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Abstract: NLRP3 inflammasome-dependent pyroptosis has been implicated in liver fibrosis progres-
sion. However, the definite intrahepatic cell types that undergo pyroptosis and the underlying mech-
anism as well as the clinical importance remain unclear. Here, augmented levels of pyroptosis-related
indicators GSDMD, IL-1β, and IL-18 were verified in both liver fibrosis patients and CCl4-induced
fibrotic mouse model. Confocal imaging of NLRP3 with albumin, F4/80 or α-SMA revealed that
enhanced NLRP3 was mainly localized to kupffer cells (KCs), indicating that KCs are major cell
types that undergo pyroptosis. Targeting pyroptosis by inhibitor MCC950 attenuated the severity
and ameliorated liver function in fibrosis models. In addition, elevated S100A8 in liver fibrosis
patients was correlated with pyroptosis-related indicators. S100A8 stimulated pyroptotic death of
macrophages, which resulted in activation of human hepatic stellate cell line LX-2 cells and increased
collagen deposition. Mechanistically, S100A8 activated TLR4/NF-κB signaling and upregulated
its target genes NLRP3, pro-IL-1β, and pro-IL-18 expression, and induced reactive oxygen (ROS)
abundance to activate NLRP3 inflammasome, finally leading to pyroptotic cell death in macrophages.
More importantly, circulating GSDMD had the optimal predicting value for liver fibrosis progres-
sion. In conclusion, S100A8-mediated NLRP3 inflammasome-dependent pyroptosis by TLR4/NF-κB
activation and ROS production in macrophages facilitates liver fibrosis progression. The identified
GSDMD has the potential to be a biomarker for liver fibrosis evaluation.

Keywords: NLRP3; S100A8; GSDMD; liver fibrosis

1. Introduction

Hepatic fibrosis is a wound-healing response characterized by the accumulation of
extracellular matrix (ECM) following excessive cell death and chronic liver inflammation
due to a variety of etiological factors, including virus infection, alcohol abuse, non-alcoholic
steatohepatitis, parasitemia, metabolic disorders, and drugs [1,2]. Early stage liver fibrosis
can be stopped or reversed by removing the insults that triggered liver damage and
inflammation [3,4]. However, in many cases, liver fibrosis progresses to cirrhosis over time
and increases the risk of liver failure and hepatocellular carcinoma [1]. At present, serology
examination represents one of the frequently used methods for the diagnosis and evaluation
of liver fibrosis, but several limitations still exist, including low sensitivity and specificity,
inaccurate disease assessment, and even misdiagnosis. In addition, despite decades of
efforts by clinical research, there is no effective therapy for liver fibrosis. Therefore, further
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elucidating the pathogenesis of liver fibrosis and identifying novel biomarkers that closely
reflect disease progression are urgently needed.

NLRP3 (NACHT, LRR, and PYD domains-containing protein 3, cryoporin) inflammasome-
dependent pyroptosis, a newly identified inflammatory cell death, participates in multiple
diseases, including infection, metabolic disorders, and cancer [5,6]. It starts with the recog-
nition of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs) by extracellular pattern recognition receptors (PRRs) leading to enhanced
transcription of NLRP3, pro-IL (interleukin)-1β, and pro-IL-18, continues with the activa-
tion of NLRP3 and caspase-1 by multiple intracellular stimulus, and ends with gasdermin
D (GSDMD)-mediated formation of membrane pores and the maturation and release of
proinflammatory cytokines IL-1β and IL-18 [7]. Due to the proinflammatory property of
pyroptosis, the role of uncontrolled pyroptosis caused by aberrant inflammasome activation in
inflammation-associated diseases has received considerable attention. Pyroptosis has recently
been reported to be associated with pulmonary, renal, and cardiovascular fibrosis [8–10].
More importantly, growing evidence suggests a close correlation between NLRP3 inflam-
masome activation as well as its downstream effectors and liver fibrosis progression. One
study reported that hyperactivation of the NLRP3 inflammasome in mice results in hepatocyte
pyroptotic death, severe liver inflammation, and fibrosis [11]. Moreover, in a mouse model
of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, NLRP3 inflammasome
activation is required for liver inflammation and fibrosis [12,13]. In addition, an in vitro
mechanistic study showed that the pyroptosis products IL-1β and IL-18 regulate the activation
of hepatic stellate cells (HSCs) and facilitate the development of liver fibrosis [14]. Notably,
patients with liver cirrhosis also exhibited elevated levels of circulating GSDMD, IL-1β, and
IL-18 in our previous clinical research [15]. Therefore, NLRP3 inflammasome-dependent
pyroptosis may serve as a crucial mechanism for the development of liver injury and fibrosis.
Nevertheless, the primary occurrence of NLRP3 inflammasome-dependent pyroptosis in
which type of cells (hepatocytes, KCs or HSCs), the detailed molecular mechanism regard-
ing how pyroptosis occurs, and its clinical importance during liver fibrosis progression, are
still unclear.

S100A8 and S100A9, belonging to the S100 protein family (S100s), are secreted mainly
by inflammatory, tumor, and stromal cells exhibiting proinflammatory functions. As two
DAMPs, S100A8 and S100A9 have been implicated as inflammation triggers participating in
the progression of multiple inflammatory diseases, including rheumatoid arthritis [16], in-
flammatory bowel [17], and lung disease [18]. Recently, S100A8 and S100A9 were reported
to activate NLRP3 inflammasome signaling to promote the pathogenesis of myelodysplastic
syndromes [19] and airway obstructive diseases [20]. It is worth noting that our previous
study demonstrated an elevated S100A9 in liver fibrosis [21]. Given this, we hypothesized
that S100A8 and/or S100A9 may regulate NLRP3 inflammasome-dependent pyroptosis to
establish a proinflammatory microenvironment, thereby potentiating the progression of
liver fibrosis.

In the present study, the definite cell types that undergo pyroptosis and the underlying
mechanism as well as the clinical importance were investigated, aiming to further reveal
the pathogenesis of liver fibrosis and identify novel markers and intervention targets.
Here, we observed that the macrophage was the major cell type that underwent NLRP3
inflammasome-dependent pyroptosis in liver fibrosis, which could be mediated by S100A8-
induced Toll-like receptor 4 (TLR4)/NF-κB activation and ROS generation. Furthermore,
inhibiting NLRP3 inflammasome-dependent pyroptosis effectively attenuated liver injury
and fibrosis severity in a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model.
More importantly, the pyroptosis-related indicator GSDMD had a high predictive value for
the onset and progression of liver fibrosis.
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2. Materials and Methods
2.1. Human Samples

A total of eighty-nine patients with liver fibrosis were enrolled in the current study
between March 2020 and December 2021 at the Second Affiliated Hospital of Chongqing
Medical University. Diagnosis was primarily established by histology as well as other
methods, such as serological, imaging examination, and medical history. Etiologies, such
as viral infection, alcohol consumption, and autoimmunity were determined according
to serological and histological findings. The sections for liver histology were examined
independently by two experienced pathologists who were unaware of the clinical status.
Liver fibrosis grading was assessed according to Batts-Ludwing scores (Fibrosis F0 to
F4) [22]. Additionally, sixty age- and gender-matched healthy volunteers who did not
have evidence of liver diseases or other chronic disorders were enrolled as healthy controls
(HCs). Moreover, five normal liver samples were obtained from healthy controls who
underwent liver biopsy to exclude malignancy. The peripheral blood was centrifuged for
10 min to obtain serum. Then, the serum was stored at −80 ◦C for further examination.
This study protocol was in accordance with the ethical guidelines of the Declaration of
Helsinki Principles. Informed written consent was obtained from all patients and the study
was approved by the Institutional Ethics Committee at the Second Hospital affiliated with
Chongqing Medical University (No. 2020-65). Patient characteristics are summarized in
Table 1.

Table 1. The characteristics of enrolled individuals.

Parameters Liver fibrosis HCs

Serum/tissue
Specimen
(n = 89)

Serum specimen (n = 60) Tissue
Specimen (n = 5)

Gender
Male n (%) 47 (52.81) 34 (56.66) 3 (60)
Fale n (%) 42 (47.19) 26 (43.33) 2 (40)

Age (years) (IQR) 57 (12.75) 57 (14.5) 59 (17.5)
Aetiology

Viral hepatitis n (%) 42 (47.19) NA NA
Cholestatic

/Autoimmune n (%) 25 (28.08) NA NA

Alcohol n (%) 16 (17.97) NA NA
Others n (%) 6 (6.74) NA NA

Stage of fibrosis (F)
F0 n (%) 9 (10.11) NA NA
F1 n (%) 10 (11.23) NA NA
F2 n (%) 20 (22.47) NA NA
F3 n (%) 29 (32.58) NA NA
F4 n (%) 21 (23.59) NA NA

Abbreviations: IQR, interquartile range; HCs, healthy controls; NA, not applicable.

2.2. CCl4-Induced Liver Fibrosis Mouse Models

Herein, 6 to 8-week-old male C57BL/6 mice were randomly grouped. For toxic liver
fibrosis, they were given intraperitoneal (i.p.) injections of CCl4 (2.5 mL/kg body weight,
dissolved in olive oil at a ratio of 1:5) or vehicle (olive oil) (O108686, Aladdin, Fengxian,
Shanghai, China) two times per week for 4, 6 or 8 weeks (n = 5/group). The mice were
sacrificed at 72 h after the final CCl4 injection.

To assess the role of NLRP3 signaling in the mouse model of liver fibrosis, 6 to 8-
week-old male mice were randomly divided into three groups. The CCl4 group were given
intraperitoneal (i.p.) injections of CCl4 (2.5 mL/kg body weight, dissolved in olive oil at
a ratio of 1:5). The (CCl4+MCC950) group were injected (i.p.) with MCC950 (10 mg/kg
body weight in 0.9% NaCl) (CP-456773, Selleck, Houston, TX, USA) every second day at
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the same time as the CCl4 injection up to 8 weeks, while the control group (CCl4+saline)
was administrated a comparable volume of 0.9% NaCl (n = 5/group). The mice were
sacrificed at 72 h after the final CCl4 injection. All animal experiments were approved
and conducted in accordance with the guidelines established by the Hospital Animal Care
and Use Committee for Laboratory Animal Research in the Second Affiliated Hospital of
Chongqing Medical University (No. 2020-65).

2.3. Mouse Serum and Liver Samples Preparation

At the end of the treatment, all mice were anesthetized and the blood samples were
taken via cardiac puncture. The mouse blood was centrifuged at 3500× g rpm at 4 ◦C for
15 min and then for 10 min to remove any remaining cellular debris. Finally, the serum was
stored at −80 ◦C for further examination. Then, the liver was harvested. A representative
section was fixed in 4% paraformaldehyde for 24 h and embedded in paraffin, and the rest
of the liver tissue was stored in liquid nitrogen.

2.4. Analysis of Liver Function, Liver Pathology, and Fibrosis

The serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and
total proteins (TP) were assayed by the Autoanalyzer Hitachi 7600-110. H&E staining was
used to assess the pathological morphology of the liver. Sirius Red staining was used to
demonstrate collagen deposition. The stained sections were observed and photographed
under a light microscope (Nikon E400, Chiyoda, Tokyo, Japan).

2.5. Immunohistochemical Staining

The formalin-fixed, paraffin-embedded human and mouse liver tissue sections were
subjected to IHC staining. Briefly, the sections were deparaffinized, hydrated, and subjected
to antigen retrieval by incubating the slides in a pressure cooker for 15 min in 0.01 M citrate
buffer and then incubated with 0.3% hydrogen peroxide (H2O2) in methanol for 10 min to
block endogenous peroxidase activity. Then, the sections were incubated with primary an-
tibodies against α-smooth muscle actin (α-SMA) (14395-1-AP, Proteintech, Wuhan, Hubei,
China), NLRP3 (19771-1-AP, Proteintech, Wuhan, Hubei, China), GSDMD (20770-1-AP,
Proteintech, Wuhan, Hubei, China), IL-1β (16806-1-AP, Proteintech, Wuhan, Hubei, China),
S100A8 (ab92331, Abcam, Cambridge, England, UK) or S100A9 (ab63818, Abcam, Cam-
bridge, England, UK) overnight at 4 ◦C. The cells were washed with PBS and stained with
anti-rabbit IHC Secondary Antibody Kit (SP-9001, Zhongshan Golden Bridge, Haidian,
Beijing, China). Finally, the sections were visualized with 0.05% 3,3-diamino-benzidine
tetrachloride (DAB) until the desired brown reaction product was obtained. The stained
sections were observed and photographed under a light microscope (Nikon E400, Chiyoda,
Tokyo, Japan).

2.6. Immunofluorescence Staining

The formalin-fixed, paraffin-embedded human and mouse liver tissue sections were
processed for immunofluorescence staining. In brief, the liver sections were deparaffinized,
hydrated, subjected to antigen retrieval, permeabilization, and serum blocking, and then
incubated with primary antibody overnight at 4 ◦C for double immunofluorescence staining.
The primary antibodies used were as follows: Rabbit anti-NLRP3 (19771-1-AP, Proteintech,
Wuhan, Hubei, China) with rat anti-albumin (MAB1455-SP, R&D, Minneapolis, MN, USA)
or with mouse anti-F4/80 (14-4801-85, Invitrogen, Carlsbad, CA, USA), rat anti-NLRP3
(MAB7578-SP, R&D, Minneapolis, Minnesota, USA) with rabbit anti-α-SMA (14395-1-AP,
Proteintech, Wuhan, Hubei, China). Then, the sections were washed three times with PBS.
Alexa Fluor 647-conjugated goat anti-rabbit secondary antibody (bs-0295G-AF647, Bioss,
Tongzhou, Beijing, China) and Alexa Fluor 488-conjugated goat anti-mouse secondary
antibody (bs-0296G-AF488, Bioss, Tongzhou, Beijing, China) or goat anti-rat secondary
antibody (bs-0293G-AF488, Bioss, Tongzhou, Beijing, China), Alexa Fluor 647-conjugated
goat anti-rat secondary antibody (bs-0293G-AF647, Bioss, Tongzhou, Beijing, China) and
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Alexa Fluor 488-conjugated goat anti-rabbit secondary antibody (bs-0295G-AF488, Bioss,
Tongzhou, Beijing, China) were used for 1 h at room temperature in the dark. Then, the
sections were washed with PBS three times, and nuclei were stained with DAPI for 5 min.
The sections were washed with PBS three times and mounted with antifade mounting
medium (Beyotime, Songjiang, Shanghai, China). Finally, the sections were observed under
a confocal microscope (Lecia, Weztlar, Germany).

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

Protein of interest in serum or cell supernatant was detected by ELISA according
to the manufacturer’s instructions. Detailed ELISA kits were as follows: Mouse S100A8
(E-EL-M3048, elabscience, Wuhan, Hubei, China), mouse IL-1β (VAL601, Novus, Littleton,
CO, USA), mouse IL-18 (E-EL-M0730c, elabscience, Wuhan, Hubei, China), mouse GSDMD
(JL46371-96T, JiangLai, Baoshan, Shanghai, China), human S100A8 (E-EL-H1289c, elab-
science, Wuhan, Hubei, China), human IL-1β (Mengbio, Shapingba, Chongqing, China),
human IL-18 (Mengbio, Shapingba, Chongqing, China), and human GSDMD (Mengbio,
Shapingba, Chongqing, China).

2.8. Preparation of Recombinant Proteins

The pGST-moluc and pGST-moluc-S100A8 have been described previously [23]. Briefly,
the two plasmids were cloned into E. coil (BL21) by calcium chloride transformation. Then,
0.1 mM isopropylthio-β-D-galactoside was used to induce the expression of GST and GST-
hS100A8 protein for 8 h at 14 ◦C. After incubation, the bacteria were centrifuged at 5000× g
for 10 min and the pellet was resuspended in PBS supplemented with protease inhibitor
and 0.1% Triton X-100 and lysed by sonication. Then, the supernatant was collected and
incubated with glutathione-sepharose 4B beads (Amersham Biosciences) for 3 h at 4 ◦C.
Recombinant GST-hS100A8 (rhS100A8) or GST bound to the beads was eluted by an elution
buffer with reduced glutathione on ice. Finally, the recombinant rhS100A8 or control GST
protein was filtered with a 0.22 µm membrane and stored at −80 ◦C.

2.9. Cell Culture and In Vitro Treatment

Human monocyte THP-1 cells were cultured in 5% CO2 at 37 ◦C in 1640-RPMI medium
supplemented with 10% fetal bovine serum (FBS, HyClone, Logan, UT, USA), 100 U/mL
penicillin, and 100 µg/mL streptomycin (HyClone). THP-1 cells were stimulated with PMA
(50 µg/mL) (Sigma, Saint Louis, MO, USA) for 4 h to differentiate them into macrophages,
then washed two times with PBS and maintained in fresh medium for further experiments.

To induce pyroptosis in THP-1 differentiated macrophages, high dose of lipopolysac-
charide (LPS) (1 µg/mL, L2630, Sigma-Aldrich, Saint Louis, MO, USA) was added to
the culture media. In certain experiments, THP-1 differentiated macrophages were stim-
ulated with 2, 5 or 10 µg/mL rhS100A8 for 24 h to extract RNA or for 48 h to extract
protein. To explore the role of NF-κB signaling and ROS production in S100A8-induced
pyroptosis, THP-1 differentiated macrophages were treated with the NF-κB inhibitor BAY
11-7082 (10 µM, Beyotime, Songjiang, Shanghai, China) or NADPH oxidase (NOX) inhibitor
diphenylene iodonium (DPI, 10 µM, S8639, Selleck, Houston, Texas, USA) for 1 h prior to
rhS100A8 stimulation (5 µg/mL). To investigate the endogenous PRR of S100A8, THP-1 dif-
ferentiated macrophages were pretreated with the TLR4 inhibitor TAK-242 (10 µM, S7455,
Selleck, Houston, Texas, USA) or the receptor for advanced end products (RAGE) inhibitor
FPS-ZM1 (10 µM, S8185, Selleck, Houston, Texas, USA) for 1 h and then stimulated with
rhS100A8 (5 µg/mL).

The human hepatic stellate cell line LX-2 was maintained in 5% CO2 at 37 ◦C in
Dulbecco’s modified Eagle medium (DMEM, Gibco, Grand Island, NY, USA) with 10%
fetal bovine serum (FBS, HyClone, Logan, UT, USA), 100 U/mL penicillin, and 100 µg/mL
streptomycin (HyClone, Logan, UT, USA). LX-2 cells were exposed to conditioned media
(CM) from rhS100A8-treated THP-1 macrophages and an equal volume of new DMEM
medium for 24 h to extract RNA or for 48 h to extract protein. To confirm that macrophage
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pyroptosis triggers the activation of HSCs, LX-2 cells were treated with the conditioned
medium from THP-1 macrophages exposed to 5 µ/mL of rhS100A8 with or without 1 h of
MCC950 pretreatment (1 µM).

2.10. RNA Extraction and Quantitative Real-Time PCR

Total cellular RNA was isolated using Trizol (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions. Briefly, 1 µg of total RNA was reverse-transcribed to
cDNA via an Evo M-MLV RT mix kit with gDNA clean (AG11728, Accurate Biotechnology,
Changsha, Hunan, China) according to the manufacturer’s protocol. The mRNA levels
of NLRP3, pro-IL-1β, pro-IL-18, collagen I (COLIA1), α-SMA, and transforming growth
factor-β (TGF-β) were analyzed with the CFX96 real-time PCR detection system (Bio-Rad,
Richmond, CA, USA) using SYBR Green dye (Biomake, Houston, TX, USA). Primer se-
quences are summarized in Table 2. GAPDH was used as a reference control. The fold
changes in gene expression were calculated by the 2-∆∆CT method.

Table 2. Sequence of primers used for quantitative RT-PCR.

Genes Forward (5′-3′) Reverse (5′-3′)

NLRP3 CTTCTCTGATGAGGCCCAAG GCAGCAAACTGGAAAGGAAG
pro-IL-1β TCCAGGGACAGGATATGGAG TCTTTCAACACGCAGGACAG
pro-IL-18 AAGATGGCTGCTGAACCAGT GAGGCCGATTTCCTTGGTCA

Col1a1 AAGAGTGGAGAGTACTGGATT GTTCTTGCTGATGTACCAGT

α-SMA CGTGGGTGACGAAGCACAG GGTGGGATGCTCTTCAGGG
TGF-β GGCCAGATCCTGTCCAAGC GTGGGTTTCCACCATTAGCAC

GAPDH CCACTCCTCCACCTTTGAC ACCCTGTTGCTGTAGCCA
Abbreviations: NLRP3, nod-like receptor protein-3; COL1A1, collagen I; α-SMA, α-smooth muscle actin; TGF-β,
transforming growth factor beta; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

2.11. Western Blot

Treated cells were collected and lysed in RIPA lysis buffer containing phosphatase
and protease inhibitors. The BCA protein assay (abs9232, Absin, Pudong New District,
Shanghai, China) was used to assess the protein concentrations. Samples containing equal
amounts (30 µg) of proteins were separated by 10% SDS-PAGE and then transferred to
polyvinylidene fluoride membranes. Then, the membranes were blocked with 5% bovine
serum albumin and incubated overnight at 4 ◦C with primary antibody against NLRP3
(19771-1-AP, Proteintech, Wuhan, Hubei, China), GSDMD (20770-1-AP, Proteintech, Wuhan,
Hubei, China), IL-1β (16806-1-AP, Proteintech, Wuhan, Hubei, China), cleaved caspase-1
(4199T, Cell Signaling Technology, Boston, MA, USA), α-SMA (14395-1-AP, Proteintech,
Wuhan, Hubei, China), COL1A1 (66761-1-lg, Proteintech, Wuhan, Hubei, China), TGF-β
(MAB1835-SP, R&D, Minneapolis, Minnesota, USA), total NF-κB p65 (10745-1-AP, Protein-
tech, Wuhan, Hubei, China), phospho-NF-κB p65 (p-p65) (3033, Cell Signaling Technology,
Boston, Massachusetts, USA), total IKKα (db2315, diagbio, Hangzhou, Zhejiang, China),
phospho-IKKα (p-IKKα) (2697, Cell Signaling Technology, Boston, MA, USA), and β-actin
(Zoonbio Biotechnology, Nanjing, Jiangsu, China). The next day, after incubation with
goat-anti-rabbit or goat-anti-mouse secondary antibodies, the samples were conjugated
with horseradish peroxidase for 1 h at 37 ◦C, and the immune complexes were detected by
enhanced chemiluminescence (ECL, Millipore, Boston, MA, USA).

2.12. Flow Cytometry

The production of ROS in THP-1 macrophages was measured using the dichlorodihy-
drofluorescein diacetate (H2DCFDA) probe (S9687, Selleck, USA) according to the manu-
facturer’s recommendation. In brief, THP-1 macrophages were stimulated with rhS100A8
(5 µg/mL) or the control protein GST (5 µg/mL) for 6 h. THP-1 macrophages were col-
lected and washed three times with serum-free medium, and subsequently incubated in
serum-free medium containing 10 µM H2DCFDA probe at 37 ◦C for 30 min in the dark.
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Then, the media containing H2DCFDA was removed and washed two times with PBS,
and the fluorescence intensity of the cells was analyzed by flow cytometry (CytoFLEX).
Cells that had been incubated without H2DCFDA were used as negative controls. To
detect pyroptotic death in THP-1 macrophages that had been treated with rhS100A8 or
control protein GST for 24 h, FLICA 660-YVAD-FMK (FLICA 660 in vitro Active Caspase-1
Detection Kit; ImmunoChemistry Technologies, Davis, CA, USA) was used according to
the manufacturer’s instructions and propidium iodide (PI) was used to mark cells with
membrane pores (Life Technologies, Carlsbad, CA, USA). Flow cytometry measurements
were performed three times for each treatment. The mean fluorescence intensity was
quantified usingFlowJo v10.8.1 (FlowJo LLC, Ashland, OR, USA).

2.13. Statistical Analysis

All data were analyzed using SPSS 17.0 (IBM Corp., Armonk, NY, USA). Human data
were not normally distributed continuous variables and were expressed as the median and
interquartile range (IQR). Animal data were expressed as the mean ± standard deviation
(SD). Statistical analysis of serum levels of GSDMD, IL-1β, and IL-18 in liver fibrosis patients
was determined by the Kruskal-Wallis or Mann-Whitney test. Correlation coefficients (r)
were calculated using Spearman correlation. ROC curves were generated to classify patients
into different groups, as well as to evaluate the predictive power of serum GSDMD, IL-1β,
and IL-18 levels via the calculation of AUC. Differences between multiple groups in the
in vitro cell experiments were evaluated using a t-test or one-way analysis of variance. A
p-value < 0.05 was considered statistically significant.

3. Results
3.1. NLRP3 Inflammasome-Dependent Pyroptosis Occurs in Liver Fibrosis

Herein, we examined the pyroptosis-related indicators NLRP3, GSDMD, IL-18, and IL-
1β. Immunohistochemical (IHC) analysis revealed that the expression of hepatic GSDMD,
IL-1β, and IL-18 was significantly upregulated in patients with liver fibrosis compared
to HCs (Figures 1A and S1A). Moreover, serological data of GSDMD, IL-1β, and IL-18
supported this IHC result (Figure 1B–D). To further investigate in which types of cells (hepa-
tocytes, KCs, or HSCs) NLRP3 inflammasome-dependent pyroptosis mainly occurs during
the process of liver fibrosis, we examined the co-location of NLRP3 with the hepatocyte
marker albumin, the KC marker F4/80 or the HSC marker α-smooth muscle actin (α-SMA)
in human fibrotic liver tissues. We observed the enhanced expression of NLRP3 in patients
with liver fibrosis compared to HCs and NLRP3 was mainly localized to hepatocytes and
KCs but not HSCs, especially KCs, indicating that KCs are major cell types that undergo
pyroptosis (Figure 1E). Then, we further validated the above results with a CCl4-induced
liver fibrosis mouse model (Figure 1F). H&E, Sirius Red, and α-SMA staining proved
that we successfully established a mouse model of liver fibrosis (Figures 1G and S1B).
Moreover, consistent with the human data, GSDMD and IL-1β expression were signif-
icantly increased in the liver from the liver fibrosis mouse model compared with the
control (Figures 1G and S1B). Furthermore, serum levels of GSDMD, IL-18, and IL-1β
were markedly enhanced in mouse models of liver fibrosis (Figure 1H–J). As expected,
double immunolabelling in mouse liver sections also indicated that the activation of NLRP3
occurred mainly in KCs (Figure 1K). To investigate the effects of macrophage pyroptosis on
the activation of HSCs and liver fibrosis in vitro, we induced pyroptotic death in THP-1
macrophages using the pyroptosis inducer lipopolysaccharide (LPS) and collected the CM
to treat LX-2 cells. The protein levels of IL-1β in the cells and supernatants were confirmed
(Figure 1M). The protein levels of HSC activation and the collagen deposition markers
COLIA1, α-SMA, and TGF-β were significantly higher in LPS-CM-cultured LX-2 cells than
in the control group (Figure 1N).
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Figure 1. NLRP3 inflammasome-dependent pyroptosis occurs in liver fibrosis. (A) IHC staining
for GSDMD, IL-1β, and IL-18 in liver sections from liver fibrosis patients and HCs. Scale bar:
40 µm. (B–D) ELISA analyses of serum levels of GSDMD (B), IL-1β (C), and IL-18 (D) in liver
fibrosis patients (n = 89) and HCs (n = 60). (E) Representative immunofluorescence images of NLRP3
(red) and albumin (hepatocyte marker) (top), F4/80 (KC marker) (middle) or α-SMA (HSC marker)
(bottom) (green) from the human fibrotic liver tissues. Scale bar: 40 µm. (F) Schematic diagram of
the study. Liver fibrosis was induced by CCl4 injection for 8 weeks. (G) Representative mouse liver
histology of H&E, Sirius Red staining, and IHC staining for α-SMA, GSDMD, and IL-1β. Black scale
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bar: 100 µm; Red scale bar: 50 µm. (H–J) ELISA analyses for serum levels of GSDMD (H), IL-1β
(I), and IL-18 (J) in CCl4 group mouse (n = 5) and vehicle group mouse (n = 5). (K) Representative
immunofluorescence images of NLRP3 (red) and albumin (hepatocyte marker) (top), F4/80 (KC
marker) (middle) or α-SMA (HSC marker) (bottom) (green) from the 8-week CCl4-treated mouse liver.
The vehicle group mouse liver was used as a control. Scale bar: 40 µm. (L) The qRT-PCR analysis
for mRNA levels of IL-1β in THP-1 macrophages treated with LPS to induce pyroptosis. (M) ELISA
analysis for IL-1β expression in supernatants from THP-1. (N) Western blot analysis of COL1A1,
α-SMA, and TGF-β expression in LX-2 cells which were exposed to CM from LPS-treated THP-1
macrophages. The protein expression was quantified by densitometry and normalized to β-actin and
are shown as fold changes relative to the control group (right panel). ** p < 0.01, *** p < 0.001.

3.2. Inhibition of NLRP3 Inflammasome-Dependent Pyroptosis Alleviates Liver
Fibrosis Progression

Given that NLRP3 inflammasome-dependent pyroptosis was involved in the liver
fibrosis, we used a specific molecular inhibitor of NLRP3 (MCC950) to treat the liver fibrosis
mouse model (Figure 2A), aiming to explore whether targeting the NLRP3 inflammasome-
dependent pyroptosis can attenuate liver fibrosis progression. IHC analysis demonstrated
that the MCC950 treatment significantly decreased the expression of pyroptosis-related
indicators NLRP3, GSDMD, and IL-1β in the fibrotic livers (Figures 2B and S1C). Im-
portantly, the MCC950 treatment reduced liver injury and fibrosis severity, as analyzed
by histology, collagen, and α-SMA via HE, Sirius Red, and IHC staining, respectively
(Figures 2B and S1C). Serum ALT and AST levels in the serum were notably lower in the
MCC950-treated group than in the saline-treated group, while the serum levels of total
proteins (TP) were significantly increased in the MCC950-treated group compared to the
saline-treated group, indicating an improvement in liver function after MCC950 treatment
(Figure 2C–E).

3.3. DAMP S100A8 along with NLRP3 Inflammasome-Dependent Pyroptosis Is Positively Related
to the Progression of Liver Fibrosis

Hepatic inflammation is the main initiator of liver injury and fibrosis. As two members
of DAMPs, S100A8 and S100A9, can serve as triggering factors and amplifiers of inflam-
mation [24], and we have previously found that S100A9 increases in liver fibrosis [21].
Therefore, we further addressed their relationship with hepatic inflammation and fibro-
sis. IHC and enzyme-linked immunosorbent assay (ELISA) results showed that S100A8
and S100A9 were both significantly elevated in liver fibrosis patients compared to HCs
(Figure 3A–C and Figure S1D). Notably, S100A8 increased more dramatically than S100A9
during the progression of liver fibrosis from fibrosis F0 to F4 (Figure 3D). Additionally, the
levels of the pyroptosis-related indicators GSDMD, IL-18, and IL-1β were consistent with
those of S100A8, exhibiting a gradual elevation from F0 to F4 (3E–G). Moreover, S100A8
levels were found to be positively correlated with the pyroptosis-related indicators GSDMD,
IL-18, and IL-1β levels in LF patients (Figure 3H–J). Then, we conducted CCl4-induced
mouse liver fibrosis models (4/6/8 weeks) to further verify the results mentioned above.
The progression of liver fibrosis was proven by H&E, Sirius Red, and α-SMA staining from
4 to 8 weeks (Figure 3K). Staining signals of the pyroptosis mediator NLRP3 alone with
S100A8 were gradually increased with the aggravation of liver fibrosis in mouse models
from 4 to 8 weeks (Figure 3K and Figure S1E,F). Similar to the human data, the increase in
S100A9 was not dramatic during the progression (Figure 3K and Figure S1G). Furthermore,
serum S100A8 and pyroptosis-related indicators GSDMD, IL-1β, and IL-18 levels were all
gradually augmented during the progression of the liver fibrosis model (Figure 3L–O).
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Figure 2. Inhibition of NLRP3 inflammasome-dependent pyroptosis alleviates liver fibrosis progres-
sion. (A) Experimental protocol of NLRP3 inhibitor MCC950 or saline application based on CCl4
injection in mice. (B) Representative liver histology of H&E and Sirius Red staining. The expression
of α-SMA, NLRP3, GSDMD, and IL-1β was determined by immunohistochemistry. Black scale bar:
100 µm; Red scale bar: 50 µm. (C–E) Serum levels of ALT, AST, and TP were measured. * p < 0.05.

3.4. S100A8-Mediated NLRP3 Inflammasome-Dependent Pyroptotic Macrophage Death Amplifies
the Activation of Human Hepatic Stellate Cells

DAMPs can activate the NLRP3 inflammasome and trigger persistent inflammation,
contributing to fibrogenesis of the kidney [25] and lung [26]. Here, we further explored
whether S100A8 can promote liver fibrosis by inducing NLRP3 inflammasome-dependent
pyroptotic death in macrophages. The mRNA levels of NLRP3, pro-IL-1β, and pro-IL-18 for
priming the NLRP3 inflammasome were upregulated by various concentrations of recombi-
nant human GST-hS100A8 (rhS100A8) protein (2, 5, 10 µg/mL) treatment (Figure 4A–C). In
addition, rhS100A8 (5 µg/mL) markedly increased the expression of proteins downstream
of NLRP3 inflammasome activation, including cleaved GSDMD (GSDMD p30), cleaved
caspase-1, and bioactive IL-1β in THP-1 macrophages (Figure 4D), as well as elevated
IL-1β levels in supernatants (Figure S2). Moreover, the rhS100A8 treatment resulted in a
significant increase in the number of proptotic THP-1 macrophages detected by caspase-
1/PI double staining using FCM (Figure 4E). These data suggested that S100A8 could
induce the activation of NLRP3 inflammasome signaling and finally lead to pyroptotic cell
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death in THP-1 macrophages. Furthermore, to determine whether pyroptoic cell death in
macrophages induced by S100A8 was involved in HSC hyperactivation, LX-2 cells were
treated with CM from rhS100A8-stimulated THP-1 macrophages, and the fibrotic markers
TGF-β, COLIA1, and α-SMA were analyzed. The mRNA and protein levels of the COL1A1,
α-SMA, and TGF-β in LX-2 cells were elevated by CM from various concentrations of
rhS100A8-treated THP-1 macrophages (Figure 4F–I), which could be blocked by the NLRP3
inhibitor MCC950 (Figure 4J).
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Figure 3. DAMP S100A8 along with NLRP3 inflammasome-dependent pyroptosis is positively
related to the progression of liver fibrosis. (A) Representative IHC images for S100A8 and S100A9
in liver sections from liver fibrosis patients and HCs. (B,C) ELISA analyses for serum levels of
S100A8 and S100A9 in liver fibrosis patients and HCs. (D) Comparison of serum S100A8 and S100A9
levels in liver fibrosis patients with different phases. (E–G) Distribution of serum GSDMD (E), IL-1β
(F), and IL-18 (G) levels in liver fibrosis patients with different phases (F0–4). (H–J) Correlation
between serum S100A8 levels and GSDMD (H), IL-1β (I) or IL-18 (J) levels in liver fibrosis patients.
(K) Representative mouse liver morphology and staining with H&E and Sirius Red. (L–O) IHC
staining of mouse liver sections for NLRP3, S100A8, and S100A9. Black scale bar: 100 µm; Red scale
bar: 50 µm. ELISA analyses for serum levels of S100A8 (L), GSDMD (M), IL-1β (n), and IL-18 (O) in
4-, 6-, and 8 week-mouse models of liver fibrosis. *** p < 0.001.
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NLRP3 Inflammasome-dependent Pyroptotic Death in Macrophages 

Figure 4. S100A8-mediated NLRP3 inflammasome-dependent pyroptotic macrophage death amplify
the activation of human hepatic stellate cells. (A–C) The qRT–PCR analysis for the mRNA levels of
NLRP3, pro-IL-1β, and pro-IL-18 in THP-1 macrophages treated with 0, 2, 5 or 10 µg/mL rhS100A8
or 5 µg/mL GST for 24 h. (D) The protein levels of NLRP3, GSDMD, GSDMD P30, pro-IL-1β, mature
IL-1β, and cleaved caspase-1 were detected by Western blot in THP-1 macrophages treated with
5 µg/mL GST or rhS100A8. The protein expression was quantified by densitometry and normalized
to β-actin and are shown as fold changes relative to the GST group (right panel). (E) PI and active
caspase-1 double staining of pyroptotic cell death by flow cytometry in THP-1 macrophages treated
with 5 µg/mL GST or rhS100A8. (F–I) Western blot analysis (F) and qRT-PCR analysis (G–I) of
COL1A1, α-SMA, and TGF-β in LX-2 cells exposed to CM from THP-1 macrophages that were treated
with 0, 2, 5 or 10 µg/mL of rhS100A8 or 5 µg/mL GST. (J) Western blot analysis of COL1A1, α-SMA,
and TGF-β in LX-2 cells exposed to CM from THP-1 macrophages that were treated with 5 µg/mL of
rhS100A8 with or without 1 h of MCC950 pretreatment. The protein expression was quantified by
densitometry and normalized to β-actin and are shown as fold changes relative to the GST group
(right panel). * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.5. TLR4/NF-κB Signaling Cascade and ROS Abundance Are Responsible for S100A8-Induced
NLRP3 Inflammasome-Dependent Pyroptotic Death in Macrophages

Since we have observed that S100A8 could induce pyroptotic death in macrophages,
we then investigated the potential molecular mechanism. First, we focused on NF-κB activa-
tion, a crucial mediator of the priming step for NLRP3 inflammasome-mediated pyroptosis.
The protein levels of p-IKKα and p-p65 were enhanced in response to GST-rhS100A8 but
not the control GST treatment within 60 min (Figure 5A). In addition, treatment with the
NF-κB inhibitor BAY 11-7082 notably reversed S100A8-induced upregulation of the mRNA
levels of NLRP3, pro-IL-1β, and pro-IL-18 (Figure 5B–D). Moreover, a similar tendency was
confirmed by analysis for protein levels of pyroptosis-related indicators, including NLRP3,
GSDMD, GSDMD P30, pro-IL-1β, IL-1β, and cleaved caspase-1 (Figure 5E), suggesting that
activation of NF-κB participates in S100A8-induced pyroptosis. It is known that S100A8 is
an endogenous ligand of PRRs, including TLR4 [24] and RAGE [27]. Then, we searched
whether TLR4 or RAGE transduces S100A8-induced activation of NF-κB signaling as well
as the NLRP3 inflammasome. Increased levels of p-p65 and p-IKKα stimulated by S100A8
were partially inhibited by the TLR4 inhibitor TAK-242, while the RAGE inhibitor FPS-ZM1
had fewer effects (Figure 5F). Similarly, inhibition of TLR4 by TAK-242 markedly reduced
the mRNA expression of NLRP3, pro-IL-1β, and pro-IL-18, while inhibition of RAGE had
minor effects (Figure 5B–D).

As a direct trigger and amplifier of NLRP3 inflammasome activation, ROS is re-
ported to be closely associated with liver fibrosis progression [28]. In peripheral blood of
mononuclear cells and HaCaT keratinocytes, ROS production can be induced by S100A8
via increasing NADPH oxidase (NOX) activity [29,30]. Then, we investigated whether
S100A8 can directly induce ROS production and mediate NLRP3 inflammasome-dependent
pyroptosis. Here, the augmentation of overall ROS levels in THP-1 macrophages was de-
tected after stimulation with S100A8 by DCFH-DA fluorescent probe analysis (Figure 5G).
In contrast, suppressing ROS production with the inhibitor DPI clearly attenuated the
S100A8-mediated expression of pyroptosis-related indicators NLRP3, GSDMD, pro-IL-1β,
mature IL-1β, and GSDMD p30 (Figure 5H), suggesting the important role of ROS in
S100A8-mediated NLRP3 inflammasome-dependent pyroptosis.

3.6. The Potential Predictive Powers of S100A8, GSDMD, IL-1β, and IL-18 for the Occurrence and
Severity of Liver Fibrosis

Based on the role of S100A8-elicited NLRP3 pyroptosis in liver fibrosis, we chose a
well-defined cohort of liver fibrosis patients to assess the clinical importance of circulating
S100A8, GSDMD, IL-1β, and IL-18 for predicting the occurrence and progression of disease.
The ROC analysis indicated that the circulating GSDMD had the strongest diagnostic
value for the occurrence of liver fibrosis with an area under the ROC curve (AUC) of 0.95
(95% CI, 0.9279–0.9842) compared to S100A8, IL-1β or IL-18 with AUCs of 0.93 (95% CI,
0.9011–0.9766), 0.81 (95% CI, 07523–0.8849), and 0.81 (95% CI, 0.7425–0.8803), respectively
(Figure 6A). Moreover, we explored the predictive ability of these indicators for liver
fibrosis severity. Furthermore, circulating GSDMD had the highest diagnostic value for
identifying severe liver fibrosis, which yielded an AUC of 0.91 (95% CI, 0.8614–0.9725)
compared to IL-1β, S100A8, and IL-18 with AUCs of 0.90 (95% CI, 0.8523–0.9677), 0.89
(95% CI, 0.8209–0.9606), and 0.89 (95% CI, 0.8348–0.9591), respectively (Figure 6B). These
data implied that the identified GSDMD may be used as a potential biomarker during the
occurrence and progression of liver fibrosis.
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Figure 5. TLR4/NF-κB signaling cascade and ROS abundance are responsible for S100A8-induced
NLRP3 inflammasome-dependent pyroptotic death in macrophages. (A) Western blot analysis of p65,
p-p65, IKKα, and p-IKKα expression in THP-1 macrophages treated with GST-rhS100A8 or GST for 0,
30, 60 or 120 min. The protein expression was quantified by densitometry and normalized to β-actin
and are shown as fold changes relative to the 0 min group (right panel). (B–E) THP-1 macrophages
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were exposed to 5 µg/mL rhS100A8 with or without 1 h of BAY 11-7082, TAK-242 or FPS-ZM1
pretreatment. The qRT-PCR analysis was performed to detect the mRNA levels of NLRP3 (B), pro-
IL-1β (C), and pro-IL-18 (D). Western blot analysis was used to determine the protein expression
of NLRP3, GSDMD, GSDMD P30, pro-IL-1β, mature IL-1β, and cleaved caspase-1 (E). The protein
expression was quantified by densitometry and normalized to β-actin and are shown as fold changes
relative to the GST group (right panel). (F) THP-1 macrophages were pretreated with TAK-242 or FPS-
ZM1 for 1 h and then exposed to 5 µg/mL of rhS100A8. Western blot analysis was used to determine
the expression of p-p65 and p-IKKα. The protein expression was quantified by densitometry and
normalized to β-actin and are shown as fold changes relative to the GST group (right panel). (G) Flow
cytometry analysis of ROS levels in THP-1 macrophages treated with rhS100A8 for 6 h. (H) THP-1
macrophages were exposed to 5 µg/mL of rhS100A8 with or without 1 h of DPI pretreatment. Protein
expression levels of NLRP3, GSDMD, GSDMD P30, pro-IL-1β, and mature IL-1β were determined
by Western blot. The protein expression was quantified by densitometry and normalized to β-actin
and are shown as fold changes relative to the GST group (right panel); ns, not significant; * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure 6. The potential predictive powers of S100A8, GSDMD, IL-1β, and IL-18 for the occurrence
and severity of liver fibrosis. (A) ROC curves of serum S100A8, GSDMD, IL-1β, and IL-18 for
distinguishing liver fibrosis patients from HCs. (B) ROC curve, of serum S100A8, GSDMD, IL-1β,
and IL-18 for detecting moderate-to-severe liver fibrosis from no or mild liver fibrosis in liver fibrosis
patients. (C) A working model illustrating that S100A8-mediated NLRP3 inflammasome-dependent
pyroptosis in macrophages facilitates liver fibrosis progression, and that the identified GSDMD may
be used as a potential biomarker during liver fibrosis onset and progression.
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4. Discussion

NLRP3 inflammasome-dependent pyroptosis, an identified inflammatory form of
cell death, is activated by two signals; namely, priming and activating signals, leading
to persistent inflammation via activation and release of IL-1β, IL-18, and other intracel-
lular contents [7]. Recently, pyroptosis has attracted interest due to its crucial role in
inflammation-related diseases [31]. Intrahepatic cell death and persistent inflammation
triggered by various etiological factors are two central elements in the occurrence and
progression of liver fibrosis. Evidence supports that NLRP3 inflammasome-dependent
pyroptosis is involved in the development of liver fibrosis [32]. Nevertheless, the definite
cell types that undergo pyroptosis and the underlying mechanism as well as their clinical
importance are still unclear. In the present study, we demonstrated that S100A8 as a crucial
DAMP could stimulate NLRP3 inflammasome-dependent pyroptotic macrophage death
by activating TLR4-dependent NF-κB and inducing ROS abundance, finally facilitating
liver fibrosis progression. In addition, we identified that the pyroptosis-related indicator
GSDMD may be a potential biomarker for the occurrence and progression of liver fibrosis
(Figure 6C).

The role of pyroptosis has been extensively confirmed in a wide range of fibrotic
responses ranging from the lung, kidney, heart, and skin. In these fibrotic diseases, the
interaction between the NF-κB/NLRP3/caspase-1/IL-1β axis and TGF-β signaling ap-
pears to be the main mechanism relevant to fibrosis [8–10,33,34]. Here, elevated levels
of the pyroptosis-related indicators GSDMD, IL-1β, and IL-18 were confirmed in both
clinical specimens from liver fibrosis patients and CCl4-induced liver fibrosis mouse mod-
els. Additionally, their serum levels strongly correlated with the severity of liver fibrosis,
suggesting the essential role of pyroptosis during the progression of liver fibrosis. Fur-
thermore, double immunofluorescence staining of NLRP3 with albumin, F4/80 or with
α-SMA in human and mouse fibrotic liver tissues demonstrated that enhanced NLRP3 was
mainly localized to KCs and hepatocytes, especially KCs, indicating that KCs are major
cell types that undergo pyroptosis, which is consistent with other studies regarding these
cell types [35]. Targeting the NLRP3 inflammasome and its downstream effectors may
be a potent therapeutic strategy for inflammatory diseases [36]. Here, we investigated
whether NLRP3 inflammasome-dependent pyroptosis could be an intervention target for
liver fibrosis. We used a specific inhibitor of NLRP3, MCC950, to treat CCl4-induced liver
fibrosis mouse models. As expected, injection of MCC950 significantly attenuated liver
injury, especially liver fibrosis and improved liver function, indicating that NLRP3, as the
executor of pyroptosis, is an advancing prevention target for liver fibrosis. Additionally, the
effectiveness of the NLRP3 inhibitor was confirmed by the CM (pyroptotic macrophages)-
LX-2 culture model. In previous studies, inhibitors of IL-1 signaling and caspase-1 were
also effective in treating NLRP3-driven diseases [36]. Therefore, further studies are still
needed to compare the effects of these inhibitors with MCC950 to screen out the optimal
inhibitors for liver fibrosis.

DAMPs refer to many endogenous molecules with immunomodulatory activity re-
leased from stressed, malfunctioning or dead cells and damaged tissues [37]. It has been
reported that DAMPs released from dying tubule cells, including HGMB1, contribute to
the macrophage infiltration and IL-1β release, which markedly facilitates renal fibrogene-
sis [25]. Another study also suggested the involvement of citrullinated vimentin derived
from lung macrophages as a DAMP during the progression of lung fibrosis [26]. As two
members of DAMP, S100A8 and S100A9, were reported to correlate with the onset and
progression of bone marrow fibrosis [38] and renal fibrosis [39]. Similarly, elevated levels
of S100A8 and S100A9 were verified in clinical samples and CCl4-induced mouse model
studies, and their levels were strongly related to the severity of liver fibrosis. Specifically,
S100A8 increased more dramatically than S100A9 during the progression of liver fibrosis,
implying an important role of S100A8 in the pathogenesis of liver fibrosis. The present
data, together with the above-mentioned results from other studies, further emphasize the
significance of DAMPs in fibrotic disease. S100A8 and S100A9 are mainly derived from
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activated immunocytes (neutrophils, macrophages, etc.) and cells in local lesions in many
inflammatory processes [40]. Studies have shown that numerous pro-inflammatory cy-
tokines, including tumor necrosis factor-a (TNF-a) and interleukin-1 (IL-1), strongly induce
the expression of S100A8/A9 [41]. Moreover, LPS activates caspase-4/5 inflammasome
and promotes the secretion of S100A8 from macrophages. The proximal promoter regions
of S100A8 and S100A9 have common binding sites for different transcription factors (e.g.,
AP-1, NF-κB, and C/EBP) [41]. However, the detailed molecular mechanism controlling
the transcription of S100A8/A9 genes during liver fibrosis process is necessary for further
extended analysis in future studies.

Recently, S100A8 and S100A9 were reported to activate NLRP3 inflammasome signal-
ing to promote the pathogenesis of several diseases [29,42]. Given that the NLRP3 inflam-
masome can respond to DAMPs as a classical PRR, we focused on whether S100A8 could
activate the NLRP3 inflammasome and subsequently lead to pyroptosis. In the present
study, we observed a close correlation between S100A8 and pyroptosis, and found a direct
effect of S100A8 on macrophage pyroptosis. Additionally, pyroptotic products were able to
induce the activation of HSCs. The augmenting inflammatory factor IL-1β was detected
in CM, which is a critical profibrotic cytokine that acts on HSCs in previous reports [43].
In addition to IL-1β, other profibrotic cytokines released from damaged cells, such as
HGMB1, ATP, and DNA, can trigger HSC activation and collagen production [44], which
needs further study for confirmation. Activation of NLRP3 inflammasome-dependent
pyroptosis requires two signals, the priming signal and the activating signal. With regard
to the priming signal, our data showed that S100A8 interacted with TLR4 and then ac-
tivated downstream NF-κB with transcriptional upregulation of NLRP3, pro-IL-1β, and
pro-IL-18. ROS have been proposed as the second signal for NLRP3 activation [45], and
they also appear to play a crucial role in fibrotic progression [46]. In addition, S100A8
was reported to regulate ROS production by increasing NADPH oxidase activity [29,30].
Therefore, we focused on the ROS-mediated second activation signal. In this study, S100A8
significantly enhanced ROS levels in THP-1 macrophages. Furthermore, suppressing ROS
generation with the NOX specific inhibitor DPI markedly attenuated S100A8-induced
NLRP3 activation. Interestingly, the use of DPI also decreased the levels of the priming
signaling molecules pro-IL-1β and total GSDMD mediated by S100A8, suggesting that
S100A8-induced ROS production may exhibit a crosstalk with the priming signal NF-κB
activation, which was supported by other studies [29,47]. A previous study also suggested
that ROS can be generated from mitochondria in a TLR4-dependent manner [48]. Here, it
is still unclear whether S100A8-induced ROS production is dependent on TLR4, which re-
quires confirmation in further studies. Collectively, we demonstrated that S100A8 not only
induced transcriptional upregulation of NLRP3, pro-IL-1β, and pro-IL-18 via TLR4/NF-κB
signaling, but also facilitated oligomerization of NLRP3 proteins and cleavage of caspase-1
through NOX/ROS signaling, finally leading to pyroptotic cell death in macrophages.
Recently, we discovered that CD36, which is expressed on the surface of a variety of cells,
including macrophages, hepatocytes, enterocytes, myocytes, and adipocytes, also acts as a
receptor of S100 family proteins (S100A8, S100A9, and S100A12) [49]. CD36 is involved
in many pathophysiological processes, such as cardiovascular, thrombotic, and metabolic
phenotypes [50]. However, there are few reports on its role in liver fibrosis. It has been
shown that in the presence of DAMPs, CD36 assembles and interacts with other membrane
receptors, leading to ROS production and transcription factor activation [51]. Therefore, we
wondered whether CD36 mediates S100A8-induced ROS production and NF-κB pathway
activation in liver fibrosis progression, which requires further studies to investigate.

Currently, the diagnosis of liver fibrosis mainly depends on liver biopsy supplemented
with serology tests and imaging examinations [52]. However, liver biopsy is an inva-
sive method with potential associated complications and mortality [53], and conventional
ultrasonography, CT and MRI have little diagnostic significance for early-stage liver fibro-
sis [54]. Due to their high applicability, good interlaboratory reproducibility, and potential
widespread use, serum biomarkers are still the optimal option for liver fibrosis examina-
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tion. Although there are some identified serum biomarkers, none are liver-specific [54].
Therefore, it is still necessary to identify several new promising serum biomarkers for
the diagnosis and staging of liver fibrosis in combination with known good indicators to
improve diagnostic power. In this study, since S100A8-induced NLRP3 inflammasome-
dependent pyroptosis is correlated with liver fibrosis, its diagnostic value for the onset
and progression of liver fibrosis was analyzed. The identified circulating GSDMD had
the highest diagnostic value for the diagnosis and staging of liver fibrosis, suggesting that
GSDMD may have the potential to be an alternative biomarker for liver fibrosis evaluation.
Nevertheless, there are still limitations in our study. Due to the small sample size and
lack of specific investigation of liver fibrosis with different etiologies, further research is
required in more liver fibrosis patients with different etiologies to confirm these data.

In conclusion, the current study suggests that S100A8 stimulates NLRP3 inflammasome-
dependent pyroptosis in macrophages via activating TLR4/NF-κB signaling and inducing
ROS abundance, which finally facilitates the progression of liver fibrosis. In addition,
the NLRP3 inhibitor MCC950 treatment reduced the development of liver fibrosis in
CCl4-induced liver fibrosis mouse models, indicating that blocking NLRP3 inflammasome-
dependent pyroptosis may be a promising therapeutic strategy. More importantly, the iden-
tified pyroptosis-related indicator GSDMD has the potential to be an alternative biomarker
for liver fibrosis evaluation.
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