating the obese adipose tissue. Neutrophils then get activated and
release multiple inflammatory factors that recruit other immune cells and further promote
inflammation. The cellular and molecular mechanisms used by neutrophils to orchestrate
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this scenario are only partially described. Consequently, several roles neutrophils play in
obesity remain unidentified. Some of the more pressing issues that should be addressed in
future research are mentioned next.

An evident characteristic of obesity is that circulating neutrophils are elevated. This
increase in neutrophil blood counts seems to be associated with the severity of obesity,
i.e., with the BMI and with inflammation markers such as plasma CRP. However, almost
nothing is known about the relationship between neutrophil numbers and the inflammation
state of persons with different grades of obesity. Using the inflammation biomarker NLR
may be a way to detect an ongoing subclinical inflammation in individuals who otherwise
appear healthy. This may be particularly relevant in overweight individuals who may be
more susceptible to becoming obese. Although the NLR is firmly established, its use in
routine clinical practice remains very limited.

We described that it is now clear neutrophils are recruited to obese adipose tissue.
However, neutrophil infiltration is not the same in the adipose tissue from different individ-
uals. What are the signals that attract neutrophils to this tissue under different conditions?
The molecular nature of lipid chemotactic factors is not yet known. Future studies will
help elucidate these chemotactic factors and the mechanisms they use to recruit neutrophils
into adipose tissues. In general, it seems that neutrophils in obese individuals have an
activated phenotype, revealed by an elevated ROS production. However, almost nothing
is known about other neutrophil functions, such as chemotaxis, phagocytosis, and NETs
formation. This is a very relevant issue because obese individuals appear to have a higher
risk of infections and mortality than normal-weight individuals. How is it possible that
“activated” neutrophils in obese people fail to control infections? Clearly, future research
should concentrate on neutrophil phagocytosis in obese individuals to fully understand why
neutrophils from obese individuals do not show an effective antimicrobial activity. In these
future studies, it will also be important to evaluate neutrophil phagocytosis in cells from
people with different grades of obesity; and to separate obesity studies from diabetes studies.
Although diabetes is a complication of obesity, neutrophils from two individuals with similar
obesity, one with diabetes and another without it, will most likely behave differently.

Another important topic that nowadays persists as very confusing is the role of
NETs in obesity, particularly of how NETs may perpetuate inflammation and how NETs
influence the antimicrobial function. As described above, presently, it is not clear whether
NETs formation is enhanced or reduced in obesity. The discrepancy among the various
studies seems to be related to the different methodological approaches used to evaluate
NETs. Methods detecting NETs components do not necessarily confirm NETosis took place.
Hence, it is imperative to validate the presence of actual NETs not only by detecting the
“NETs markers” (NE, MPO, H3Cit), but also by demonstrating that actual chromatin fibers
decorated with these molecules are present. This is particularly relevant when trying to
detect NETs in circulating blood. In vitro assays with purified neutrophils are more reliable
for detecting NETs. However, even in this case, proper confirmation that NETs are present
is required. Therefore, future studies should use more than just one method to detect NETs
formation. Presence of NETs can alter various aspects of cell behavior and thus generate
different pathological outcomes. It is of great importance to discover what NETs do in
different obesity conditions.

Neutrophil functions may be affected by the metabolic state of the individual. Reports
on how hyperglycemia modify neutrophil responses are contradictory. Future studies on
neutrophil responses should take into consideration the metabolic condition of the person
donating the cells, and also tests in different laboratories should use similar conditions
to assay neutrophils in vitro. For example, including similar glucose concentrations in
all experiments.

Neutrophils are very flexible cells and, clearly, they can display multiple phenotypes [240].
Although not discussed in this review, a subpopulation of neutrophils, the so-called low-
density neutrophils (LDNs), have been reported in many pathological conditions. No infor-
mation on the presence or functionality of this subpopulation of neutrophils exists for obese
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individuals. The possible role of LDNs in obesity is also an interesting line of future research.
Similarly, the influence of the microbiota on neutrophil functions is another topic not much
studied [134,241]. Because microbiota composition is changed during obesity, it will be of
much interest to explore how the microbiota affects neutrophil functions during obesity.
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