
Citation: Mastrorocco, A.;

Cacopardo, L.; Temerario, L.;

Martino, N.A.; Tridente, F.; Rizzo, A.;

Lacalandra, G.M.; Robbe, D.;

Carluccio, A.; Dell’Aquila, M.E.

Investigating and Modelling an

Engineered Millifluidic In Vitro

Oocyte Maturation System

Reproducing the Physiological Ovary

Environment in the Sheep Model.

Cells 2022, 11, 3611. https://

doi.org/10.3390/cells11223611

Academic Editor: Agniezka Rak

Received: 24 September 2022

Accepted: 12 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Investigating and Modelling an Engineered Millifluidic
In Vitro Oocyte Maturation System Reproducing the
Physiological Ovary Environment in the Sheep Model
Antonella Mastrorocco 1,* , Ludovica Cacopardo 2 , Letizia Temerario 1 , Nicola Antonio Martino 1,
Federico Tridente 1, Annalisa Rizzo 3, Giovanni Michele Lacalandra 3 , Domenico Robbe 4 ,
Augusto Carluccio 4 and Maria Elena Dell’Aquila 1

1 Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro,
Via Edoardo Orabona, 70125 Bari, Italy

2 Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
3 Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. Casamassima Km. 3,

70010 Valenzano, Italy
4 Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy
* Correspondence: antonella.mastrorocco@uniba.it

Abstract: In conventional assisted reproductive technologies (ARTs), oocytes are in vitro cultured in
static conditions. Instead, dynamic systems could better mimic the physiological in vivo environment.
In this study, a millifluidic in vitro oocyte maturation (mIVM) system, in a transparent bioreactor
integrated with 3D printed supports, was investigated and modeled thanks to computational fluid
dynamic (CFD) and oxygen convection-reaction-diffusion (CRD) models. Cumulus-oocyte complexes
(COCs) from slaughtered lambs were cultured for 24 h under static (controls) or dynamic IVM
in absence (native) or presence of 3D-printed devices with different shapes and assembly modes,
with/without alginate filling. Nuclear chromatin configuration, mitochondria distribution patterns,
and activity of in vitro matured oocytes were assessed. The native dynamic mIVM significantly
reduced the maturation rate compared to the static group (p < 0.001) and metaphase II (MII) oocytes
showed impaired mitochondria distribution (p < 0.05) and activity (p < 0.001). When COCs were
included in a combination of concave+ring support, particularly with alginate filling, oocyte matu-
ration and mitochondria pattern were preserved, and bioenergetic/oxidative status was improved
(p < 0.05) compared to controls. Results were supported by computational models demonstrating
that, in mIVM in biocompatible inserts, COCs were protected from shear stresses while ensuring
physiological oxygen diffusion replicating the one occurring in vivo from capillaries.

Keywords: millifluidic culture; oocyte; in vitro maturation; mitochondria; intracellular reactive
oxygen species; computational models; oxygen diffusion; ovary environment

1. Introduction

In vitro maturation (IVM) of oocytes is an assisted reproductive technology (ART),
and an alternative to controlled ovarian hyperstimulation (COH). In COH, patients un-
dergo pituitary downregulation followed by exogenous gonadotropin administration and
retrieval of in vivo matured oocytes [1]. However, in IVM, meiotically immature oocytes
are retrieved from unstimulated ovaries and cultured in vitro prior to fertilization under
the influence of different additives, including but not limited to gonadotrophins. IVM
has great potential to become the technique of choice in human and animal reproductive
medicine, even though, despite its long history, it needs technical improvements.

In animal ARTs, it is the predominant method of maturation of oocytes used for
in vitro production of embryos for commercial and research purposes [2]. The first report
of oocyte isolation from ovarian follicles and IVM was published by Pincus and Enzmann
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(1935) in rabbit oocytes [3] and currently is widely used for artificial breeding, cloning, and
transgenic animal production [4]. However, despite the fruitfulness of these technologies,
the developmental rates of in vitro produced animal embryos derived from IVM oocytes
are still suboptimal and species-specific [5].

The potential applications of IVM in human ARTs were also recognized by Edwards
in his landmark 1965 publications [6,7]. The first live human birth following collection of
immature oocytes from non-stimulated cycles and their maturation in vitro was recorded
in 1991 [8]. Since then, more than 5000 live human births have occurred as a result of oocyte
IVM [9]. In human ARTs, IVM is currently used in specific circumstances in which it is
proposed in order to avoid side effects of gonadotropin administration, such as in patients
at risk of ovarian hyperstimulation syndrome [10,11], or those requiring rapid fertility
preservation strategies before undergoing chemo or radio therapy for estrogen-sensitive
cancer [12–14]. Moreover, IVM allows for the minimization of COH adverse side effects in
patients with polycystic ovarian syndrome and reduces the gonadotropin use and costs
associated with drug use and patient monitoring [15]. IVM indications have been also
expanded to rare conditions such as resistant ovary syndrome or repeated deficient oocyte
maturation, where a COH failed to result in mature oocytes [16].

Although perspectives are promising, the clinical outcomes of IVM oocytes are lower
compared with those of oocytes matured in vivo [17–21]. To improve IVM protocols,
in vitro culture conditions should be optimized to better support nuclear and cytoplasmic
modifications occurring physiologically as a result of in vivo ovulatory stimuli [22–26].
Cumulus-oocyte complex (COC) development and maturation are regulated by different
factors, such as those arriving via the afferent vasculature, i.e., FSH, LH, those estab-
lishing interactions between granulosa-cumulus cells and the oocyte, and a variety of
growth factors [27–32]. Interesting outcomes may arise from innovative strategies of dy-
namic cell culture devices purposely engineered to provide the cells with controlled media
flow/movement by simulating continuous removal of harmful products and replacement
of substrates, physical stimulation, and activation of signaling pathways [33]. As can
be seen from current literature, considerable interest in the use of dynamic microfluidic
systems has recently emerged. In vitro studies on evaluation and handling of reproductive
cells and tissue, such as those of maternal–placental–embryonic axis [34], oocytes [35–37],
sperm cells [37–39], human placental trophoblast [40,41], embryos [35–37], and embryo
culture [42–46], have been reported. To the best of our knowledge, only two studies have
been carried out to date on dynamic microfluidic IVM culture, both in immature oocytes
retrieved from superovulated mice [47,48]. In these studies, this method reduced lipid
peroxidation levels in oocyte culture media and apoptosis rate in matured oocytes [47]
and increased oocyte maturation and blastocyst formation rate [48]. In farm animals, the
only microfluidic IVM study published to date involved the use of a microfluidic but not
dynamic device to trap and culture bovine COCs [49]. In large animal models, as well
as in humans, due to the large ovary, follicle, COC size, and follicular fluid volume at
the preovulatory stage [50], studies on millifluidic devices could be more appropriate
to replicate the physiological environment. Indeed, the COC grows and matures in the
follicular antrum, an environment that develops and become progressively larger, reaching
dimensions measured in centimeters in diameter in the preovulatory maturation phase.
During its development, although not exposed directly, but through the mediation of theca
and granulosa cells, the COC receives nutrients and oxygen supply by continuous diffusion
from the microcapillary network that surrounds the follicle. Ovarian blood flow rates
range from milliliters/minute (at ovarian arterial level) to microliters/minute (at follicular
capillary beds of antral follicles) [51–54]. In a previous study, we found that millifluidic
IVM (mIVM) improved oocyte mitochondrial membrane potential, intracellular ROS levels,
and mitochondria/ROS colocalization, markers of healthy oocyte cytoplasmic maturation.
In that study, a previously developed 3D mIVM system with COC-including bioprinted
alginate microbeads was used [55] and inserted into the millifluidic device [56].
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The aims of the present study were to analyze the effects of millifluidics on IVM in a
large animal model, such as the sheep. Culture was performed in a transparent bioreactor
under controlled flow rates by comparing three COC culture conditions, i.e., (1) native
COCs with no artificial coating, (2) COCs included in 3D-printed biocompatible modular
supports, and (3) COCs embedded in an alginate-filled supports. The maturation rate and
bioenergetic/oxidative parameters of matured oocytes were assessed and obtained data
were validated through computational models of fluid dynamics and oxygen diffusion.

2. Materials and Methods
2.1. Chemicals

All chemicals for in vitro cultures and analyses were purchased from Sigma-Aldrich
(Milan, Italy), unless otherwise indicated.

2.2. Collection of Ovaries and COC Retrieval

Ovaries from prepubertal lambs (less than 6 months of age) were recovered at local
slaughterhouses, from the animals subjected to routine veterinary inspection in accordance
with the specific health requirements stated in Council Directive 89/556/ECC and sub-
sequent modifications. Ovaries were transported to the laboratory at room temperature
within 4 h after collecting. For COC retrieval, ovaries underwent the slicing procedure [57].
Follicular contents were released in sterile Petri dishes containing phosphate buffered saline
(PBS) and observed under a Nikon SMZ18 stereomicroscope equipped with a transparent
heating stage set up at 37 ◦C (Okolab S.r.l., Napoli, Italy). Only COCs with at least three
intact cumulus cell layers and homogenous cytoplasm were selected for culture [56].

2.3. In Vitro Maturation (IVM)

IVM medium was prepared based on TCM-199 medium with Earle’s salts. It was
buffered with 5.87 mmol/L HEPES and 33.09 mmol/L sodium bicarbonate, and sup-
plemented with 0.1 g/L L-glutamine, 2.27 mmol/L sodium pyruvate, calcium lactate
pentahydrate (1.62 mmol/L Ca2+, 3.9 mmol/L Lactate), 50 µg/mL gentamicin, 20% (v/v)
fetal calf serum (FCS), 10 µg/mL of porcine follicle stimulating hormone (FSH), luteinizing
hormone (LH; Pluset®, Calier, Balcellona, Spain) [58], and 1µg/mL 17β estradiol [57].
IVM medium was pre-equilibrated for 1 h under 5% CO2 in air at 38.5 ◦C, then loaded
(400 µL/well) in a 4-well dish (Nunc Intermed, Roskilde, Denmark) and covered with
pre-equilibrated lightweight paraffin oil. In each experiment, 20–25 COCs/well were added
to a 4-well dish and cultured under conventional static IVM as control (CTRL) or loaded in
a chamber of a commercial Live Box 1 (LB1) bioreactor (IVTech S.r.l.—Massarosa, Italy) and
used to test different mIVM systems, as described in Table 1. In each experiment, in vitro
culture was performed by placing the bioreactor, together with the control 4-well plate, in
the incubator for 24 h at 38.5 ◦C under 5% CO2 in air.

2.4. Native Millifluidic IVM (Native mIVM)

In the first experiment, mIVM was performed by inserting COCs as they are (in the
further text “native COCs”), on the bottom of the culture chamber of a commercial LB1
bioreactor. This culture system has been called “native mIVM” in the further text (Table 1).
The LB1, consisting of a polydimethylsiloxane (PDMS) chamber with a transparent top and
bottom, was designed to reproduce the typical volume of the single well of a 24-well plate
(2 mL) with a flow inlet and an outlet for the perfusion of culture media, was assembled
as described by Mastrorocco et al. (2021) [56]. Briefly, COCs were placed inside the cell
chamber after adding 300 µL of IVM medium. Then, the chamber was hermetically sealed
and filled with an additional 1700 µL of IVM medium through the inlet tube. The bioreactor
was kept for two hours in the incubator to allow the COCs to stabilize at the bottom of the
chamber before flow activation. Two hours after COC loading, the culture chamber was
connected to a millifluidic circuit composed of a mixing chamber, a reservoir of 18 mL with
IVM medium, and a peristaltic pump which permits the circulation of the culture medium.
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A silicone tube connected with a 0.22 µm filter, in the mixing chamber, allowed medium
oxygenation. The flow rate was temporally set at 450 µL/min for the time to quickly fill the
circuit and then regulated to 50 or 100 µL/min, according to the experimental design. Flow
rates were chosen based on previous studies in the sheep which reported that ovarian blood
flow gradually decreases from the order of milliliters/min in the ovarian artery [51,52], to
microliters/min in the capillary network around the developing follicles, varying in relation
to various aspects such as the anatomical district and the ovarian cycle stage [53,54].

Table 1. Nomenclature of used millifluidic IVM (mIVM) culture systems.

Name Description

Control Static IVM in 4-well dish with no inserts.

Native Dynamic mIVM in bioreactor without inserts.

Ring Dynamic mIVM in bioreactor with and ring support placed at
the bottom of the bioreactor chamber.

Concave + ring
Dynamic mIVM in bioreactor with concave support placed at
the bottom of the bioreactor chamber and the ring support
placed on its top.

Concave + ring + plain = Box

Dynamic mIVM in bioreactor with a box obtained by
sequentially assembling the concave support at the bottom of
the bioreactor chamber, the ring on its top and the plain
support used as a lid.

Concave + ring + alginate =
Alginate-filled supports

Dynamic mIVM in bioreactor with COCs embedded in
alginate gel loaded in concave support and ring inserted at
the bottom of the bioreactor chamber.

2.5. mIVM with 3D Printed Biocompatible Supports

In the second experiment, mIVM culture was performed by inserting COCs within
biocompatible supports placed at the bottom of the bioreactor chamber in order to recreate
a protecting structure around them, similar to that of an ovarian follicle or part of it
(Table 1). The supports, consisting of a ring (inner/outer radius = 5.5/7 mm) and a plain
or a concave disk (outer radius 7 mm, maximum depth = 1.5 mm), were designed with
Fusion 360 and fabricated at the Research Center ‘E. Piaggio’, University of Pisa, using
a stereolithographic 3D printer (Form2, FormLabs) loaded with a biocompatible photo-
polymeric material (Dental SG resin, Formlabs) [59]. The configurations tested were: (i) ring;
(ii) concave + ring; (iii) concave + ring + plain (namely ring, concave + ring and “box” in
the further text; Table 1; Figure 1). In all conditions, COCs were uploaded in the chamber
after inserting the supports and adding the first 300 µL of IVM medium. Next, the chamber
was then completely filled, closed, and connected to the pump as described above. The
flow rate was set at 50 µL/min.

2.6. mIVM in Biocompatible Supports Filled with Alginate Gel

In the third experiment, a concave support and a ring were inserted at the bottom of
the bioreactor chamber and filled with alginate gel with the aim to reproduce 3D conditions
for COC culture. Inside the support, 150 µL of 1% w/v sodium alginate pre-equilibrated in
IVM medium was released [55] and, within it and appropriately spaced, 20–25 COCs were
uploaded. This culture condition was named “alginate-filled support” (Table 1). A 100 mM
calcium chloride (CaCl2) solution was then sprayed onto the surface of the gel at the top
edge of the concave support [60]. After this step, CaCl2 was added in droplets to allow
complete alginate jellification and COC trapping. After 5 min, CaCl2 was removed. The
bioreactor was filled with IVM medium, sealed and kept for two hours in the incubator.
After that, it was connected to the reservoir of IVM medium, and a pump set to a flow
rate of 50 µL/min started the millifluidic culture as described above. In each replicate,
20–25 COCs were cultured. After 24 h of IVM culture, sodium alginate was removed by
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calcium chelation with 2% w/v sodium citrate in IVM medium for 5 min at 38.5 ◦C under
5% CO2 in air.
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Figure 1. Set up of mIVM with biocompatible supports. In the higher section, an upper view of
the bioreactor chamber with the ring (A), the concave + ring (B), and the completely assembled box
support (C) at the bottom of the chamber. In the middle section, a schematic drawing of the bioreactor
chamber set up with the ring support (D), the concave support with the ring on the top of it (E), and
the assembled box (F) placed at the bottom of the chamber. In the lower section, close looks at the
ring (G), concave (H), and plain disk (I) supports. Scale bars representing 3.5 mm for (D–I) pictures.

2.7. Assessment of Cumulus Expansion and Oocyte Denuding

After all three types of experiments, COCs were recovered and cumulus expansion
was checked. COCs showing cumuli with continuous edges, consisting of cells in close
contact each other, were classified as compact, whereas cumuli showing discontinuous
edges following cell detachment and production of a viscous extracellular matrix were
classified as expanded. The percentage of expanded COCs was noticed, as it represents
a response of immature oocytes to the presence of gonadotropins in the medium even if
it does not fully ensure that the maturation is achieved. COCs underwent cumulus cell
removal by incubation in TCM-199 with 20% FCS containing 80 IU hyaluronidase/mL and
aspiration in and out of finely drawn glass pipettes. Denuded oocytes were evaluated for
meiotic stage and matured ones were used to assess bioenergetic/oxidative status.

2.8. Oocyte Mitochondria and ROS Staining

Oocytes were washed three times in PBS with 3% BSA and incubated for 30 min
in the same medium containing 280 nmol/L MitoTracker Orange CMTM Ros (Thermo
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Fisher Scientific, Waltham, MA, USA) at 38.5 ◦C under 5% CO2 in air. After incuba-
tion with MitoTracker, oocytes were washed in PBS with 0.3% BSA and incubated for
15 min, at 38.5 ◦C under 5% CO2, in air in the same medium containing 10 µmol/L 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCF-DA) to detect the dichlorofluorescein (DCF)
and localize intracellular sources of ROS [61]. After incubation, oocytes were washed in
PBS without BSA and fixed overnight at 4 ◦C in 4% paraformaldehyde (PFA) solution in
PBS [62]. Particular attention was applied to avoid sample exposure to the light during
staining and fixing procedures and to reduce photobleaching.

2.9. Oocyte Nuclear Chromatin Evaluation

To evaluate oocyte nuclear chromatin, after the fixation in 4% PFA in PBS, oocytes were
stained with 2.5 µg/mL Hoechst 33,258 in 3:1 (v/v) glycerol/PBS mounted on microscope
slides with coverslips, sealed with nail polish, and kept at 4 ◦C in the dark until observation.
Slides were examined under the epifluorescence microscope (Nikon Eclipse 600; Nikon
Instruments, Firenze;×400 magnification) equipped with a B-2A (346 nm excitation/460 nm
emission) filter. Oocytes were evaluated in relation to their meiotic stage, and classified as
germinal vesicle (GV), metaphase to telophase I (MI to TI) and MII with the first polar body
extruded [63]. Oocytes showing either multipolar meiotic spindle, irregular chromatin
clumps, or absence of chromatin were considered as abnormal [55].

2.10. Assessment of Mitochondrial Distribution Pattern and Intracellular ROS Localization

Oocytes at the MII stage were observed at ×600 magnification in oil immersion with a
Nikon C1/TE2000-U laser scanning confocal microscope (Nikon Instruments, Firenze). A
543 nm helium/neon laser and the G-2A filter were used to detect the MitoTracker Orange
CMTM Ros (551 nm excitation and 576 nm emission). A 488 nm argon ion laser and the
B-2A filter were used to detect DCF (495 nm excitation and 519 nm emission). Scanning was
conducted with 25 optical sections from the top to the bottom of the oocytes, with a step
size of 0.45 µm to allow 3D distribution analysis. The mitochondrial distribution pattern
was evaluated on the basis of previous studies: (1) finely granular, with small mitochondria
aggregates spread throughout the cytoplasm, typical of immature oocytes; (2) perinuclear
and subplasmalemmal (P/S) distribution of mitochondria forming large granules, which
is indicator of cytoplasmic maturity; (3) abnormal, with irregular distribution of mito-
chondria [62]. Concerning intracellular ROS localization, oocytes with intracellular ROS
distributed throughout the cytoplasm, together with areas/sites of mitochondria/ROS
overlapping, were considered healthy.

2.11. Quantification of Mitochondrial Activity, Intracellular ROS Levels, and Mitochondria-ROS
Colocalization

In each individual oocyte, MitoTracker and DCF fluorescence intensities were mea-
sured at the equatorial plane and at the excitation/emission, as described above by use
of EZ-C1 Gold Version 3.70 image analysis software platform for Nikon C1 confocal mi-
croscope. A circular area was drawn in order to measure only the region including cell
cytoplasm. The fluorescence intensity within the programmed scan area was recorded
and plotted against the conventional pixel unit scale (0–255). Mitochondrial activity and
intracellular ROS levels were recorded as MitoTracker Orange CMTM Ros and DFC fluores-
cence intensity in arbitrary densitometric units (ADU). Parameters related to fluorescence
intensity, such as laser energy, signal detection (gain), and pinhole size, were maintained
at constant values for all measurements. The degree of mitochondria-ROS colocalization,
reported as a biomarker of healthy oocytes [62,63] was quantified by the overlap coefficient
between MitoTraker Orange CMTM Ros and DCF fluorescence intensity signals.

2.12. Computational Models of Millifluidic IVM Systems

To evaluate the effects of flow on COC in vitro cultures, computational models of
tested culture systems were developed in collaboration with the Research Center ‘E.
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Piaggio’ of the University of Pisa. The models were implemented in COMSOL Multi-
physics (Stockholm, Sweden), coupling incompressible Navier–Stokes and CRD equa-
tions. The bioreactor was modeled as a cylindrical chamber with PDMS lateral walls
(oxygen permeability = 3.78 × 10−11 mol m m−2 s−1 mmHg) [64,65], while the static well
was implemented as a cylindrical geometry with a media layer of 2.1 mm covered by an
oil layer of 2.1 mm. The support geometries were imported from the Fusion 360 files and
placed at the bottom of the bioreactor reproducing the different configurations investigated.
The fluid viscosity of the culture medium was assumed equal to that of water at 37 ◦C
(i.e., 0.6913 mPa × s), while the oxygen diffusion coefficient was assumed equal to 3 × 10−9

in the media and 2.5 × 10−9 m2/s in the alginate gels [66] and to 2 × 10−9 m2/s in the oil
layer [67]. Finally, COCs were modeled as spheres with 0.3 mm radius (number = 21) and a
consumption rate (OCR = 4 pmol/min) estimated from data reported in the literature for
bovine COCs [68]. The initial oxygen concentration and the oxygen partial pressure were
set at 0.21 mol/m3 and 159 mmHg, respectively.

2.13. Statistical Analysis

The proportions of oocytes showing different chromatin configurations and mito-
chondria distribution patterns were compared between groups by the Chi-square test.
Mitochondria and ROS quantification analysis was conducted on oocytes at MII stage.
Data (mean ± standard deviation [SD]) were compared by one-way ANOVA followed by
Dunnett’s Multiple Comparison Test. Differences with p < 0.05 were statistically significant.

3. Results
3.1. Native mIVM Did Not Sustain Oocyte Nuclear and Cytoplasmic Maturation

In experiment 1, in three independent runs, 229 COCs were cultured and 222 of them
were evaluated. Under both flow rates of 50 and 100 µL/min, after 24 h mIVM, COCs
were found at the edges of the bioreactor chamber. The cumulus expansion rate was 25%
compared to 100% of COCs cultured in control static IVM. In mIVM, the percentage of
oocytes which reached the MII stage was significantly lower than in controls (p < 0.001,
Table 2). Conversely, the percentage of oocytes that remained at the MI-TI stages was
significantly increased either at 50 µL/min (p < 0.01, Table 2) or at 100 µL/min (p < 0.001,
Table 2). Moreover, a statistically significant increase of the percentage of oocytes show-
ing abnormal chromatin configurations, such as multipolar meiotic spindle or irregular
chromatin clumps, was observed (p < 0.05, Table 2).

Table 2. Effects of native mIVM on sheep oocyte nuclear maturation.

Flow Rate
n. of n. of Nuclear Chromatin Configurations

n. (%)Cultured COCs Analyzed

(µL/min) (Runs) COCs GV MI to TI MII Abnormal

0 (CTRL) 76 (3) 75
12 8 a 49 a 6 a

(16) (11) (65) (8)

50 78 (3) 75
14 24 c 20 d 17 b

(19) (32) (27) (23)

100 75 (3) 72
12 27 d 18 d 15 b

(17) (38) (25) (21)
Table legend: GV: Germinal Vesicle; MI: Metaphase I; TI: Telophase I; MII: Metaphase II. Chi square test:
a,b: p < 0.05; a,c: p < 0.01; a,d: p < 0.001.

In most of the control MII oocytes, the mitochondria distribution was P/S, which is
a biomarker of cytoplasmic maturity (Table 3). Instead, after mIVM, either under 50 or
100 µL/min flow rate, significantly higher proportions of MII oocytes with finely granular
mitochondria distribution were found (p < 0.05 and p < 0.01, respectively; Table 3 and
Figure 2) with corresponding reduction of the percentage of oocytes with healthy P/S
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pattern (p < 0.05 and p < 0.001, respectively; Table 3 and Figure 2). At both tested con-
ditions, oocyte mitochondrial membrane potential, ROS levels, and mitochondria/ROS
colocalization were significantly reduced compared with controls (p < 0.001; Figure 2).
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Figure 2. Effects of native mIVM performed at 50 or 100 µL/min on mitochondria activity, intracellu-
lar ROS levels, and mitochondria/ROS colocalization of sheep MII oocytes. Numbers of analyzed
matured oocytes are indicated at the bottom of each graph bar. One-way ANOVA, Dunnett’s Multiple
Comparison Test: comparisons mIVM versus control *** p < 0.001.
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Table 3. Effects of native mIVM on mitochondria distribution pattern of sheep MII oocytes.

Flow Rate
n. of

Mitochondria Distribution Pattern
n. (%)

Analyzed

(µL/min)
Oocytes

(Runs) Finely Granular Perinuclear/Subcortical Abnormal

0 (CTRL) 49 (3)
16 a 31 a 2 a

(33) (63) (4)

50 20 (3) 14 b 5 b 1
(70) (25) (5)

100 18 (3)
15 c 2 d 1 b

(83) (10) (6)

Chi square test: comparisons CTRL vs. mIVM: a,b = p < 0.05; a,c = p < 0.01; a,d = p < 0.001.

3.2. mIVM with Open Biocompatible Supports Sustain Oocyte Nuclear and Cytoplasmic Maturation

Based on the results of experiment 1, in Experiment 2, the effects of including the
COCs in biocompatible supports placed inside the culture chamber, were tested. The
oocytes were cultured in six replicates. In each replicate, at least one or two test conditions
were examined and compared to the controls. A total of 372 COCs were cultured and
348 COCs were analyzed. By using the ring support, after mIVM, cumulus expansion
was 50% compared with 100% of control COCs. The percentage of oocytes reaching the
MII stage was lower compared to controls (p < 0.05; Table 4). When the concave support
and the ring support were tested, cumulus expansion reached 80% and the percentage
of matured oocytes returned to be comparable to that of static controls. Instead, in the
box support, cumulus expansion was reduced (20%) and oocyte nuclear maturation was
inhibited (p < 0.001, Table 4). Figure 3 shows COCs cultured under native mIVM (A), with
the ring (B) and the concave + ring (C) supports.

Table 4. Effects of mIVM with biocompatible supports on sheep oocyte nuclear maturation.

Support Type

n. of
Analyzed

COCs
(Runs)

n. of
Evaluated

COCs

Nuclear Chromatin Configurations
n. (%)

GV MI to TI MII Abnormal

CTRL 150 (6) 144
20 a 9 a 101 a 14
(14) (6) (70) (10)

Ring 70 (3) 59
6 12 c 31 b 10

(10) (20) (53) (17)

Concave + Ring 75 (3) 69
2 b 19 d 44 4
(3) (27) (64) (6)

Concave + Ring + Plain
(Box)

77 (3) 76
33 d 18 d 14 d 11
(43) (24) (18) (15)

Table legend: GV: Germinal Vesicle; MI: Metaphase I; TI: Telophase I; MII: Metaphase II. Chi square test:
a,b: p < 0.05; a,c: p < 0.01; a,d: p < 0.001.

Both the mature oocytes obtained by mIVM culture in the presence of ring and
concave + ring supports showed healthy P/S type mitochondrial distribution pattern
comparable to the controls (Table 5). On the contrary, after mIVM in the box support,
the percentage of matured oocytes with P/S mitochondrial distribution pattern was sig-
nificantly reduced (p < 0.05, Table 5), with a significantly higher percentage of matured
oocytes showing abnormal, particularly large mitochondria granulations spread all over
the cytoplasm or located in specific cytoplasmic domains (p < 0.001, Table 5 and Figure 4).
In oocytes matured with the ring support, mitochondrial activity, ROS levels, and mito-
chondria/ROS colocalization were significantly reduced compared to controls (p < 0.001;
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Figure 4). In MII oocytes derived from mIVM with concave + ring, no differences were no-
ticed for mitochondrial activity and ROS levels compared with controls. However, as both
values were higher than controls, a statistically significant increase in mitochondria/ROS
colocalization was found (p < 0.001; Figure 4). For oocytes matured in the box support,
quantification parameters did not differ with those of controls.
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Table 5. Effects of mIVM with biocompatible supports on mitochondria distribution pattern of sheep
MII oocytes.

Supports n. of Analyzed
Oocytes (Runs)

Mitochondria Distribution Pattern
n. (%)

Finely Granular P/S Abnormal

CTRL 101 (6)
51 47 a 3 a

(50) (47) (3)

Ring 31 (3)
20 11 0

(65) (35) (0)

Concave + Ring 44 (3)
26 18 0

(59) (41) (0)

Concave + Ring + Plain
(Box)

14 (3)
8 1 b 5 d

(57) (7) (36)

Chi square test: a,b: p < 0.05; a,d: p < 0.001.

3.3. D-mIVM in Alginate Layer Sustain Oocyte Nuclear and Cytoplasmic Maturation

In Experiment 3, the effects of mIVM with COCs included in supports filled with an
alginate layer were analyzed. A total of 150 oocytes were processed in three independent
runs and 146 of them were analyzed. After 24 h of IVM in alginate-filled supports, cumulus
expansion ranged between 80 and 100%, and the percentage of MII oocytes was comparable
to that of controls (Table 6). Additionally, no differences in mitochondria distribution
pattern were found compared to controls (Table 7). These MII oocytes showed increased
mitochondrial activity (p < 0.05), ROS levels (p < 0.001; Figure 5), and mitochondria/ROS
colocalization (p < 0.05; Figure 5). Figure 6 shows representative photomicrographs of
oocytes cultured in the analyzed condition. It can be seen that oocytes matured in alginate-
filled supports showed P/S mitochondria distribution pattern and increased mitochondria-
and ROS-related fluorescence intensities.



Cells 2022, 11, 3611 11 of 19
Cells 2022, 11, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. Effects of mIVM with biocompatible (ring; concave + ring; box) supports on mitochondria 
activity, intracellular ROS levels and mitochondria/ROS colocalization of sheep MII oocytes. 
Numbers of analyzed matured oocytes are indicated at the bottom of each graph bar. One-way 
ANOVA, Dunnett’s Multiple Comparison Test: comparisons mIVM versus control *** p < 0.001. 

  

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

CTRL Ring Concave + Ring Box

A
rb

itr
ar

y 
de

ns
ito

m
et

ric
 u

ni
ts 

(A
D

U
)

△Ψm

***

0

200

400

600

800

CTRL Ring Concave + Ring Box

A
rb

itr
ar

y 
de

ns
ito

m
et

ric
 u

ni
ts 

(A
D

U
)

ROS levels

***

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

CTRL Ring Concave + Ring Box

O
ve

rla
p 

Co
ef

fic
ie

nt

Mitochondria/ROS colocalization

***

***
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

n = 101 n = 31 n = 44 n = 14

n = 101 n = 31 n = 44 n = 14

n = 101 n = 31 n = 44 n = 14

Figure 4. Effects of mIVM with biocompatible (ring; concave + ring; box) supports on mitochondria
activity, intracellular ROS levels and mitochondria/ROS colocalization of sheep MII oocytes. Num-
bers of analyzed matured oocytes are indicated at the bottom of each graph bar. One-way ANOVA,
Dunnett’s Multiple Comparison Test: comparisons mIVM versus control *** p < 0.001.
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Figure 5. Effects of mIVM in alginate-filled supports on MII sheep oocyte mitochondria activity,
intracellular ROS levels, and mitochondria/ROS colocalization. Numbers of analyzed matured
oocytes are indicated at the bottom of each graph bar. Student’s t-test: * p < 0.05; *** p < 0.001.
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Figure 6. Effects of mIVM on sheep oocyte bioenergetic/oxidative status. Photomicrographs showing
representative images of matured oocytes derived from static IVM (CTRL; (a)); native mIVM (b);
in alginate-filled supports (c). Corresponding epifluorescence images showing nuclear chromatin
configuration (column 1: Hoechst 33258) and confocal images showing perinuclear and subplas-
malemmal (P/S; (a,c)) or finely granular (b) mitochondrial distribution pattern and activity (column 2:
MitoTracker Orange CMTM Ros), intracellular ROS localization and levels (column 3: DCDHF DA),
and mitochondria/ROS colocalization (column 4: Merge). Confocal images were taken at the oocyte
equatorial plane. Scale bars represent 40 µm.

Table 6. Effects of mIVM in alginate-filled supports on sheep oocyte nuclear maturation.

Alginate

n. of
Analyzed

COCs
(Runs)

n. of
Evaluated

COCs

Nuclear Chromatin Configurations
n. (%)

GV MI to TI MII Abnormal

CTRL 75 (3) 74
11 10 37 16 a

(15) (13) (50) (22)

+ 75 (3) 72
11 16 38 7 b

(15) (22) (53) (10)

Chi square test: a,b = p < 0.05.
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Table 7. Effects of mIVM in alginate-filled supports on MII sheep oocyte mitochondria distribution
pattern.

Alginate

n. of
MII Analyzed

Oocytes
(Runs)

Mitochondria Distribution Pattern
n. (%)

Finely Granular Perinuclear/Subcortical

CTRL 37 (3)
17 20

(46) (54)

+ 34 (3)
22 12

(65) (35)
Chi square test: Not significant.

3.4. Shear Stress and Oxygen Concentration Modulation in the Different IVM Configurations

In the native mIVM, maximum shear stress values on the COCs were higher at
100 µL/min (6.18 × 10−6 Pa) than 50 µL/min (3.25 × 10−6 Pa). Average oxygen con-
centrations were higher (0.196 mol/m3, for both 50 and 100 µL/min) compared to the static
well controls (0.188 mol/m3).

In the ring and concave + ring configurations, shear stress values were comparable
with the bioreactor set at 50 µL/min in native conditions (3.14 × 10−6 and 3.28 × 10−6 Pa)
and average oxygen concentrations were not significantly increased with respect to static
conditions (0.184 and 0.182 mol/m3, respectively). Differently, in the box configuration,
despite protection of COCs from flow and shear stress, oxygen concentration was lower
(0.146 mol/m3).

Finally, in the alginate-filled support, due to the presence of alginate, direct flow rate
was absent and so the shear stress and average oxygen levels resulted as being equal to
0.182 mol/m3.

Figure 7 shows the CFD and oxygen CRD models and relative data for all the examined
conditions.
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4. Discussion

The first step of this study was to investigate whether the native mIVM, without any
kind of protective or 3D-inclusive support, could be advantageous for COC maturation.
This hypothesis was formulated on the basis on previous studies in other cell systems,
which showed that millifluidic cell cultures improve nutrient and oxygen supply [65,69–71].
To the best of our knowledge, this is the first study on native mIVM in sheep, a large animal
model. In a previous study from our unit, we found that mIVM, not even increasing the
maturation rate, boosted oocyte bioenergetic/oxidative status compared with the static
conditions. However, in that study, a 3D-IVM system was used by constructing COC-
including alginate microbeads via bioprinting technologies [56]. Differently, in this study,
we wanted to test direct effects of mIVM itself on the COC. To our knowledge, this is the
first study analyzing the effect of dynamic mIVM on immature oocytes of farm animals not
submitted to superovulation treatments but derived from the spontaneous ovarian cycle,
which are suitable models for fertility rescue or preservation programs in both humans and
in animals. Previous studies were performed in oocytes from superovulated mice [47,48]
or in bovine oocyte by using a microfluidic but not dynamic system [49]. The results
of the first experiment clearly indicated that exposure of native COCs to the tested flow
conditions did not support oocyte nuclear and cytoplasmic maturation, as most of the
oocytes did not reach the MII stage, and a few matured oocytes showed compromised
bioenergetic/oxidative status.

In order to evaluate the reasons for such significant oocyte damage, computational
models of the tested culture systems were developed. As shown by the CFD models, the
shear stress on COCs was found to increase correspondingly to the flow rate. Moreover,
according to the CRD computation, higher average oxygen concentrations were found with
respect to static well controls. Thus, these conditions may have negatively affected COC
maturation, and may be responsible for observed inhibition of oocyte meiotic maturation
and mitochondrial unbundling and reduced activity. Indeed, in vivo, COCs are not directly
exposed to blood flow and nutrients, and oxygen reaches them by diffusion from capillar-
ies. It is worth mentioning that ovaries have a complex blood supply system required to
support ovarian functions. For example, in the sheep model as well as in humans, growing
follicles are found in the corticomedullary border, a region particularly well-supplied with
blood vessels [72]. Follicle microvasculature never passes beyond the basal lamina before
ovulation when it invades into the granulosa layer [73,74]. The ovarian vasculature is
involved in oxygen tension regulation as oxygen released from capillaries first reaches the
thecal cells and then lower amounts diffuse through the basement membrane to reach the
multiple layers of granulosa cells and the COC. The oxygen concentration at the follicle sur-
face in developing human follicles is predicted with a range of 0.121–0.131 mol/m3 [50,75].
Due to the lack of direct blood supply, as the diameter of ovarian follicles greatly increases
during follicle maturation, the diffusion distance for gasses inside the follicle also increases,
and this led to a continuous decrease of oxygen concentration in the follicular fluid during
follicular maturation, reaching the lowest levels in preovulatory follicles [50,76,77]. These
data are in line with compromised COC maturation found under flow rate and oxygen
concentrations higher than those of physiological conditions.

Based on the results of experiment 1 and information of in vivo condition reported
in the literature, in experiment 2, we evaluated whether the insertion of the COCs in
biocompatible supports, placed inside the culture chamber, could protect the COCs from the
shear stress and from possible side effects of high oxygen levels, maintaining the advantages
of millifluidics (i.e., continuous arrival of new nutrients, the removal of metabolism waste).
By inserting the ring support, less significant cell damage was observed. In fact, the
percentages of nuclear maturation, although reduced compared to the controls, were
almost high as absolute value (53%) and significantly higher than that of IVM culture
in the absence of supports at the same flow rate (53% in Table 4 vs. 27% in Table 2 at
50 µL/min; p < 0.05). Furthermore, the good P/S mitochondrial pattern was preserved
in a percentage comparable to the controls, although the quantification data indicated a
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significant trend towards loss of viability. More evident improvement was obtained by
inserting two supports, the concave one and the ring one, as the nuclear maturation and P/S
mitochondrial pattern were reached at percentages comparable to the controls. Additionally,
quantification data of mitochondria activity and ROS levels tended to increase, indicating
cellular activity and viability, even if they did not attain statistical significance, which was
observed for colocalization. Conversely, the box configuration significantly inhibited oocyte
nuclear maturation and mitochondria distribution, although quantification parameters
were not affected. Computational models revealed that, in the support configurations (ring
and concave + ring), although shear stress values were comparable with those of the native
mIVM culture at 50 µL/min without supports, oxygen concentration did not significantly
increase. Moreover, in both configurations, at the end of the culture time COCs were
found to be much closer together. These two conditions, lower oxygen levels and increased
proximity between COCs, may have had a positive impact on COC culture conditions (e.g.,
by promoting the exchange of signaling molecules). In addition, the concave support may
also have had a positive effect replicating in vivo like curvatures as in previous studies [78].
Differently, in the box configuration, despite COCs being protected from flow, oxygen
concentrations were lower. Indeed, the box configuration had a low oxygen permeability
which may have inhibited oxygen diffusion towards the COCs, thus affecting their major
cellular activities. Moreover, the box configuration may negatively affect waste removal
and nutrients supply. In agreement with these observations, in vitro studies demonstrated
that prevailing low oxygen levels can impact on bovine granulosa cell, inducing their early
luteinization with down-regulation of FSH signaling, cell proliferation and steroidogenesis
beside up-regulation of angiogenesis, glucose metabolism, and inflammatory processes [79].

Finally, the alginate-filled configuration seems to have been the best analyzed con-
dition, since the oocytes that matured in this condition showed an improvement in their
oxidative/bioenergetic status, even at a maturation rate comparable with controls. The
higher COC proximity, concave support curvature, 3D environment provided by the
gel [80], and the absence of direct flow and basal oxygen levels may have recreated an
environment similar to that of the ovarian follicle [80].

In conclusion, the obtained results demonstrate that, in the sheep model, mIVM with
biocompatible supports protects the COCs from direct medium flow and elevated oxygen
concentrations while keeping optimal nutrient supply and waste removal. This result is a
prelude to an improvement of the developmental competence of oocytes matured under
mIVM. This culture method could be applied to oocytes in suboptimal conditions, such
as those recovered from ovine breeds under risk of genetic erosion, from other animal
endangered species, from aged donors, or to oocytes matured after cryopreservation.
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