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Abstract: Sirtuins (SIRT1–7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-
dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging.
In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum
lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice
displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT)
mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when
it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In
contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male
Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates
Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice
compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves
glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect
of SIRT7 deficiency.

Keywords: SIRT7; knockout mouse; lifespan; FGF21

1. Introduction

Sirtuins (SIRT1–7 in mammals) are evolutionarily conserved nicotinamide adenine
dinucleotide-dependent lysine deacetylases/deacylases that regulate diverse biological
processes, including metabolism, stress responses, genomic stability, and aging [1]. Genetic
overexpression of sirtuins increases longevity in a variety of lower organisms such as yeast,
worms, and flies [2–4]. Intriguingly, transgenic mice with brain-specific Sirt1 overexpression
and whole-body Sirt6 transgenic mice also show an extended lifespan [5–7].

Metabolic dysfunction, including increased body fat and reduced glucose tolerance,
is a hallmark of aging [8]. SIRT1, SIRT6, and SIRT7 are nuclear proteins, and SIRT1
and SIRT6 exert beneficial effects against metabolic diseases [9,10]. In sharp contrast,
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we demonstrated that Sirt7 knockout (KO) mice are resistant to high-fat diet-induced
obesity, glucose intolerance, and fatty liver [11], suggesting that the loss of SIRT7 induces a
metabolically healthy condition. Aging is also a major risk factor for cancer. With regard to
cancer, SIRT7 is responsible for tumor phenotype maintenance by deacetylation of histone
H3 lysine 18 (H3K18) [12], and SIRT7 expression is upregulated in the majority of human
cancers, including hepatic, gastric, colorectal, and breast cancers [13,14]. In addition, SIRT7
may exert its oncogenic properties through the upregulation of ribosomal RNA synthesis
to meet the increased demand for ribosomes in rapidly growing tumor cells [13,15,16].
Considering that SIRT1 and SIRT6 act as tumor suppressors [17,18], SIRT7 seems to have
the opposite role in cancer. Of note, ribosomal protein gene deletion and inhibition of
translation have been reported to extend lifespan in numerous model organisms, including
mammals [12,19,20]. Together, these findings suggest the possibility that SIRT7 deficiency
plays beneficial roles in aging-associated metabolic disorders, cancer, and even lifespan.
However, a previous study reported that Sirt7 KO mice exhibit a shortened lifespan with
severe cardiac disorders [21].

Because our Sirt7 KO mice [11] did not display such a shortened lifespan, in the
present study, we reevaluated the impact of the loss of SIRT7 on lifespan in mice. We found
that male, but not female, Sirt7 KO mice on a C57BL/6J background showed an extension of
mean and maximum lifespan and a delay of the age-associated mortality rate. In addition,
aged male Sirt7 KO mice displayed better glucose tolerance and higher serum levels of
fibroblast growth factor 21 (FGF21) compared with wild-type (WT) mice. It has been
reported that FGF21 improves glucose metabolism and extends lifespan in mice [22,23];
therefore, increased levels of FGF21 might be involved in the improved glucose tolerance
and lifespan extension of male Sirt7 KO mice.

2. Materials and Methods
2.1. Mice

Sirt7 KO mice were obtained from Dr. Eva Bober [21]. These mice were backcrossed
to C57BL/6J mice (Charles River Laboratory Japan, Inc., Kanagawa, Japan) for at least
five generations. Male and female Sirt7 heterozygous mice were crossed to obtain WT
and Sirt7 KO littermates. Genomic DNA was isolated from a 3-week-old mouse tail and
PCR genotyping was performed as previously described [11]. All mouse experiments
were performed in accordance with the guidelines of the Institutional Animal Committee
of Kumamoto University. The mice were housed at a maximum of 5 mice/cage and
maintained at 22 ± 2 ◦C with a 12-h light/dark cycle and free access to water and normal
chow (CE-2; CLEA Japan, Inc., Tokyo, Japan).

2.2. Echocardiography and Cardiac Hypertrophy Measurements

Thirty-month-old male WT and Sirt7 KO mice were lightly anesthetized with 1%
isoflurane for shaving and quickly subjected to echocardiography. Transthoracic echocar-
diography was performed using an Aprio 300 (Toshiba Corp., Tokyo, Japan) in awake
and conscious conditions. For echocardiography, we held the mice gently with their back
toward the palm and placed the transducer on the chest while avoiding the vagal reflex
induced by the pressure of the transducer [24]. Left ventricular wall thickness, left ven-
tricular end-diastolic dimension, left ventricular end-systolic dimension, and percentage
fractional shortening were calculated in M-mode. To quantify cardiac hypertrophy, mouse
hearts were dissected immediately, and heart weight and tibia length were measured
to calculate the heart weight/tibia length ratio. Cross-sectional images of hematoxylin
and eosin-stained cardiomyocytes were captured using a BZ-710 All-in-One Microscope
(Keyence, Inc., Osaka, Japan), and the cross-sectional area of 50–100 cardiomyocytes in each
section was measured with ImageJ software.
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2.3. Lifespan Study

Male (WT, n = 50, Sirt7 KO, n = 42) and female (WT, n = 40, Sirt7 KO, n = 34) mice were
inspected at least twice a day for health issues and their age was recorded when the mice
were found dead. Animals showing signs of morbidity (immobility, lack of responsiveness
to manual stimulation, and inability to eat or drink) were euthanized by manual cervical
dislocation according to the institutional animal care guidelines of Kumamoto University.
The time at euthanization was the endpoint. Lifespan was assessed using Kaplan–Meier
survival curves. To estimate the hazard ratio, 2qx/(2 − qx), the age-related mortality rate
(qx) was estimated as the number of mice at the end of an interval against the number of
mice at the beginning of the interval [25]. The natural logarithm of the hazard ratio was
plotted. Mice used in the longevity study were not used for any other experiment.

2.4. Histological Analyses

Mouse tissues (brain, thyroid, trachea, lung, stomach, pancreas, liver, spleen, intestine,
kidney, urinary bladder, and skeletal muscle) were recovered from male WT (n = 22) and
Sirt7 KO mice (n = 21) soon after death. The tissues were fixed in phosphate-buffered
4% paraformaldehyde and embedded in paraffin; 4-µm-thick sections were obtained and
stained with hematoxylin and eosin. The sections were examined for neoplasms by a
pathologist (T. I.).

The heart sections from each mouse group were stained with Masson’s trichrome stain
to detect fibrosis.

2.5. Serum Parameters and Enzyme-Linked Immunosorbent Assay Measurements

After 16-h fasting, blood samples were collected from 24-month-old male WT and
Sirt7 KO mice by cardiac puncture. Serum preparation was performed by centrifugation
at 5000× g for 10 min at 4 ◦C using a blood collection tube (TS-801; SATO Chemical
Industry Co., Ltd., Tochigi, Japan). Biochemical parameters were measured using an
automatic biochemical analyzer (JCA-BM6070; JEOL Ltd., Tokyo, Japan). Serum hormone
levels (except for adiponectin) were measured by using a Bio-Plex Pro Mouse Diabetes 8-
Plex panel (Bio-Rad Laboratories, Inc., Hercules, CA, USA), a MILLIPLEX Mouse Myokine
Magnetic Bead Panel (Millipore Co., Bedford, MA, USA), and a Bio-Plex200 system (Bio-Rad
Laboratories, Inc.). Adiponectin was measured using a Bio-Plex Pro Mouse Adiponectin
Assay Kit (171F7002M; Bio-Rad Laboratories, Inc.).

For serum FGF21 measurements (for Figure 5), blood was collected from the heart after
16-h fasting and centrifuged at 5000× g for 10 min at 4 ◦C to obtain serum. Serum samples
from 4- and 30-month-old male mice were assayed for the quantification of FGF21 using
an enzyme-linked immunosorbent assay kit (MF2100; R&D Systems, Inc., Minneapolis,
MN, USA). An iMark™ Microplate Reader (Bio-Rad Laboratories, Inc.) was used to read
samples at 450 nm and corrected at 540 nm.

2.6. Metabolic Tests

The body weight of 24-month-old male WT and Sirt7 KO mice was measured. For the
glucose tolerance test, the mice were injected intraperitoneally with 2 g/kg glucose after
15-h fasting. Blood was collected from the tail vein and blood glucose was monitored by a
Glutest Neo Super (Sanwa Kagaku Kenkyusyo Co., Ltd., Nagoya, Japan) at the indicated
time points (0, 15, 30, 60, and 120 min). For the insulin tolerance test, 1 U/kg insulin was
injected intraperitoneally after 4-h fasting. Blood insulin was monitored at the indicated
time points (0, 30, 60, 90, and 120 min).

2.7. RNA-seq Analysis

Livers were collected from 24-month-old male WT and Sirt7 KO mice after 16-h
fasting, and RNA isolation was performed using a ReliaPrep RNA Miniprep System (Z6012;
Promega, Inc., Madison, WI, USA). RNA quality was determined with the RNA integrity
number equivalent value using a High Sensitivity RNA ScreenTape Assay (5067-5579;
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Agilent Technologies, Inc., Santa Clara, CA, USA), and confirmed to be 6.9 or higher. Total
RNA (1 ng) was used for the reverse transcription reaction with a SMART-seq HT (634455;
Takara Bio, Inc., Shiga, Japan). An RNA-seq library was prepared using a Nextera XT
Library Prep Kit (FC-131-1024; Illumina, Inc., San Diego, CA, USA) and sequenced on a
NextSeq 500 Sequencer with 75 bp single-end reads (Illumina). The reads were trimmed for
universal Illumina adaptors with Trim Galore (version 0.6.5) [26] and mapped to the mouse
transcriptome (GRCm38) and quantified by Salmon (version 1.2.1) with default settings.
Differential expression testing was performed with DESeq2 (version 1.28.0). Data were
loaded into R using tximport (version 1.16.0) and aggregated to gene-level abundance in
TPM. Differentially expressed genes were defined as p < 0.05, fold change > 1.5. Upregulated
differentially expressed genes in Sirt7 KO mice were subjected to enrichment analysis with
DAVID (version 6.8) [27]. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
pathway analyses were used for annotation.

2.8. qRT-PCR

Frozen tissues were homogenized in Sepasol-RNA I Super G Solution (Nacalai Tesque,
Inc., Kyoto, Japan). Total RNA was extracted using the phenol-chloroform extraction
method, and cDNA was synthesized from total RNA using a Prime Script RT Kit (RR047A;
Takara). qRT-PCR was performed on an ABI 7300 thermal cycler (Applied Biosystems,
Foster City, CA, USA) using SYBR Premix Ex Taq II (RR820A; Takara). Relative gene
expression was normalized by the mRNA expression level of mouse TATA-binding protein.
The primer sequences are shown in Supplementary Table S1.

2.9. Statistical Analysis

Data are presented as the mean ± standard deviation (SD). The significance of dif-
ferences was calculated with an unpaired two-tailed Student’s t-test or two-way analysis
of variance with Tukey’s post hoc test. Kaplan–Meier survival curves were compared
using the log-rank test. Changes in the age-associated mortality rate (slope and y-intercept)
were measured using analysis of covariance. The frequency of cancer was compared using
Fisher’s exact test. Statistical analysis was performed using GraphPad Prism 9 software
version 9.4.0 (GraphPad Software, Inc., San Diego, CA, USA). Statistical significance was
assumed at p < 0.05.

3. Results
3.1. Lack of Cardiac Dysfunction in Aged Sirt7 KO Mice

Vakhrusheva et al. [21] reported that Sirt7 KO mice (C57BL/6 × 129Sv mixed back-
ground mice were backcrossed to C57BL/6) exhibit inflammatory cardiomyopathy with a
strong increase in fibrosis and shortened lifespan. Therefore, we investigated the cardiac
function of our 30-month-old male Sirt7 KO mice on a C57BL/6J background by echocar-
diographic analysis. Interestingly, there were no significant differences in left ventricular
dimension and contractile function between WT and Sirt7 KO mice (Figure 1A,B). The
heart weight to tibial length ratio and lung weight to tibial length ratio of Sirt7 KO mice
were both similar to those of WT mice (Figure 1C). Histological analysis revealed that the
cross-sectional area, showing relative cardiomyocyte size, was similar between WT and
Sirt7 KO mice (Figure 1D,E). Fibrosis was not detected in the heart of our Sirt7 KO mice
by Masson’s trichrome staining (Figure 1F). Consistently, the cardiac mRNA expression
levels of Col3a1 (encoding collagen type III) and Col6a1 (encoding collagen type VI) were
similar between WT and Sirt7 KO mice (Figure 1G). In addition, increased expression of
inflammatory genes was not detected in the heart of Sirt7 KO mice (Figure 1H). Taken
together, these observations show that our aged Sirt7 KO mice do not exhibit cardiac
dysfunction compared with WT mice.
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Figure 1. Cardiac function and morphology in aged male Sirt7 KO mice. (A) Representative M-
mode echocardiogram images of 30-month-old male WT and Sirt7 KO mice. (B) Quantitative
analysis of heart rate, left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic
diameter (LVED), posterior wall thickness in diastole (PWTd), interventricular septum thickness
in diastole (IVSTd), and fractional shortening (FS) in 30-month-old male WT and Sirt7 KO mice
(n = 4). (C) Quantification of the heart weight/tibia length (HW/TL) ratio and lung weight/tibia
length (LW/TL) ratio in 30-month-old male WT and Sirt7 KO mice (n = 4). (D) Representative images
of hematoxylin and eosin (HE)-stained heart tissue from 30-month-old male WT and Sirt7 KO mice.
Scale bar, 2 mm. (E) Quantitative analysis of cardiomyocyte cross-sectional area in 30-month-old male
WT and Sirt7 KO mice (n = 4). (F) Representative images of Masson’s trichrome (MT)-stained heart
tissue from 30-month-old male WT and Sirt7 KO mice. Scale bar, 2 mm. (G,H) qRT-PCR analysis of
Sirt7 and fibrosis-related genes (Col3a1 and Col6a1) (G) and inflammation-related genes (Tnf, Il1b, Il4,
Il12a, and Cxcl2) (H) in the heart of 30-month-old male WT and Sirt7 KO mice (n = 4). The data are
expressed as the mean ± SD; N.D., not detected; N.S., not significant by unpaired Student’s t-test.

3.2. Male Sirt7 KO Mice Exhibit an Extension of Lifespan

These findings encouraged us to reevaluate the lifespan of Sirt7 KO mice. When fed
a standard chow diet, neither male nor female Sirt7 KO mice on a C57BL/6J background
exhibited a shortened lifespan (Figure 2A). Interestingly, the survival curves of WT and Sirt7
KO male, but not female, mice were significantly different by log-rank testing (p = 0.0053),
and male Sirt7 KO mice showed an 11.2% extension of median lifespan (the day at which
the probability of survival equals 50%: WT 887 days vs. Sirt7 KO 972 days) (Figure 2A,B).
They also exhibited a significant extension of mean lifespan (WT 874 ± 149 days vs. Sirt7
KO 939 ± 130 days, p = 0.031). Furthermore, the maximum lifespan (the average of the
mean lifespan of the longest-lived 10% or 20% of mice) [6,28] of male Sirt7 KO mice was
also significantly increased (10% oldest WT 1053 ± 19 days vs. Sirt7 KO 1086 ± 4 days,
p = 0.021; 20% oldest WT 1038 ± 21 days vs. Sirt7 KO 1076 ± 10 days, p = 0.0005) (Figure 2B).
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We next assessed age-associated mortality in Sirt7 KO mice. Male Sirt7 KO mice exhibited
a significant delay in age-associated mortality compared with WT mice, whereas the
slope of age-associated mortality change, which defines the rate of aging [25], did not
differ between WT and Sirt7 KO mice (Figure 2C). In contrast to males, this delay in
age-associated mortality was not detected in female Sirt7 KO mice. Taken together, these
results suggest that SIRT7 deficiency extends lifespan in male mice by delaying the onset of
age-associated physiological decline.
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Figure 2. Lifespan analysis of male and female Sirt7 KO mice. (A) Kaplan–Meier survival curves for
male (left: WT [n = 50], Sirt7 KO [n = 42]) and female (right: WT [n = 40], Sirt7 KO [n = 34]) mice.
(B) Parameters of lifespan analysis. The mean (average lifespan) and oldest 10% and 20% (mean
lifespan of the longest-lived 10% and 20% mice) of each group are shown as the mean ± SD; * p < 0.05,
*** p < 0.001 by unpaired Student’s t-test. P-values of (A) were calculated by the log-rank test. (C) The
age-associated mortality rate of male (left) and female (right) WT and Sirt7 KO mice. P-values for the
differences between the slopes (age-associated mortality rate) and y-intercepts (initial mortality rate)
were calculated by analysis of covariance (top = p-value of slopes, bottom = p-value of y-intercepts).

Malignant neoplasm is a major cause of death in laboratory mice. Because SIRT7 has
oncogenic properties [13,14], we investigated whether the extension of lifespan in male
Sirt7 KO mice was due to the reduced incidence of neoplasms. However, post-mortem
gross and microscopic examinations revealed that the incidence of malignant neoplasms
was similar between male WT (11 out of 22 mice, 50%) and Sirt7 KO mice (12 out of 21 mice,
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57.1%) (Figure 3A). In addition, the average number of tumors per mouse did not differ
between WT and Sirt7 KO mice (Figure 3B). These results indicate that the pro-longevity
effect of SIRT7 deficiency cannot be reasoned by the decreased incidence of neoplasms.
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3.3. Sirt7 KO Mice are Protected from Aging-Associated Metabolic Dysfunction

Next, we examined serum biochemical parameters in fasted 24-month-old male mice.
Serum uric acid levels and high-density lipoprotein (HDL) levels were significantly lower
and higher, respectively, in aged Sirt7 KO mice than in WT mice (Figure 4A). High HDL
levels are associated with a reduced risk of atherosclerosis and cardiovascular diseases
in humans [29], but the significance of increased HDL levels on lifespan extension in
mice is unclear. There was a trend for altered levels of alanine aminotransferase, total
bilirubin, and lactate dehydrogenase in aged Sirt7 KO mice, but the difference did not
reach significance probably due to small sample sizes. Metabolic dysfunction is a hallmark
of aging. As glucose tolerance and insulin sensitivity were improved in Sirt7 KO mice
fed a high-fat diet [11], we next investigated the metabolic parameters of aged male mice.
Sirt7 KO animals weighed significantly less than WT mice (Figure 4B). A glucose tolerance
test demonstrated better glucose tolerance in aged Sirt7 KO mice (Figure 4C), and an
insulin tolerance test revealed significantly better insulin tolerance in aged Sirt7 KO mice
(Figure 4D). These results indicate that the loss of SIRT7 confers protection against aging-
associated dysfunction in glucose metabolism.

3.4. Hepatic FGF21 Expression is Maintained in Aged Sirt7 KO Mice

We next measured the serum levels of secreted polypeptides and proteins that are
involved in glucose metabolism. Among the secreted factors, the serum levels of FGF21
were significantly increased in 24-month-old male Sirt7 KO mice compared with WT mice
(Table 1). FGF21 has a fundamental role in the regulation of energy expenditure, and
FGF21 administration promotes weight loss and improves insulin sensitivity and glucose
homeostasis [22]. Moreover, transgenic mice overexpressing FGF21 show an extended
lifespan [22,30–32]. We also measured serum FGF21 levels in male mice in an independent
cohort (Figure 5A). The serum FGF21 levels of young mice did not differ between genotypes.
Serum FGF21 levels were markedly decreased with aging in WT mice. In contrast, this
decrease was suppressed in Sirt7 KO mice, and the increased serum FGF21 levels of aged
male Sirt7 KO mice were confirmed in this cohort.
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Figure 4. Serum biochemical parameters and glucose metabolism in aged male Sirt7 KO mice.
(A) Biochemical analysis of 24-month-old male WT (n = 5) and Sirt7 KO (n = 3) mice after 16-h fasting.
(B) Body weight of 24-month-old male WT (n = 41) and Sirt7 KO (n = 37) mice. (C) Glucose tolerance
test in 24-month-old male WT (n = 14) and Sirt7 KO (n = 14) mice after intraperitoneal injection of
glucose (2 g/kg body weight). (D) Insulin tolerance test in 24-month-old male WT (n = 10) and Sirt7
KO (n = 11) mice after intraperitoneal injection of insulin (1 U/kg body weight). The area under
the curve (AUC) for each tolerance test (C,D) is calculated and shown. Data are expressed as the
mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001; N.S., not significant by unpaired Student’s t-test. Alb,
albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AMY, amylase; AST, aspartate
aminotransferase; Ca, calcium; CPK, creatine phosphokinase; CRE, creatinine; Fe, iron; HDL-C,
high-density lipoprotein cholesterol; IP, inorganic phosphorus; LD, lactate dehydrogenase; LDL-C,
low-density lipoprotein cholesterol; T. Bil, total bilirubin; TG, triglyceride; T. Pro, total protein; UA,
uric acid; UN, urea nitrogen.
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Table 1. Serum hormone levels in aged male WT and Sirt7 KO mice.

Parameter WT (n = 5) Sirt7 KO (n = 3) p Value

Insulin (ng/mL) 7.1 ± 5.2 4.9 ± 0.8 0.51
Glucagon (ng/mL) 10.3 ± 5.9 6.8 ± 1.2 0.37
GLP-1 (pg/mL) 789.6 ± 650.3 377.2 ± 138.4 0.33
GIP (ng/mL) 6.3 ± 1.0 6.2 ± 0.1 0.88
Ghrelin (ng/mL) 26.9 ± 6.6 24.0 ± 1.5 0.49
PAI-1 (ng/mL) 2.5 ± 0.7 5.6 ± 3.2 0.07
Leptin (ng/mL) 1.4 ± 0.6 1.4 ± 0.2 0.91
Adiponectin (µg/mL) 21.8 ± 13.8 13.0 ± 2.9 0.33
Resistin (ng/mL) 41.5 ± 10.9 44.8 ± 2.9 0.63
FGF21 (pg/mL) 173.1 ± 60.9 628.8 ± 287.7 0.01 *
Osteocrin (pg/mL) 41.0 ± 23.2 41.9 ± 16.4 0.96
Osteonectin (ng/mL) 13.8 ± 12.4 13.7 ± 0.6 0.99

Serum adipocytokine and myokine levels in 24-month-old male WT (n = 5) and Sirt7 KO (n = 3) mice after 16-h
fasting. Data are expressed as the mean ± SD of each group. * p < 0.05. FGF21, fibroblast growth factor 21; GIP,
glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; PAI-1, plasminogen activator
inhibitor-1.

The liver is a major source of the expression and secretion of FGF21 [33]. Hepatic
Fgf21 mRNA expression levels were similar between young male Sirt7 KO and WT mice
(Figure 5B). In accordance with a previous report [34], hepatic Fgf21 mRNA expression
decreased markedly with aging in male WT mice, but such a decrease was not detected
in Sirt7 KO mice, and Fgf21 mRNA expression was significantly increased in aged male
Sirt7 KO mice compared with WT mice (Figure 5B). FGF21 induces the expression of genes
involved in glucose transport (Slc2a1 and Slc2a4), mitochondrial oxidation (Cycs), and
thermogenesis (Ucp1, Dio2, and Ppargc1a) in brown adipose tissue and lipid metabolism
(Lipe and Pnpla2) in white adipose tissue [35,36]. The expression of these genes was
significantly increased in aged male Sirt7 KO mice compared with WT mice (Figure 5C,D).
These results indicate that the increased serum levels of FGF21 in aged male Sirt7 KO mice
are not due to FGF21 resistance, a state of impaired FGF21 signaling [37].

To further investigate the mechanism underlying the increase in hepatic FGF21 ex-
pression in aged male Sirt7 KO mice, we performed RNA-seq analysis of the liver. We
identified 243 differentially expressed genes (173 upregulated and 70 downregulated; ad-
justed p < 0.05) in the liver of aged male Sirt7 KO mice compared with WT mice (Figure 5E).
Intriguingly, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses
revealed that genes involved in the unfolded protein response of the endoplasmic reticu-
lum (UPRER), including Hspa5 (encoding GRP78) and Pdia3 (encoding protein disulfide
isomerase, family A, member 3), were increased in the liver of aged male Sirt7 KO mice
(Figure 5E). Altered ER homeostasis leads to the accumulation of unfolded proteins in
the ER, called ER stress, which activates the UPRER signaling pathway to mitigate the
stress [38,39]. Activating transcription factor 4 (ATF4) is one of the main effectors of the
UPRER and controls the expression of stress-resistance genes including Fgf21 [22]. There-
fore, we analyzed the hepatic expression of genes involved in the UPRER in male WT and
Sirt7 KO mice by qRT-PCR (Figure 5F). The hepatic expression of several UPRER-related
genes such as Atf4 and Hspa5 decreased with aging in male WT mice, whereas this decrease
was diminished in Sirt7 KO mice. As a result, Atf4 mRNA expression was significantly
increased in aged Sirt7 KO mice compared with WT mice. ATF4 can induce apoptosis via
the induction of Ddit3 (encoding C/EBP-homologous protein); however, Ddit3 expression
was similar between male Sirt7 KO and WT mice (Figure 5F). Cdkn2a (encoding p16, a
marker of senescence) expression did not differ between aged male Sirt7 KO and WT mice
(Figure 5G), indicating that cellular senescence occurs similarly in the hepatic cells of these
mice. These results suggest that the loss of SIRT7 helps to maintain serum FGF21 levels at
high levels in aged male Sirt7 KO mice by maintaining hepatic ATF4 expression.
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Figure 5. Gene expression profiles in the liver of aged male Sirt7 KO mice. (A) Serum FGF21 levels in
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4- or 30-month-old male WT and Sirt7 KO mice after 16-h fasting. (B) qRT-PCR analysis of Sirt7 and
Fgf21 in the liver and epididymal white adipose tissue (WAT) from male WT and Sirt7 KO mice. N.D.,
not detected. (C,D) qRT-PCR analysis of Fgf21 target genes in brown adipose tissue (BAT) (Slc2a1,
Slc2a4, Cycs, Ucp1, Dio2, and Ppargc1a) (C) and epididymal WAT (Lipe and Pnpla2) (D) of 24-month-old
male WT and Sirt7 KO mice. (E) Volcano plot (left) and enrichment analysis (right) of RNA-seq data in
liver samples from 24-month-old male WT and Sirt7 KO mice (n = 3). UPRER-related genes are shown
in red (left). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. (F,G) qRT-PCR
analysis of UPRER-related genes (F) and a marker of senescence (G) in the liver of 4- and 24-month-old
male WT and Sirt7 KO mice. Data are expressed as the mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001;
N.S., not significant. Statistical significance was determined by either two-way analysis of variance
with Tukey’s post hoc test (A,B,F,G) or unpaired Student’s t-test (C,D).

4. Discussion

The phenotypes of Sirt7 KO mice are controversial. Vazquez et al. reported that
their Sirt7 KO mice exhibit increased perinatal lethality [40], but such an increase was not
observed in our Sirt7 KO mice [41] or in another independent line of Sirt7 KO mice [42]. We
have no adequate explanation for these contrasting results, but differences in the construct
used (absence of LacZ in [11] and [42]) may have contributed to these discrepancies. A
reduction in SIRT7 levels with aging has been reported in tissues of humans and animal
models [43], while SIRT7 levels increase during calorie restriction [44,45], suggesting that
SIRT7 might exhibit a protective effect on longevity. Accordingly, Vakhrusheva et al. [21] re-
ported that their Sirt7 KO mice exhibit a shortened lifespan due to cardiac dysfunction with
a strong increase in fibrosis [21]. Although we and Vakhrusheva et al. [21] used the same
Sirt7 KO line, such phenotypes were not detected in this study. The reason is again unclear,
but the lack of cardiac dysfunction may have contributed to the extended lifespan of our
Sirt7 KO mice. We also would like to emphasize that the phenotype of shortened lifespan
was not observed in another line of Sirt7 KO mice [42] (Professor Johan Auwerx, personal
communication). We backcrossed Vakhrusheva’s Sirt7 KO mice (C57BL/6 × 129Sv mixed
background was backcrossed onto C57BL/6 background) with C57BL/6J mice for at least
five generations before use in this study. Ryu et al. backcrossed their Sirt7 KO mice (129Sv
background) for ten generations onto the C57BL/6J background [42]. Since genetic back-
ground affects lifespan in mice [28], the different genetic backgrounds of these mice might
have contributed to their altered cardiac phenotypes and lifespans. Furthermore, differ-
ences in environmental factors (e.g., diet and housing conditions) may have affected their
phenotypes. Further studies are necessary to clarify the reasons for these discrepancies.

FGF21 is an endocrine hormone that exerts a fundamental role in the regulation of
energy metabolism, and FGF21 administration promotes weight loss and improves glucose
homeostasis by enhancing insulin sensitivity [22]. In addition, FGF21 is a potent longevity
factor, and transgenic mice overexpressing FGF21 show an extended lifespan [30]. We
found that serum FGF21 levels were significantly higher in our aged male Sirt7 KO mice
than in aged male WT mice. Therefore, there is a possibility that the increase in serum
FGF21 levels might contribute to the extended lifespan of male Sirt7 KO mice. However,
female Sirt7 KO mice did not show an extension of lifespan, but we did not examine their
serum FGF21 levels. Thus, we cannot conclude that the prolonged lifespan of our male Sirt7
KO mice was due to increased FGF21 levels. It has been reported that female mice exhibit
higher serum concentrations of FGF21 than males [46]. Investigation of serum FGF21 levels
in female mice is a major future undertaking to address the contribution of FGF21 to the
prolonged lifespan of male Sirt7 KO mice.

We also revealed that aged male Sirt7 KO mice showed less body weight gain and
improved glucose homeostasis compared with WT mice of the same age. FGF21 pro-
motes weight loss and enhances insulin sensitivity by increasing energy expenditure [22].
Hence, it is plausible that the increased levels of FGF21 contribute to the improved glucose
metabolism in aged male Sirt7 KO mice. Additionally, FGF21 is reported to increase serum
HDL-cholesterol levels [47]. Thus, the increased serum HDL-cholesterol concentrations in
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aged male Sirt7 KO mice might also be attributable to the upregulation of FGF21. How-
ever, we do not claim that the improved glucose and lipid metabolism in male Sirt7 KO
mice can be explained by the increase in FGF21 only. Serum FGF21 levels were similar
between young Sirt7 KO and control mice, but we demonstrated previously that young
Sirt7 KO mice show resistance to high-fat diet-induced obesity, glucose intolerance, and
fatty liver [11].

The diminished ability to maintain protein homeostasis is a hallmark of aging, and
aged cells are unable to properly trigger UPRER-related transcriptional responses [48–50].
Consistently, we demonstrated that the expression of several hepatic UPRER-related genes,
including Atf4, was decreased in aged male WT mice. In sharp contrast, this decrease
was suppressed in aged male Sirt7 KO mice, and Atf4 mRNA expression was significantly
increased in aged male Sirt7 KO mice compared with WT mice. Given that ATF4 stimulates
Fgf21 transcription, the increased hepatic Fgf21 expression and serum FGF21 levels in aged
male Sirt7 KO mice might be, at least in part, a consequence of higher ATF4 expression.
However, it is unlikely that Atf4 expression is regulated directly by SIRT7 in the liver since
the hepatic Atf4 mRNA levels of young mice did not differ between genotypes. What
could be the underlying mechanism for the altered expression of UPRER-related genes
in aged male Sirt7 KO mice? Previous studies have demonstrated that the chromatin
landscape of aged cells is largely different from that of young cells, and the reduction of
activating histone marks and the induction of repressive marks at the promoter regions of
stress response genes are features of aged chromatin [48,49]. H3K18 acetylation, H3K36
acetylation, and H4K91 glutarylation are histone marks for active gene expression, and
SIRT7 functions as an eraser of these modifications [12,51,52]. Loss of SIRT7 may help to
induce gene expression by preserving active histone marks. Future studies are necessary to
define whether histone marks at UPRER-related gene loci are regulated by SIRT7.

Enhancing the function of SIRT1 and SIRT6 improves the healthspan in mice. Although
the phenotypes of Sirt7 KO mice are controversial, we revealed that the loss of SIRT7 extends
lifespan and confers protection against aging-associated metabolic dysfunction in male
mice. Thus, SIRT7 and SIRT1/SIRT6 may play opposite roles in aging. Further studies are
necessary to improve our understanding of the roles of SIRT7 in aging.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11223609/s1, Table S1: List of the primer sequences used
for qRT-PCR.
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