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Abstract: Cyclin dependent kinase 1 (CDK1) has long been known to drive the cell cycle and to
regulate the division and differentiation of cells. Apart from its role in mitosis regulation, it also
exerts multiple functions as a protein kinase, including engagement in cell death, possibly via a cell
cycle-independent mechanism. The latter is suggested, since CDK1 re-expression can be found in
non-dividing and terminally differentiated neurons in several neurodegeneration models. However,
the details of if and how CDK1 might be involved in the neurodegenerative condition, retinitis
pigmentosa (RP), which displays progressive vision loss, are unclear. In the present study, we
investigated CDK1 in degenerating RP photoreceptors of the rd1 RP model, including whether there
is a link between this kinase and the cGMP-PKG system, which is regarded as a disease driver.
With experiments performed using either in vivo retinal tissue or in vitro material, via organotypic
retinal explants, our results showed that CDK1 appears in the photoreceptors at a late stage of their
degeneration, and in such a position, it may be associated with the cGMP-PKG network.
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1. Introduction

Cyclin dependent kinase 1 (CDK1), also known as cell division control protein 2, has
been identified within the main components of the cyclin dependent kinase family to drive
the cell cycle in eukaryotic cells. Here, its activation is achieved via the formation of a
cyclin B-CDK1 complex, with the subsequent phosphorylation of associated substrates [1].
Beyond being a mitosis regulator, CDK1 functions in transcriptional regulation, cell polar-
ization, and DNA damage repair, and recently, its participation in cell death has also been
reported [2]. Interestingly, the re-expression of this cell cycle-related kinase has been found
in post-mitotic neurons, which are seen as non-dividing and terminally differentiated cells
in the scenario of cell death [3]. These discoveries raise the possibility that CDK1 may be
implicated in cell death via a cell cycle-independent mechanism.

Despite studies indicating that CDK1 triggers neuron death in several neurodegenera-
tive conditions, our understanding of this protein in retinitis pigmentosa (RP), a group of
inherited degenerative and blinding retinal diseases without any effective treatment, is cur-
rently still at a very early stage. The aim of the present study was to use a mouse-based RP
model to explore if CDK1 may have a place in degenerating RP photoreceptors, where we
focused on the cyclic GMP (cGMP)-protein kinase G (PKG) system, which has been proven
to be at least a partial driver of the disease [4]. The downstream pathway of this system
thus deserves further investigation to reveal more details of the degeneration mechanism.

2. Materials and Methods

Mice, C3H rd1/rd1 (rd1; [5]), and control C3H wild-type (wt), were kept and bred
in-house under standard white cyclic lighting, with free access to food and water, and used
irrespective of sex. Postnatal day (P) 0 was defined as the day of birth of the animal, with
the day following this considered as P1, etc.
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2.1. Organotypic Retinal Explant Culture

Retinal explants were generated from P5 rd1 retinas, as previously described [6].
Culturing membrane inserts with the explants were put into six-well culture plates, with
1.5 mL serum-free medium in each well. Plates were incubated at 37 ◦C with a 5% CO2
atmosphere, and the medium was replaced every two days. No treatment was added
during the culture in the first 2 days. After this, i.e., at a time that equals P7, the cultures
were exposed to 50 µM Rp-8-Br-PET-cGMPS (PKG inhibitor; Cat#: P 007, Biolog Life
Science Institute, Bremen, Germany) for 4 days, with the endpoint equivalent to P11. The
compound was also used at the same concentration for 2 h and 2 days treatment of the
explants, such that no treatment was added during the culture until 2 h and 2 days before
the endpoint of the protocol. These were complemented with their corresponding untreated
controls receiving the same amount of solvent (H2O).

2.2. Cryosection

Retinal tissues from rd1 and wt in vivo at P11, as well as cultured explants from rd1,
were treated with 4% formaldehyde for 2 h, washed for 3 × 15 min in phosphate-buffered
saline (PBS), cryoprotected in PBS + 10% sucrose for overnight at 4 ◦C, and subsequently
with PBS + 25% sucrose for 2 h. After embedding, 12 µm thick retinal cross-sections were
cut and collected from a HM560 cryotome (Microm, Walldorf, Germany). The sections were
stored at −20 ◦C for later usage. Cryosections were then used for immunostaining.

2.3. Immunostaining and TUNEL

For immunostaining, briefly, the cryosections were dried at room temperature for
15 min and rehydrated in PBS. Then, they were blocked with 1% bovine serum albumin
(BSA) + 0.25% Triton X100 + 5% goat serum in PBS at room temperature for 45 min. The
primary antibody anti-CDK1 (Cat#: MA5-17162, ThermoFisher, Waltham, MA, USA) and
anti-acetylated-lysine (Cat#:9441S, Cell Signaling, Danvers, MA, USA) was diluted with 1%
BSA and 0.25% Triton X100 in PBS (PTX) and incubated at 4 ◦C overnight; a no-primary
antibody control ran in parallel. Sections were washed 3 × 5 min each in PTX, and incubated
with a donkey anti-mouse IgG (H+L) highly cross-adsorbed secondary antibody, Alexa
Fluor™ Plus 488 (Cat#A-32766, ThermoFisher), and goat anti-rabbit IgG (H+L) highly cross-
adsorbed secondary antibody, Alexa Fluor™ 594 (Cat # A-11037, ThermoFisher, Waltham,
MA, USA) at 1:800 dilution in PTX. After 3 × 5-min PBS washes, the sections were mounted
with Vectashield DAPI (Vector, Burlingame, CA, USA).

Fluorescent terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL)
assay (12156792910, Roche Diagnostics, Mannheim, Germany) was performed according to
the manufacturer’s instructions, and used on cryosections to evaluate the cell death.

2.4. Microscopy and Image Processing

A Zeiss Imager Z1 Apotome Microscope (Zeiss, Oberkichen, Germany), with a Zeiss
Axiocam digital camera was used for microscopy observations. Image generation and
contrast enhancement were performed identically for all images via the ZEN2 software
(blue edition). The immunostaining was analyzed for staining differences via three sections
each, from three to five animals for each condition, after which the fluorescent intensities of
positive cells randomly distributed within the area of interest (outer nuclear layer, ONL, i.e.,
the photoreceptor layer) were assessed. Fluorescence intensity was captured and analyzed
using ImageJ software (version 1.53a, NIH, Bethesda, MD, USA). The freehand selection
function of the program was used to target the ONL, after which, the fluorescence intensity
was calculated with the measure function. The values of all sections from the same animal
were averaged.
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2.5. Statistical Analysis

The values of CDK1-positive photoreceptor percentages, either in tissues or in explants,
were analyzed using Student’s t-test. Significance was defined as p < 0.05.

3. Results

To determine whether CDK1 is expressed in photoreceptors (PRs) undergoing degen-
eration, we immuno-stained for CDK1 in retina sections from the rd1 RP model and healthy
wt mice. The rd1 is a fast progressive retinal degeneration model, due to a mutation in the
gene for phosphodiesterase 6B (PDE6B), that causes the accumulation of the photoreceptor
cGMP, and thus the activation of the cGMP-PKG system.

At P11, the rd1 outer nuclear layer (ONL) harbors PRs in various stages, from such
that have not yet entered the degeneration process, all the way to cells with increased
cGMP, but that are still recognizable as PRs, to TUNEL-positive cells, and such that are only
present as fragmented cells due to their degeneration [4]. A quantification of CDK1-positive
(CDK+) structures showed many such in the rd1 ONL, while CDK+ cells were absent from
wt ONL (Figure 1A). Similar to other neurodegenerative diseases, this indicated that CDK1
re-expression also happens in RP. Since the ONL is dominated by photoreceptor nuclei, this
in turn suggested that CDK is re-expressed in these structures, which was confirmed by the
CDK1 overlap with the nuclear (DNA) counterstain 4,6-diamidino-2-phenylindole (DAPI).
However, this overlap was not complete because the CDK1 signal also frequently appeared
in the DAPI-negative areas. This indicated that CDK1 was present in some photoreceptor
nuclei that had entered a phase of shrinking and condensing, since DAPI is not able to bind
to DNA in such situations [7].

To further study the CDK1 relation to photoreceptor death, we co-stained for CDK1
and either acetylated lysine or TUNEL positivity. It has previously been shown that
acetylated lysine is absent from RP photoreceptors in a relatively early stage of their
degeneration, due to increased histone deacetylase activity [8]. This is in contrast to TUNEL
staining, which is well-established as an indicator of cells in a late stage of cell death. The
comparison with stainings for acetylated lysine and for TUNEL will therefore be helpful
in establishing whether the expression of a defined protein occurs early or late in the
degeneration process [4]. Figure 1B (see Supplementary Figure S2 for co-staining of CDK1
and arrestin) shows a very limited overlap between CDK+ and acetylated lysine-negative
cells, while the CDK+ and TUNEL overlap was extensive (Figure 1C; see Supplementary
Figure S3 for staining of also P11 wild-type retina). This is compatible with the fact that
CDK1 is expressed to only some extent in photoreceptors while they are still in an early
stage of degeneration, and that the CDK1 expression increases as they progress to the later
stages of degeneration.

The cGMP-PKG system is suggested as a disease driver of retinal degeneration, not
the least in the rd1 model, where the inhibition of PKG has been repeatedly shown to
counteract the degeneration, including in studies based on retinal explants [4,9]. It would
hence be informative to assess whether CDK1 is downstream of the cGMP-PKG activities,
or whether this represents an independent fatal mechanism. We therefore manipulated the
PKG activity via a cGMP analogue with PKG inhibitory actions [10] during organotypic
explant culturing between P5 and P11. The latter involved various pharmacological
treatment lengths of either the final 2 h, 2 days, or 4 days of the culturing period, all
ending at P11, and these were complemented with the retinal explant from the wt as a
control (Supplementary Figures S1 and S4). Compared to the non-treated counterparts, we
could not find any alteration of CDK1 expression after 2 h of PKG inhibition, while it was
evidently less expressed after 2 days and 4 days of treatment (Figure 2). We note that the
effect on CDK1 expression after 2 days of PKG inhibition is in contrast to the lack of effect
on TUNEL staining from the same treatment [6]. This may be related to the fact that while
CDK1 expression according to our overlap analyses is increased late in the degeneration
process, it is still early enough to be affected by the PKG inhibition before this reduces
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TUNEL staining. All in all, this suggested that CDK1 may act as a cGMP-PKG downstream
effector, or it is at least related to this system in an indirect way.
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Figure 1. Evaluation of CDK1 expression within the ONL. (A) Immunostaining of CDK1 (green)
within the ONL of rd1 and wt strains at P11. The dot chart shows the comparison of CDK1-positive
cells within ONL between rd1 and wt (n = 5); (B) Co-staining of CDK1 (green) and TUNEL (red)
within ONL from rd1 retinas, with bar chart showing the distribution of TUNEL-positive and CDK1-
positive cells (n = 5). (C) Co-staining of CDK1 (green) and acetylated lysine (AC, red) within the
ONL from rd1 retinas, with bar chart showing the distribution of CDK1+ cells and AC-negative
cells (n = 5). DAPI (blue) was used as nuclear counterstain. For graphs, bars represent mean ± S.D,
** p < 0.01. ONL = Outer nuclear layer. Arrows point to the CDK1-positive cells and associated
DAPI-positive cells.
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Figure 2. Evaluation of the relation between the cGMP-PKG system and CDK1. Retinal explants from
the rd1 strain were treated with 50 µM Rp-8-Br-PET-cGMPS (PKG inhibitor) for either 2 h, 2 days,
or 4 days towards the end of the culturing, and complemented with their untreated counterparts.
Left panel shows immunostaining of CDK1 (green) within the ONL in rd1 retinal explants with
different lengths of PKG inhibition, as well as their untreated peers. DAPI (blue) was used as
nuclear counterstain. The box chart shows the comparison of CDK1+ photoreceptors between retinal
explants treated with PKG inhibitor and controls at different lengths of treatment (n = 3–6). * p < 0.05.
ONL = Outer nuclear layer.

4. Discussion

A previous study demonstrated the expression of cell cycle proteins, such as cyclin de-
pendent kinase 2 and cyclin dependent kinase 4, in rd1 [11], but details of CDK1 expression
during retinal degeneration have, to our knowledge, not been reported. Here, we show
that CDK1 is expressed in degenerating photoreceptors, and mainly in the later stages of
cell death, which could mean either that CDK1 takes part in the degeneration process, or
that it is involved in a counteractive response. Interestingly, Lv et al. recently showed
that reducing CDK1 in retinal degeneration has protective effects, since CDK1 knock-out
via genetic modification, as well as CDK1 inhibition via intravitreal injection, resulted in
increased photoreceptor survival, albeit not long-lasting [12]. In the light of this, the role of
this kinase during RP deserves more investigation to assess its exact function in the cell
death process.

In addition, our data of lower CDK1 expression after PKG inhibition suggest an
association between this kinase and the cGMP-PKG system, possibly as one of the cGMP-
PKG downstream signaling targets. Further research regarding CDK1 phosphorylation
under cGMP-PKG regulation is needed to establish whether it constitutes a direct substrate
of this system, or is involved in the network via an indirect route. A CDK1 functional
study indicated that CDK1 upregulates mitochondrial respiration to drive the cell cycle,
whose progression requires a large amount of energy [13]. It is universally accepted
that photoreceptors are one of the most energy demanding cells [14], and we recently
proposed that PKG inhibition may alleviate retinal degeneration via the positive regulation
of oxidative phosphorylation [6]. As a speculation, the progressively decreased CDK1
expression within photoreceptors after 2 and 4 days of treatment could then mean that
the oxidative stress of photoreceptors was to some extent alleviated after PKG inhibition,
relieving CDK1 from its function to upregulate mitochondrial respiration.

All in all, our study suggests that CDK1 has functions during retinal degeneration,
and in particular, in the late stages of photoreceptor death. Future studies may be directed
towards the possibility that CDK1 counteracts oxidative stress via the increase of respiration
as part of the cGMP-PKG network.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11142143/s1. Figure S1. Co-staining for CDK1 and TUNEL
in a rd1 retinal explant at a timepoint equivalent to P11. Figure S2. Co-staining for CDK1 and arrestin
within ONL from rd1 model. Figure S3. Evaluation of acetylated lysine (AC, red) expression within
ONL from wt and its rd1 counterpart at P11, and DAPI (blue) was used as a nuclear counterstain.
Figure S4. Immunostaining of CDK1 expression (green) within ONL of a P11 retinal explant from the
wt strain (as a control to its rd1 counterpart), and DAPI (blue) was used as a nuclear counterstain.
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