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Abstract: Long noncoding RNAs (lncRNAs) are recently discovered genetic regulatory molecules that
regulate immune responses and are closely associated with the occurrence and development of various
diseases, including inflammation, in humans and animals. Under specific physiological conditions,
lncRNA expression varies at the cell or tissue level, and lncRNAs can bind to specific miRNAs, target
mRNAs, and target proteins to participate in certain processes, such as cell differentiation and inflamma-
tory responses, via the corresponding signaling pathways. This review article summarizes the regulatory
role of lncRNAs in macrophage polarization, dendritic cell differentiation, T cell differentiation, and
endothelial and epithelial inflammation. In addition, it describes the molecular mechanism of lncRNAs
in acute kidney injury, hepatitis, inflammatory injury of the lung, osteoarthritis, mastitis, and neuroin-
flammation to provide a reference for the molecular regulatory network as well as the genetic diagnosis
and treatment of inflammatory diseases in humans and animals.
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1. Introduction

Inflammation is a timely response of the body against tissue damage caused by
pathogenic infection, chemical exposure, or physical damage, and it is a complex protective
process that requires the interaction of different immune cells to eliminate or neutralize a
harmful stimulus [1]. However, if the prolonged inflammatory response is not properly
controlled, irreversible tissue damage, organ failure, or even death may occur. Long non-
coding RNAs (lncRNAs) are newly discovered noncoding RNAs that are >200 nucleotides
in length, have a limited ability to encode proteins, and have poor sequence conserva-
tion [2,3]. Many lncRNAs are key regulatory agents that participate in specific physiological
and pathological processes via transcriptional or post-transcriptional regulatory mecha-
nisms. LncRNAs participate in the regulation of several biological processes, including
immune responses, inflammatory responses, cell proliferation, differentiation, apoptosis,
and others [4]. In addition, lncRNAs play a key role in inflammation, primarily via the
inflammatory signaling pathways that include JAK-STAT, MAPK, and NF-κB [5–7]. This
article reviews the mechanisms of how lncRNAs are able to regulate the differentiation
and inflammatory processes in different cell types. In particular, this review will focus
on the molecular regulatory mechanisms of lncRNAs associated with the inflammation
of the kidney, lung, liver, and central nervous system, as well as with diseases such as
osteoarthritis (OA) and mastitis. Herein, we have sought to provide a reference for future
in-depth studies on inflammatory diseases in humans and animals.

2. Function and Mechanism of lncRNAs

LncRNAs are synthesized via a pathway similar to that of protein-coding genes, with
comparable histone modification profiles, splicing signals, and exon/intron lengths [8].
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Most lncRNAs are transcribed by RNA polymerase II from genomic loci with chromatin
states similar to those of mRNAs, and they are usually 5′-capped, spliced, and polyadeny-
lated [9,10]. LncRNAs can be classified into sense lncRNAs, antisense lncRNAs, bidirec-
tional lncRNAs, intergenic lncRNAs, and intragenic lncRNAs [11]. Although lncRNAs
were originally considered the “dark matter” of the genome, with advances in molecular
research, they are now recognized as molecules with distinct functional roles that regulate
a range of cellular functions [10,12]. LncRNAs act as a decoy molecule of RNA, thereby
interfering with the binding of transcription factors with the promoter region of target genes
and inhibiting gene transcription. Furthermore, lncRNAs can recruit chromatin modifiers
to regulate chromatin remodeling. Besides, lncRNAs can also play a role as competing
endogenous RNA (ceRNA), i.e., they can compete with and regulate the expression of the
target gene of miRNAs. In addition, lncRNAs can directly bind to mRNAs, causing their
transcriptional inhibition, shear regulation, or direct degradation. Finally, lncRNAs act as
a “bridge” between ribonucleoproteins and proteins to regulate gene expression [13,14].
To summarize, at the epigenetic level, lncRNAs regulate gene expression by modulating
allele expression, chromatin modification, and genomic imprinting. At the transcriptional
level, lncRNAs regulate gene expression by interacting with proteins or DNA. At the
post-transcriptional level, they are involved in regulating mRNA translation, degradation,
and alternative splicing [15].

3. Role of lncRNAs at the Cellular Level

LncRNAs participate in the proliferation and differentiation of macrophages, dendritic
cells (DCs), and T cells as well as in the inflammatory response of endothelial cells and
epithelial cells via different regulatory mechanisms. Different lncRNAs target their specific
miRNAs, genes, or proteins to exert their effects (Table 1).

Table 1. Function of intracellular long noncoding RNAs.

Cell Types lncRNA Target Function References

Macrophages

lncRNA Mirt2
lncRNA NEAT1
lncRNA NEAT1
lncRNA IGHCγ

lncRNA HIX003209
lnc MC

—
miR-125a-5p

—
miR-6891-3p

miR-6989
miR-199a-5p

Regulate macrophage
differentiation,
polarization,

proinflammatory cytokine
release, and inflammatory

injury

[16]
[17]
[18]
[19]
[20]
[21]

Dendritic cells

lncRNA Dpf3
lncRNA NEAT1

lncRNA MALAT1
lncRNA MALAT1

lnc-DC
lnc-DC

HIF-1α
miR-3076-3p

miR-155
miR-155-5p

STAT3
—

Regulate the migration,
maturation,

differentiation, and
inflammatory injury of

dendritic cells

[22]
[23]
[24]
[25]
[26]
[27]

T cells

linc-MAF-4
lncRNA AW112010
lncRNA IFNG-AS1

lncRNA GAS5

—
KDM5A

—
miR-92a-3p

Regulate T cell
differentiation

[28]
[29]
[30]
[31]

Endothelial cells

lncRNA H19
lncRNA OIP5-AS1
lncRNA MALAT1

lncRNA MEG3
lncRNA SNHG12
lncRNA HOTAIR

miR-let-7
miR-98-5p
miR-590
miR-223

miR-25-3p
miR-22

Attenuate endothelial cell
injury

[32]
[33]
[34]
[35]
[36]
[37]

Epithelial cells

lncRNA H19
lncRNA MEG3

lncRNA 105377478
lncRNA Hsp4

lncRNA NEAT1
lncRNA NEAT1
lncRNA TUG1

lncRNA MPNCR

miR-19b
miR-34a
AdipoR1

miR-466m-3p
miR-582-5p
miR-93-5p
miR-223
miR-31

Attenuate epithelial cell
injury

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
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3.1. Role of lncRNAs in Macrophage Polarization

Macrophages, the key members of innate immunity, play vital roles in inflammatory
responses, autoimmune responses against viral infections, and tumorigenesis. In addition,
they participate in adaptive immune responses through antigen processing and presenta-
tion and provide downstream effector functions [46,47]. Of note, the functional transition
of macrophages is closely associated with the pathogenesis of inflammatory diseases [48].
Research has shown that some lncRNAs play important roles in the activation and differ-
entiation of macrophages and are involved in the regulation of macrophage polarization
and inflammatory responses (Figure 1) [49]. In lipopolysaccharide (LPS)-induced mouse
macrophages, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) assists
TLR4 in mediating the activation of the downstream NF-κB signaling pathway. LncRNA
Mirt2 alleviates the inflammatory response after TLR4 activation by inhibiting the Lys63
(K63) ubiquitination of TRAF6 and promotes the anti-inflammatory (M2) polarization of
macrophages, which alleviates macrophage inflammation (Figure 1) [16]. Wang et al. [17]
showed that the expression of lncRNA NEAT1 was significantly increased in LPS-induced
mouse RAW264.7 macrophages. LncRNA NEAT1 increased the expression of TRAF6 and
the phosphorylation of transforming growth factor-β-activated kinase 1 (TAK1) protein
by binding to miR-125a-5p, eventually leading to LPS-induced macrophage polarization
toward M1 and possibly ameliorating LPS-induced sepsis (Figure 1). LncRNA NEAT1 also
upregulates the expression of NLRP3 in macrophages, thereby promoting the occurrence
of inflammatory responses [18]. Moreover, the expression of lncRNA IGHCγ1 is signifi-
cantly upregulated in macrophages, which promotes the expression of TLR4 by binding
to miR-6891-3p, induces the activation of the NF-κB signaling pathway, and aggravates
the TLR4-mediated inflammatory response of macrophages (Figure 1) [19]. Yan et al. [20]
showed that lncRNA HIX003209 promotes the expression of TLR4 and activation of NF-κB
in macrophages by targeting miR-6089. Therefore, knockdown of lncRNA HIX003209 helps
to alleviate inflammation in macrophages and may be useful in developing a therapeutic
strategy for rheumatoid arthritis (Figure 1).
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Figure 1. Mechanism of lncRNAs for regulating macrophage proliferation and differentiation. LncRNA
Mirt2 promotes the M2 polarization of macrophages by inhibiting the Lys63 (K63) ubiquitination of
TRAF6. LncRNA NEAT1 increases the expression of TRAF6 and TAK1 by binding to miR-125a-5p,
eventually leading to M1 polarization of macrophages. Overexpression of lncRNA IGHCγ1 promotes
the activation of the NF-κB signaling pathway by regulating miR-6891-3p/TLR4 axis, thereby aggra-
vating the TLR4-mediated inflammatory response of macrophages. LncRNA HIX003209 promotes the
expression of TLR4 and activation of NF-κB in macrophages by targeting miR-6089.
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The control of monocyte/macrophage differentiation is a complex process that requires
a coordinated expression of stage-specific transcription factors, cytokines, and noncoding
RNAs [50]. During monocyte/macrophage differentiation, PU.1 acts as a transcriptional
repressor to negatively regulate the expression of miR-199a-5p and directly activates lnc-MC.
The upregulation of lnc-MC absorbs miR-199a-5p for the further enhancement of the role of
PU.1 during differentiation. Owing to this process, the inhibition of activin A receptor type
1B gene expression is alleviated, and the transforming growth factor-β (TGF-β) signaling
pathway is activated, which promotes monocyte/macrophage differentiation [21,51]. Thus,
lnc-MC acts as a ceRNA to regulate monocyte production. In summary, the balance between
macrophage M1/M2 polarization has been identified as a key determinant of inflammatory
disease development, and the enhancement of macrophage M2 polarization at an early
stage may reasonably suppress the development of immune and inflammatory responses.
Hence, lncRNAs regulate macrophage M1/M2 polarization homeostasis and function by
binding to specific targets, improve immune responses, and prevent the development of
inflammatory disease.

3.2. Regulatory Effects of lncRNAs on Dendritic Cells

DCs are typical antigen-presenting cells that play a vital role in linking the innate
and adaptive immune processes and influence the pathological mechanisms of various
immune diseases [52]. Owing to the unique role of DCs in immune diseases, researchers
have recently increasingly studied the regulation of lncRNAs in the immune-related disease
mechanisms and pathological processes associated with DCs.

LncRNAs participate in regulating the differentiation and function of DCs via different
regulatory pathways. LncRNA Dpf3 is upregulated in chemokine receptor 7-induced
DC migration. LncRNA Dpf3 binds to HIF-1α, thereby inhibiting DC migration and
alleviating the inflammatory damage caused by their abnormal migration [22]. Zhang
et al. [23] found that the expression of lncRNA NEAT1 was significantly increased during
LPS-induced DC maturation, and miR-let-7i regulates the expression of lncRNA NEAT1
by binding to transcription factor E2F1. Meanwhile, lncRNA NEAT1 acts as a ceRNA
to regulate NLRP3 expression by targeting miR-3076-3p. In experimental autoimmune
myocarditis and heart transplantation mouse models, the knockout of lncRNA NEAT1
reduced the infiltration of inflammatory cells, increased the number of regulatory T (Treg)
cells, and promoted the polarization of DCs to a more tolerant phenotype (Figure 2).
Moreover, lncRNA MALAT1 was involved in the tolerogenic DC induction and immune
tolerance regulation in heart transplantation and experimental autoimmune myocarditis
models. LncRNA MALAT1 promotes the production of DC-specific intercellular adhesion
molecule-3 grabbing nonintegrin (DC-SIGN) and interleukin (IL)-10 by targeting miR-155
in the cytoplasm of DCs, thereby regulating the formation of tolerogenic DCs and leading
to immune tolerance (Figure 2) [24]. LncRNA MALAT1 is significantly downregulated
in oxidized low-density lipoprotein (ox-LDL)-induced DCs. Overexpression of lncRNA
MALAT1 suppresses the production of IL-6, IL-10, CD83, and CD86 by regulating the miR-
155-5p/nuclear factor I/A (NFIA) axis, which inhibits ox-LDL-induced DC maturation and
ultimately alleviates the development of atherosclerosis (Figure 2) [25].

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that
regulates DC differentiation. Lnc-DC binds to STAT3 in the cytoplasm and promotes DC
differentiation via the STAT3 signaling pathway, and knockdown of lnc-DC reduces the
ability of human monocytes to differentiate into DCs [26]. In hepatitis B virus-induced
DCs, knockdown of lnc-DC reduced the expression levels of pSTAT3, TLR9, and SOCS3
and promoted apoptosis in DCs [27]. Thus, lncRNAs play crucial roles in the migration,
maturation, and differentiation of DCs. Different lncRNAs participate in regulating DC
differentiation through various regulatory pathways, improving inflammatory damage
in the body and preventing the occurrence of inflammation. However, limited studies
have focused on the regulatory mechanisms of lncRNAs on DCs. Therefore, additional
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research on this topic may provide a more solid foundation for the diagnosis and treatment
of immune diseases.
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Figure 2. Mechanism of the regulatory role of lncRNAs in dendritic cells. MiR-let-7i regulates the
expression of lncRNA NEAT1 by binding E2F1, and the downregulated lncRNA NEAT1 promotes the
polarization of DCs to a more tolerant phenotype via miR-3076-3p/NLRP3 axis. LncRNA MALAT1
promotes DC-SIGN and IL-10 by targeting miR-155 in the cytoplasm of DCs, thereby regulating
the formation of tolerogenic DCs. Overexpression of lncRNA MALAT1 inhibits DC maturation by
regulating the miR-155-5p/NFIA axis.

3.3. Role of lncRNAs in T Cell-Mediated Inflammation

T cells are the primary component of lymphocytes and perform various biological
functions that help resist disease infection and tumor formation in the body. Mature T
cells are distributed to the thymus-dependent area of peripheral immune organs through
blood flow and can be recycled via the lymphatic vessels, peripheral blood, and tissue
fluid, to exert their functions in cellular immunity and immune regulation. LncRNAs
can regulate T cell differentiation and function via different modes of action. Ranzani
et al. [28] showed that linc-MAF-4 promoted Th1 cell differentiation by inhibiting the Th2
cell-associated transcription factor MAF-4. In addition, lncRNA AW112010 could inhibit
the expression of IL-10 by binding to KDM5A, thereby promoting T cell differentiation
and inhibiting inflammation [29,53]. In inflammatory bowel disease, lncRNA IFNG-AS1 is
selectively overexpressed at genomic loci in T cells, and overexpressed lncRNA IFNG-AS1
promotes the expression of Th1 inflammatory cytokines IFNG and IL-2, which increases
the differentiation of Th1 cells [30]. Liu et al. [31] detected a significant downregulation of
lncRNA GAS5 expression in CD4+ T cells from patients with systemic lupus erythematosus.
The overexpression of lncRNA GAS5 could promote the level of E4 binding protein 4
(E4BP4) through the sponge adsorption of miR-92a-3p, ultimately inhibiting the activation
of CD4+ T cells. Thus, lncRNAs are important regulators of T cell differentiation and
are associated with inflammatory diseases by modulating T cell differentiation. These T
cell-regulating lncRNAs can, therefore, be potential therapeutic targets.

3.4. Role of lncRNAs in Endothelial Cell Inflammation

Atherosclerosis results from a series of inflammatory responses due to vascular en-
dothelial cell injury, and endothelial cell apoptosis disrupts the integrity of the vascular
endothelium. Ox-LDL-induced endothelial cell dysfunction is an important factor in the
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mechanism of atherosclerosis development. Ox-LDL affects atherosclerosis via three path-
ways: endothelial cell injury, inflammatory response, and increased oxidative stress [54,55].

LncRNAs play a critical role in the regulation of endothelial cells and vascular inflam-
mation [56–58], such as lncRNA H19, which was the first lncRNA discovered in 1990 [59].
Cao et al. [32] found that lncRNA H19 expression was significantly upregulated in ox-LDL-
induced human umbilical vein endothelial cells (HUVECs). LncRNA H19 downregulation
could reduce periostin expression levels by targeting miR-let-7, thereby inhibiting inflamma-
tion, apoptosis, and oxidative stress in HUVECs (Figure 3). Zheng et al. [33] found that the
expression of lncRNA OIP5-AS1 was significantly increased in ox-LDL-induced HUVECs, and
knockdown of lncRNA OIP5-AS1 alleviated endothelial cell apoptosis and inflammation via
regulating the miR-98-5p/TLR4/NF-κB pathway. (Figure 3). In addition, lncRNA MALAT1
expression was significantly upregulated in the ox-LDL-induced endothelial cell inflammation
model. LncRNA MALAT1 upregulated STAT3 expression by sponge-adsorbing miR-590,
which promoted the inflammatory response of endothelial cells and reduces the migration
ability of cells. These pathways may provide new diagnostic and therapeutic strategies for the
atherosclerotic cerebrovascular diseases caused by ox-LDL (Figure 3) [34].
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inhibits inflammation and apoptosis in HUVECs by targeting miR-let-7/periostin. Knockdown of
lncRNA OIP5-AS1 alleviates endothelial cell inflammation via regulating miR-98-5p/TLR4/NF-κB
pathway. LncRNA MALAT1 promotes the inflammatory response of endothelial cells via regulating
the miR-590/STAT3 axis. Melatonin prevents endothelial cell apoptosis via lncRNA MEG3/miR-
223/NLRP3 axis in atherosclerosis.

It has been shown that melatonin has substantial anti-inflammatory properties and
plays a vital role in atherosclerosis [60,61]. Zhang et al. [35] showed that lncRNA MEG3
was significantly upregulated in the endothelial cells of ApoE−/− mice treated with a
high-fat diet, ox-LDL-mimicking atherosclerotic human aortic endothelial cells in vitro.
Melatonin reduces the expression of lncRNA MEG3, and the low expression of lncRNA
MEG3 inhibits the apoptosis of aortic endothelial cells via regulation of the miR-223/NLRP3
axis, thereby alleviating atherosclerosis (Figure 3). This indicates that some drugs may be
able to alleviate inflammatory damage in endothelial cells by regulating miR-223 expression
through lncRNAs.

In angiotensin II (Ang II)-induced hypertensive mice and Ang II-induced HUVEC injury
models, Qian et al. [36] found that the expression of lncRNA SNHG12 was significantly
downregulated. The overexpression of lncRNA SNHG12 targeted miR-25-3p to increase the
expression of sirtuin (SIRT) 6. This process alleviates the vascular endothelial injury induced
by hypertension, providing a potential target for the treatment of Ang II-induced hypertension.
In an in vitro uric acid-induced HUVECs injury model, lncRNA-HOTAIR regulated NLRP3
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expression by competitively binding to miR-22, thereby promoting endothelial cell pyroptosis
and inflammatory responses as well as causing renal injury [37]. Hence, elucidating the
molecular mechanisms of lncRNA action in endothelial cells can help to better investigate the
underlying mechanisms of endothelial cell-associated inflammatory diseases.

3.5. Role of lncRNAs in Epithelial Cell Inflammation

LncRNAs perform important functions in epithelial cells. For example, in high glucose-
stimulated retinal pigment epithelial (ARPE-19) cells, the expression of lncRNA H19 was
significantly reduced, and the overexpressed lncRNA H19 targeted miR-19b to increase the
expression of SIRT1, thereby inhibiting the high glucose-induced inflammatory response in
ARPE-19 cells [38]. In addition, lncRNA MEG3 expression was significantly downregulated
in ARPE-19 under high glucose conditions, and the overexpression of lncRNA MEG3
promoted SIRT1 expression by downregulating miR-34a. This process inhibited high
glucose-induced apoptosis and inflammatory factor secretion, indicating a novel idea for
evaluating therapeutic measures for diabetic retinopathy [39].

In NPS-Nd2O3-treated human bronchial epithelial cells, lncRNA loc105377478 pro-
moted NF-κB activation by negatively regulating the expression of AdipoR1, which upreg-
ulated IL-6 and IL-8 expression to promote inflammatory responses in human bronchial
epithelial cells [40]. Ji et al. [41] revealed that the expression of lncRNA Hsp4 in LPS-
induced alveolar epithelial cell MLE-12 was significantly reduced. The overexpressed
lncRNA Hsp4 sponge-acted on miR-466m-3p to increase the expression of DNAJB6 and
inhibit LPS-induced alveolar epithelial cell apoptosis, which may be a potential target for
the diagnosis and treatment of acute lung injury (ALI). Jiang et al. [42] found that knock-
down of lncRNA NEAT1 could reduce HIF-1α expression by binding and interacting with
miR-582-5p, inhibiting PM2.5-induced epithelial–mesenchymal transition (EMT) in lung
bronchial epithelial cells and preventing the acquisition of cancer stem cell-like properties.
In addition, the expression of lncRNA NEAT1 was upregulated in the sera of patients with
sepsis and in the LPS-induced human renal tubular epithelial cell line HK-2. LncRNA
NEAT1 worsened LPS-induced HK-2 cell injury by acting as a sponge for miR-93-5p to
regulate TXNIP expression [43]. Xu et al. [44] revealed that in the LPS-induced HK-2 cell
inflammatory injury model, lncRNA TUG1 inhibited the NF-κB pathway by regulating
the expression of miR-223 and SIRT1, which protected HK-2 cells from the LPS-induced
inflammatory damage.

Of note, lncRNAs are involved in regulating the proliferation and differentiation of
mammary epithelial cells. However, few studies have evaluated lncRNAs in the mammary
epithelial cells of dairy cows, and functional studies are rather lacking [62,63]. In bovine
mammary epithelial cells, lncRNA MPNCR competitively binds to miR-31 as a ceRNA,
upregulates the expression of the miR-31 target gene CAMK2D, and subsequently inhibits
the proliferation of bovine mammary epithelial cells [45]. Therefore, lncRNAs may be used
as a new potential therapeutic target for epithelial cell inflammatory diseases. However,
the function and mechanism of action of lncRNAs in bovine mammary epithelial cells still
need further evaluation.

4. Role of lncRNAs in Inflammatory Diseases

LncRNAs regulate inflammatory factor expression and inflammatory signaling path-
ways by interacting with specific miRNAs, mRNAs, and proteins at the transcriptional and
post-transcriptional levels, ultimately alleviating inflammatory damage. At present, some
progress has been made regarding research on lncRNAs in the diagnosis and treatment
of inflammatory diseases such as acute kidney injury (AKI) [64], liver inflammation [65],
ALI [66], OA [67], mastitis [68], and neuroinflammation [69] (Table 2). This section primar-
ily focuses on the roles of lncRNAs in inflammatory diseases, to provide some reference for
further research on lncRNAs in inflammatory diseases.
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Table 2. Function of long noncoding RNAs in various inflammatory diseases.

Inflammatory Disease lncRNA Target Function References

Acute kidney
injury (AKI)

lncRNA CCAT1
lncRNA GRNDE
lncRNA MALAT1
lncRNA MALAT1

lncRNA PVT1

miR-155
miR-181a-5p
miR-370-3p
miR-146a

—

Alleviate AKI

[70]
[71]
[72]
[73]
[74]

Hepatic
inflammation

lncRNA HOTAIR
lncRNA XIST
lncRNA TUG1
lncRNA TUG1
lncRNA TUG1

lncRNA MALAT1

—
BRD4

miR-140
miR-194

miR-200a-3p
—

Alleviate hepatic
inflammation

[75]
[76]
[77]
[78]
[79]
[80]

Acute lung injury (ALI)

lncRNA XIST
lncRNA XIST

lncRNA MINCR
lncRNA MIAT

lncRNA NEAT1
lncRNA TUG1

miR-370-3p
miR-132-3p

miR-146b-5p
miR-147a

—
miR-34b-5p

Alleviate ALI

[81]
[82]
[83]
[84]
[85]
[86]

Osteoarthritis (OA)

lncRNA HOTAIR
lncRNA HOTAIR
lncRNA OIP5-ASI

lncRNA TUG1
lncRNA ARFRP1

lncRNA FOXD2-AS1
lncRNA MIAT

—
miR-17-5p

miR-29b-3p
—

miR-15a-5p
miR-27a-3p

miR-132

Alleviate OA

[87]
[88]
[89]
[90]
[91]
[92]
[93]

Mastitis

lncRNA H19
lncRNA TUB
lncRNA XIST

LRRC75A-AS1
NONBTAT017009.2
TCONS_00015196
TCONS_00087966
lncRNA MPNCR

—
TUBA1C

—
LRRC75A
miR-21-3p
miR-221
miR-221
miR-31

Alleviate mastitis

[5,94]
[95]
[96]
[3]

[97]
[98]
[98]
[45]

Central nervous system
inflammation

lncRNA MEG3
lncRNA MALAT1
lncRNA MALAT1

lncRNA KCNQ1OT1
lncRNA GAS5
lncRNA GAS5

lncRNA Gm13568
lncRNA DDIT4

lncRNA H19
lncRNA H19
lncRNA ATB

lncRNA HOXA-AS2

miR-7a-5p
—

miR-129
miR-873-5p

PCR2
miR-223-3p

—
DDIT4

miR-129
miR-585-3p

miR-200
PCR2

Alleviate central
nervous system
inflammation

[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]

4.1. Role of lncRNAs in AKI

AKI, one of the most common renal inflammatory diseases, is a syndrome that re-
quires intensive care. Its typical symptom is renal function injury, and the main causes
include sepsis, hypoxia, trauma, and LPS induction. It is characterized by a rapid de-
cline of renal function, which is also the reason for the high incidence rate and patient
mortality in intensive care units [111]. At present, compared with the widely reported
differentially expressed miRNAs associated with various diseases, few functional studies
on lncRNAs in renal cancer have been conducted. In addition, very few lncRNAs are
associated with AKI development. LncRNA CCAT1, one of the first lncRNAs, plays roles in
the pathogenesis of a disease and has a protective effect on AKI. The expression of lncRNA
CCAT1 is decreased in a LPS-induced human renal tubular epithelial cell inflammation
model. LncRNA CCAT1 prevents the LPS-induced renal cells’ apoptosis and inflammatory
injury via regulation of the miR-155/SIRT1 axis. (Figure 4) [70]. Wang et al. [71] showed
for the first time that lncRNA CRNDE inhibited the development of sepsis-induced AKI.
The study revealed that lncRNA CRNDE expression was significantly downregulated in
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LPS-induced AKI in rats with sepsis and that lncRNA CRNDE upregulated peroxisome
proliferator-activated receptor-α (PPAR-α) expression by targeting miR-181a-5p, which
inhibited renal cell apoptosis and inflammatory injury.
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Figure 4. Mechanism of lncRNAs in acute renal injury. LncRNA CCAT1 inhibits the activation of NF-
κB via regulating the miR-155/SIRT1 axis. Paclitaxel binds to MD-2 to block MD-2/TLR4 association,
resulting in the suppression of NF-κB activation. In addition, paclitaxel can protect against AKI via
the regulation of lncRNA MALAT1/miR-370-3p/HMGB1 axis. Knockdown of lncRNA MALAT1
inhibits the activation of NF-κB by targeting miR-146a. Curcumin attenuates the activation of the
JNK/NF-κB signaling pathway by inhibiting lncRNA PVT1, thereby alleviating the inflammatory
response in AKI.

Paclitaxel is currently the most widely used antitumor drug for treating various can-
cers. In recent years, studies have found that paclitaxel may play an anti-inflammatory role,
and it has been confirmed as a potential therapeutic drug, in particular, for AKI [112,113].
In LPS-induced AKI in mice, paclitaxel may bind to MD-2 to block the MD-2/TLR4 associa-
tion, resulting in the suppression of NF-κB activation and inhibition of proinflammatory
cytokine production (Figure 4) [114]. LncRNA MALAT1 was significantly decreased in LPS-
induced HK-2 cells under paclitaxel treatment. LncRNA MALAT1 targeted by miR-370-3p,
thereby inhibiting the expression level of HMGB1 as well as the production of inflamma-
tory factors and, subsequently, alleviating the inflammatory injury of AKI (Figure 4) [72].
Ding et al. [73] revealed that lncRNA MALAT1 regulates the NF-κB signaling pathway
in LPS-induced AKI via the modulation of miR-146a expression, providing new insights
into the complex molecular mechanisms of specific miRNAs and lncRNAs in LPS-induced
AKI (Figure 4). In addition, the expression of lncRNA PVT1 was significantly elevated in
the cells and tissues of LPS-induced AKI in sepsis. Curcumin attenuated the activation of
the JNK/NF-κB signaling pathway by inhibiting lncRNA PVT1, thereby alleviating the
inflammatory response in AKI in sepsis (Figure 4) [74,115].

Although the pathogenic factors of AKI are well-known, its complex biological and
molecular mechanisms need detailed study via clinical and basic research. An in-depth
study of the regulatory mechanism of lncRNA in AKI may be helpful in developing new
therapeutic strategies in the future.

4.2. Role of lncRNAs in Hepatic Inflammatory Diseases

Hepatitis is the general term of liver inflammation, including acute liver injury, alco-
holic liver disease, and liver fibrosis. It is usually caused by various pathogenic factors,
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including viruses, bacteria, alcohol, drugs, etc. [116]. It has been recently shown that
lncRNAs are involved in the regulation of hepatic inflammatory diseases [117,118].

The LPS-induced cell or tissue inflammation model is a common model for studying
lncRNAs in regulating hepatic inflammatory diseases. The expression of lncRNA HO-
TAIR was significantly upregulated in LPS-induced hepatocytes. Overexpressed lncRNA
HOTAIR activated the NF-κB signaling pathway and promoted the expression of IL-1β,
IL-6, and TNF-α, which activated the JAK2/STAT3 pathway and ultimately worsened
LPS-induced inflammatory injury in hepatocytes [75]. Shen et al. [76] found that lncRNA
XIST expression was significantly upregulated in the liver tissue of rats with sepsis-induced
acute liver injury. In addition, they found that lncRNA XIST could directly bind to BRD4,
and knockdown of lncRNA XIST significantly inhibited BRD4 expression and alleviated
inflammatory injury. Liu et al. [77] revealed that lncRNA TUG1 was significantly highly ex-
pressed in LPS-induced mouse liver and silencing lncRNA TUG1 reduced TNF expression
by targeting miR-140, which alleviated LPS-induced hepatocyte inflammation and injury.

SIRT1 is involved in the apoptosis and reversal of activated stellate cells via the
regulation of lncRNA MALAT1, thereby preventing liver fibrosis (Figure 5) [80]. Meanwhile,
drugs or plant extracts can participate in regulating the abnormal expression of lncRNAs,
which may help alleviate inflammatory diseases. Gu et al. [78] found that dexmedetomidine
hydrochloride (DEX) significantly elevated the expression of lncRNA TUG1 in oxygen and
glucose deprivation (OGD)-induced WRL-68 cells. The overexpressed lncRNA TUG1 can
suppress the inflammatory response of hepatocytes in liver injury via miR-194/SIRT1 axis
(Figure 5). In addition, ginsenoside Rg3 increased the expression of lncRNA TUG1, and
the overexpressed lncRNA TUG1 subsequently activated the SIRT1/AMPK pathway by
targeting miR-200a-3p, thus improving liver injury (Figure 5) [79]. In summary, lncRNAs
are involved in regulating the development of liver inflammation. In liver inflammation, the
strategy of regulating lncRNA expression has been successfully implemented in preclinical
models. However, the safety and reliability of lncRNAs in human application still face
great challenges.
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Figure 5. Mechanism of lncRNAs in hepatic inflammatory diseases. DEX suppresses the inflammatory
response of hepatocytes by mediating of lncRNA TUG1/miR-194/SIRT1 axis. Rg3 increases the
expression of lncRNA TUG1 and reduces the expression of miR-200a-3p to stimulate the SIRT1/AMPK
pathway, thus improving liver injury. SIRT1 is involved in the development of liver fibrosis through
the regulation of lncRNA MALAT1.

4.3. Role of lncRNAs in Inflammatory Lung Injury

ALI, one of the inflammatory diseases of the lung, has been studied extensively
in recent years. ALI is a multifactorial disease directly related to conditions such as
pneumonia and pulmonary contusion and closely related to sepsis, endotoxin infection,
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and others. An LPS-induced lung injury model has been widely used in the study of
lung injury [119]. In recent years, researchers have found that some lncRNAs, including
lncRNA MALAT1 [120], lncRNA HOTAIR [121], and lncRNA NLRP3 [122], play a key role
in regulating inflammatory lung diseases.

LncRNA XIST was discovered in the 1990s [123,124]. Increasingly, studies reveal
that lncRNA XIST dysregulation plays an important role in the pathological process of
many diseases, such as coronary artery disease [125], renal fibrosis [126], and myocardial
injury [127]. Moreover, lncRNA XIST significantly increased in the serum from patients with
acute pneumonia and in LPS-induced human lung fibroblasts of WI-38, playing a regulatory
role as a ceRNA. Zhang et al. [81] found that knockdown of lncRNA XIST inhibited the
expression of TLR4 by targeting miR-370-3p, thereby regulating the JAK/STAT3 and NF-κB
signaling pathways, inhibiting cellular apoptosis and the secretion level of inflammatory
cytokines, and reducing LPS-induced cell damage; this process may be used to develop a
strategy for treating acute pneumonia (Figure 6). Li et al. [82] showed that knockdown of
lncRNA XIST alleviated cell death and LPS-induced lung injury by regulating the miR-132-
3p/MAPK14 pathway (Figure 6).
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Figure 6. Mechanism of lncRNAs in lung inflammatory injury. Knockdown of lncRNA XIST regulates
the JAK/STAT3 and NF-κB signaling pathways by targeting miR-370-3p/TLR4, thereby inhibiting
acute pneumonia. Knockdown of lncRNA XIST alleviates acute lung injury by regulating the miR-132-
3p/MAPK14 pathway. Downregulation of lncRNA MINCR regulates the TRAF6 expression levels by
targeting miR-146b-5p, thereby inhibiting NF-κB activation and attenuating ALI. Low expression of
lncRNA MIAT inhibits the activation of NF-κB pathway by targeting miR-147a/NKAP axis, thereby
alleviating the damage of pneumonia.

In LPS-induced ALI, Gao et al. [83] found that the expression of lncRNA MINCR was
significantly upregulated, while downregulation of lncRNA MINCR regulated the TRAF6
expression levels by targeting miR-146b-5p, thereby inhibiting NF-κB activation and inflam-
matory factor secretion and, ultimately, attenuating ALI (Figure 6). The low expression of
lncRNA MIAT reduces NKAP expression by targeting miR-147a, inhibits NF-κB pathway
activation, and alleviates the damage of LPS-induced pneumonia (Figure 6) [84]. According
to Zhou et al. [85], the downregulation of lncRNA NEAT1 inhibits the HMGB1/RAGE-NF-κB
signaling pathway, protecting against LPS-induced alveolar epithelial cell (AECs) injury and
inflammation. In addition, in a sepsis-induced lung injury model, Qiu et al. [86] detected a
low expression of lncRNA TUG1, and overexpression of lncRNA TUG1 ameliorated sepsis-
induced lung injury, secretion of proinflammatory cytokines, and apoptosis by suppressing
miR-34b-5p and promoting GRB2-associated binding protein 1 (GAB1). Therefore, lncRNA
TUG1 may be used as a potential therapeutic target for sepsis-induced ALI.

At present, auxiliary ventilation and drug therapy are the main therapeutic methods
for ALI. However, specific therapeutic targets are still lacking. LncRNAs play important
roles in the pathogenesis of ALI, so they may become new diagnostic and therapeutic
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markers for ALI. Therefore, the regulatory mechanisms and signaling pathways involved
in the pathogenesis of ALI need to be elucidated to provide targeted drugs for clinical
treatment. The abovementioned differentially expressed lncRNAs regulate the occurrence
of inflammatory response in ALI by binding with miRNAs, which may be a potential
therapeutic target and a basis for ALI drug therapy.

4.4. Role of lncRNAs in OA

OA is a progressive joint disease and one of the most common types of arthritis.
Cartilage, subchondral bone, and synovium may all play a key role in the pathogenesis of
the disease [128]. Chondrocyte degeneration is an important factor in cartilage destruction,
and the proper regulation of chondrocyte proliferation, apoptosis, autophagy, and secretion
is the key to prevent and treat OA. It has been reported that lncRNAs participate in the
occurrence and development of OA, and their abnormal expression may lead to change in
cellular behavior [129,130].

IL-1β is produced by various cells, including macrophages, chondrocytes, and syn-
oviocytes, and plays a crucial role in the development of OA [131]. The IL-1β-induced
OA model can further validate the function of related lncRNAs in the occurrence of OA.
Zhang et al. [87] revealed that lncRNA HOTAIR expression was significantly upregulated
in an IL-1β-induced OA model, which promoted the expression of matrix metallopro-
teinases (MMPs) and exacerbated the inflammatory damage in chondrocytes (Figure 7). In
addition, in OA cartilage tissue, the overexpression of lncRNA HOTAIR sponged miR-17-5p
to regulate the expression of fucosyl transferase (FUT2) in chondrocytes and increased
the activity of the Wnt/β-catenin pathway, which aggravated the injury and apoptosis of
chondrocytes (Figure 7). These results provide a new target for the molecular therapy of
OA [88]. LncRNA OIP5-AS1 is a newly discovered lncRNA, and Zhi et al. [89] found that
the expression of lncRNA OIP5-ASI was significantly downregulated in an IL-1β-induced
OA model. The overexpression of lncRNA OIP5-ASI promoted chondrocyte viability and
migration and inhibited apoptosis and inflammation by miR-29b-3p/PGRN (Figure 7).
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Figure 7. Mechanism of lncRNAs in osteoarthritis. In IL-1β-induced OA model, overexpression of
lncRNA HOTAIR promotes the expression of MMPs and exacerbates OA. Overexpression of lncRNA
HOTAIR increases the activity of Wnt/β-catenin pathway by regulating miR-17-5p/FUT2 axis, which
aggravates the injury and apoptosis of chondrocytes. Overexpression of lncRNA OIP5-ASI inhibits
apoptosis and inflammation by targeting miR-29b-3p/PGRN. Emodin inhibits the Notch/NF-κB
pathway by upregulating lncRNA TUG1, which alleviates the apoptotic and inflammatory response
of chondrocytes. LncRNA ARFRP1 is significantly upregulated in LPS-induced chondrocytes, and the
downregulation of lncRNA ARFRP1 inhibits activation of NF-κB signaling pathway by targeting miR-
15a-5p/TLR4 axis. Knockdown of lncRNA FOXD2-AS1 alleviates inflammatory injury by regulating
the miR-27a-3p/TLR4 axis.
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In the LPS-induced OA model, emodin can inhibit the Notch/NF-κB pathway by
upregulating lncRNA TUG1 and alleviate the apoptotic and inflammatory response of chon-
drocytes (Figure 7) [90]. According to Zhang et al. [91], lncRNA ARFRP1 was significantly
upregulated in OA cartilage tissue and LPS-induced chondrocytes. The downregulation of
lncRNA ARFRP1 inhibited activation of NF-κB signaling pathway by targeting miR-15a-
5p/TLR4 axis [91]. This mechanism improves inflammatory damage in OA chondrocytes
and tissues (Figure 7). In addition, lncRNA FOXD2-AS1 increased the mRNA and protein
levels of TLR4 through the sponge action of miR-27a-3p, promoting the inflammatory
response in OA [92]. Thus, knockdown of lncRNA FOXD2-AS1 can alleviate inflammatory
injury by regulating the miR-27a-3p/TLR4 axis (Figure 7). Li et al. [93] showed that the
silencing of lncRNA MIAT could protect ATDC5 chondrocytes from LPS-induced damage,
by targeting miR-132 to inhibit the NF-κB and JNK signaling pathways.

In summary, many lncRNAs are differentially expressed in human OA chondrocytes,
and a few lncRNAs have been confirmed to participate in the inflammatory reaction
process associated with OA chondrocytes, suggesting that inhibiting or overexpressing key
lncRNAs can help treat or alleviate OA. However, most studies on the role of lncRNAs in
OA have used only synovial tissues from patients with OA, and the sample size is relatively
small in these studies. Therefore, a larger sample of patients with OA is needed to further
validate the function of key lncRNAs in OA.

4.5. Role of lncRNAs in Mastitis

Mastitis is mainly caused by the invasion of pathogenic bacteria in the mammary gland
and has complex pathogenesis. The main pathogens that cause mastitis are Staphylococcus
aureus, Streptococcus uberis, and Escherichia coli [132,133]. Compared with advances in the
study of lncRNAs in the regulation of inflammatory diseases in humans and mice, the study
of lncRNAs in the regulation mechanism of mastitis has been slow. Mumtaz et al. [134]
identified 112 differentially expressed lncRNAs in goat mammary epithelial cells induced
by E. coli and S. aureus. In addition, Wang et al. [135] also found 112 differentially expressed
lncRNAs in LPS-treated bovine mammary epithelial cells, and these lncRNAs participated in
inflammation-related signal pathways (i.e., the Notch, NF-κB, MAPK, and PI3K-AKT signal
pathways). A large amount of the lncRNA information in the present study may provide
clues for functional and molecular studies of mammary epithelial cells–bacteria interaction.

In bovine mastitis, research has been primarily concentrated on a few lncRNAs, includ-
ing lncRNA H19, LRRC75A-AS1, lncRNA TUB, and lncRNA XIST. Yang et al. [94] showed
that lncRNA H19 expression was significantly increased in both LPS- and lipoteichoic
acid (LTA)-induced inflammatory MAC-T cells, and the overexpression of lncRNA H19
promoted TGF-β1-induced EMT and the overaccumulation of extracellular matrix (ECM)
proteins, which led to the formation of breast fibrosis (Figure 8). Li et al. [5] reported that
overexpressed lncRNA H19 promoted the activation of the NF-κB pathway, which resulted
in the timely clearance of bacteria and toxic substances, and enhanced the immune response
of MAC-T cells. At the same time, the overexpression of lncRNA H19 can enhance the
expression of MAC-T cell β-casein tight-junction-related proteins (claudin-1, occludin, and
ZO-1) and restores the blood–milk barrier, which is important for the recovery of breast
function after infection. Bovine mastitis usually causes a series of pathological changes
in the body, with lncRNA TUB affecting EMT in the bovine mammary epithelial cells
(bMECs) of cows. Wang et al. [95] identified 1323 lncRNAs in MAC-T cells via bioinfor-
matics; of these, 53 were differentially expressed, and most of the 53 were involved in the
pathogenesis of bovine mastitis. To further evaluate the functions of the predicted mastitis-
associated lncRNAs, a novel lncRNA TUB with significantly upregulated expression was
identified in inflammatory MAC-T. Knockdown of lncRNA TUB significantly reduced
the expression of TUBA1C, leading to EMT and inhibiting cell proliferation, migration,
and β-casein secretion. In addition, lncRNA TUB knockdown promoted the secretion of
TGF-β1 and activated the TGF-β1/Smad pathway to participate in EMT (Figure 8) [95].
Ma et al. [96] found that S. aureus and E. coli-induced bMECs rapidly activated the NF-κB
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signaling pathway, resulting in the upregulation of lncRNA XIST expression. However, the
highly expressed lncRNA XIST negatively inhibited the NF-κB pathway, which inhibited
the formation of NLRP3 and the secretion of inflammatory cytokines, alleviating the in-
flammatory response of mammary epithelial cells in cows (Figure 8). LRRC75A-AS1 is an
approximately 4 kb lncRNA transcribed from the antisense strand of the LRRC75A gene.
LRRC75A-AS1 was significantly decreased in E. coli-induced MAC-T cells. Moreover, the
downregulated LRRC75A-AS1 inhibited the NF-κB pathway by enhancing the expression
of TJ protein, thereby alleviating the inflammatory response of MAC-T cells (Figure 8) [3].
Zhang et al. [97] found that lncRNA NONBTAT017009.2 interacted with miR-21-3p to up-
regulate IGFBP5 expression, which subsequently decreased the viability and proliferation
of bMECs and reduced lactation performance in cows. Yang et al. [98] showed that lncRNA
TCONS_00015196 and lncRNA TCONS_00087966 improved the proliferation and viability
of bMECs by targeting miR-221. Meanwhile, lncRNA MPNCR inhibited the proliferation
of bMECs via the miR-31/CAMK2D axis [45].
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Figure 8. Mechanism of lncRNAs in the modulation of mastitis. Overexpression of lncRNA H19
promotes TGF-β1-induced EMT via PI3K/AKT signaling pathway. Knockdown of lncRNA-TUB results
in the downregulation of TUBA1C and the upregulation of TGF-β1, and the increased secretion of
TGF-β1 activates the TGF-β1/Smad pathway, ultimately promoting EMT. LncRNA XIST mediates cell
proliferation, viability, and apoptosis via generating a negative feedback regulation of NF-κB/NLRP3
inflammasome pathway. Downregulated LRRC75A-AS1 inhibits the NF-κB pathway by enhancing the
expression of TJ protein, thereby alleviating the inflammatory response of MAC-T cells.

The pathogenesis and progression of mastitis are extremely complex processes. It
has been confirmed that lncRNAs are closely associated with mastitis, but the molecular
mechanism of lncRNAs in regulating mastitis is yet unclear. Only a few differentially
expressed lncRNAs have been identified in mastitis, so more lncRNAs need to be evaluated
to provide new ideas for the diagnosis and treatment of mastitis.

4.6. Role of lncRNAs in Central Nervous System Inflammation

Inflammation in the central nervous system (CNS) mainly includes traumatic brain
injury (TBI), multiple sclerosis (MS), and neurodegenerative diseases such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD) [136,137]. Microglia, the resident macrophages
of the CNS, play an important physiological function in CNS inflammation and maintaining
tissue homeostasis [138,139]. Several studies have shown that lncRNAs can regulate
M1/M2 polarization of microglia and act as a biomarker of CNS inflammation [140–143].
Moreover, scholars recently revealed that many lncRNAs participate in regulating the
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processes of CNS inflammation (Table 3, Figure 9), which will lay a foundation for the
development of molecular therapy strategies for CNS inflammation.

Table 3. The role of lncRNAs in the regulation of central nervous system inflammation.

lncRNA CNS Inflammation Type Expression Molecular Mechanism References

lncRNA MEG3 TBI Upregulated

LncRNA MEG3 regulates microglia
activation and inflammatory

response by targeting the
miR-7a-5p/NLRP3 axis.

[99]

lncRNA MALAT1 TBI Downregulated

Overexpression of lncRNA MALAT1
reduces the expression of IL-6,

NF-κB, and AQP4, thereby
alleviating TBI-induced

inflammatory injury.

[100]

lncRNA KCNQ1OT1 TBI Upregulated

Knockdown of lncRNA KCNQ1OT1
can promote M2 polarization in

microglia by targeting the
miR-873-5p/TRAF6 axis, thereby

alleviating the TBI-mediated
inflammatory response (Figure 9).

[102]

lncRNA GAS5 MS Upregulated

LncRNA GAS5 represses TRF4
transcription by binding to PCR2,
thereby inhibiting microglia M2

polarization and, ultimately,
exacerbating the progression of MS

(Figure 9).

[103]

lncRNA DDIT4 MS Upregulated
Overexpression of lncRNA DDIT4

alleviates the development of MS by
inhibiting the DDIT4/mTOR axis.

[106]

lncRNA Gm13568 MS Upregulated

Inhibition of lncRNA Gm13568
attenuates the activation of Notch

signal pathway, thereby alleviating
demyelination in EAE mice.

[105]

lncRNA H19 AD Upregulated
LncRNA H19 inhibits AD cell

apoptosis and oxidative stress by
targeting the miR-129/HMGB1 axis.

[107]

lncRNA ATB AD Upregulated

Inhibition of lncRNA ATB alleviates
development of AD by targeting

miR-200 to inhibit the expression of
HMGB1.

[109]

lncRNA H19 PD Downregulated

Overexpression of lncRNA H19
upregulates PIK3R3 expression by

targeting miR-585-3p, thereby
attenuating MTPT-induced neuronal

apoptosis.

[108]

lncRNA HOXA-AS2 PD Upregulated

Knockdown of lncRNA HOXA-AS2
can increase PGC-1α expression by

binding to PCR2, thereby promoting
microglia M2 polarization and

ultimately alleviating the
development of PD (Figure 9).

[110]

lncRNA MALAT1 PD Upregulated

Resveratrol inhibits the expression of
lncRNA MALAT1 in PD mice, and

the low expression of lncRNA
MALAT1 can reduce the expression

of SNCA by targeting miR-129,
thereby inhibiting neuronal

apoptosis and alleviating PD.

[101]

lncRNA GAS5 PD Upregulated

LncRNA GAS5 exacerbates PD
development by targeting and

regulating the miR-223-3p/NLRP3
axis (Figure 9).

[104]
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Figure 9. Mechanism of lncRNAs in the modulation of CNS inflammation. Knockdown of lncRNA
KCNQ1OT1 promotes M2 polarization in microglia by targeting the miR-873-5p/TRAF6 axis.
LncRNA GAS5 represses TRF4 transcription by binding to PCR2, thereby inhibiting microglia M2
polarization. Knockdown of lncRNA HOXA-AS2 increases PGC-1α expression by binding to PCR2,
which, consequently, promotes microglia M2 polarization. LncRNA GAS5 suppresses transcription
of TRF4 by recruiting the PRC2, thus inhibiting M2 polarization. LncRNA GAS5 accelerates PD
progression by targeting miR-223-3p/NLRP3 axis.

5. Conclusions and Future Perspectives

LncRNAs regulate the expression of coding genes by binding to miRNA, mRNA,
DNA, or proteins. LncRNAs regulate inflammatory responses as well as the proliferation,
differentiation, and polarization of many immune cells. At the physiological level, they
regulate renal inflammation, hepatic inflammation, pneumonia, OA, mastitis, and central
system inflammation. Therefore, elucidating the molecular mechanism of lncRNAs in
immune regulation can provide novel strategies for the development of early diagnostics
and molecular therapy for inflammatory diseases. In humans and animals, although many
lncRNAs have been identified and have been shown to be potential molecular markers
for the diagnosis and prognosis of several diseases, most available evidence is derived
from in vitro or cell line studies, and the specificity and sensitivity of these lncRNAs are
still insufficient for clinical application. In addition, conservation among species limits the
validation of lncRNAs functions in vivo, and further large-scale prospective studies are
necessary. In addition, a large number of differentially expressed lncRNAs are associated
with cellular or systemic inflammation. The functions of the more effective lncRNAs
associated with inflammatory diseases should be explored to supplement the involved
molecular network and provide avenues for developing clinical molecular therapy for
inflammatory diseases.
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