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Abstract: The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while
others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively man-
aging the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately
risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and
invasive treatments. The immune system mounts the most important line of defense against tumori-
genesis and progression. Unfortunately, this defense declines or “ages” over time—a phenomenon
known as immunosenescence. This results in “inflamm-aging” or the excessive infiltration of pro-
inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment,
and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions.
Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The
erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and inter-
nalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative
DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at
higher risk of developing breast cancer and disease progression at a younger age. However, the role of
DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein,
we review compelling evidence suggesting that DARC may be protective against inflamm-aging and,
therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence
supporting that immunotherapeutic intervention—based on DARC status—among high-risk subpop-
ulations may evade malignant transformation and progression. A closer look into this unique role of
DARC could glean deeper insight into the immune response profile of individual high-risk patients
and their predisposition to progress as well as guide the administration of more “cyto-friendly”
immunotherapeutic intervention to potentially “turn back the clock” on inflamm-aging-mediated
oncogenesis and progression.

Keywords: duffy antigen receptor for chemokines; duffy null allele; inflamm-aging; immunosenescence;
oncogenesis; high-risk; breast cancer

1. Introduction

Breast cancer is the second largest contributor to cancer-related deaths among Amer-
ican women [1]. Roughly one in eight American women will be diagnosed with breast
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cancer [2]. Under the age of 40, Black/African-American (AA) women experience signifi-
cantly higher incidence rates of breast cancer than White/European-American (EA) women
and notably higher mortality rates from breast cancer at any age [2].

The immune system, perhaps, mounts one of the most important first lines of defense
against breast oncogenesis and progression [3]. This line of defense includes innate and
adaptive immune responses, which release critical immune cells to launch an antitumor
attack [4]. However, as we age, so does our immune system, which increases susceptibility
to malignant transformation and progression. Thus, the risk of breast oncogenesis rises
with increasing age [5]. This decline in immune system function as a function of time is
often referred to as immunosenescence, which results in “inflamm-aging”, or remodeling
of the inflammatory and anti-inflammatory networks [6]. Immunosenescence and inflamm-
aging pose a major threat to the ability of tissues to thwart neoplastic transformation and
progression via secreting protumorigenic chemokines, increasing infiltration of immuno-
suppressive cells, and expansion of age-remodeled leukocytes that have diminished in
their antitumor immune functions into the tissue microenvironment [7–11]. Researchers
have been investigating the molecular mechanisms underlying the predisposition of certain
cells to undergo accelerated inflamm-aging for improved disease risk-prediction and thera-
peutic intervention (Table 1). However, there are currently no robust immune biomarkers
available in the clinic that can estimate the propensity of a high-risk lesion more likely
to undergo accelerated immunosenescence and inflamm-aging, potentially resulting in
malignant transformation or progression.

The Duffy Antigen Receptor for Chemokines (DARC/ACKR1) is a crucial decoy recep-
tor expressed on erythrocytes, endothelial cells, and lymphoblast cells [12]. DARC binds
inflammatory chemokines to internalize them for lysosomal degradation [13]. Chemokines,
which regulate leukocyte trafficking, play a key role in dictating the immune cellular com-
position of the tissue microenvironment for proper leukocyte recruitment and antitumor
immunity [14,15]. Thus, a lack of homeostatic chemokine levels has been linked to cancer
development and progression [14]. Therefore, DARC is critical for counteracting protu-
moral immunity by preventing excess tissue infiltration of pro-tumorigenic chemokines
and immunosuppressive cells.

A mutation in the DARC gene promoter—at the binding site of the GATA1 erythroid
transcription factor—blocks erythrocytic DARC expression. This DARC promoter mutation
is known as the “duffy-null allele” [13,16,17]. Individuals, who harbor this Duffy-null
allele, are less protected from excessive infiltration of pro-inflammatory chemokines and,
therefore, evade deregulated leukocyte trafficking into the tissue microenvironment, which
can interfere with antitumoral immunity and accelerate carcinogenesis. The vast majority
of the West African population harbors this mutation at a 100% fixed allelic frequency [18].
Owing to their predominant West African genetic ancestry, the Black/AA subpopulation
harbors the Duffy-null allele at an over 70% allelic frequency [19,20]. This high Duffy-null
allele frequency observed among subpopulations of West African genetic ancestry has been
suggested to underlie, at least in part, the poorer immune response profile reported among
Black/AA compared to White/EA breast cancer patients [21–23].

Immunosenescence and inflamm-aging ultimately result in increased infiltration of
protumorigenic and proangiogenic chemokines that recruit age-remolded leukocytes into
the tissue microenvironment, which fosters tumor development. Since DARC is a master
regulator of chemokines and sequesters these protumoral chemokines for degradation,
DARC may play a critical role in evading immunosenescence and inflamm-aging via limit-
ing the load of protumorigenic chemokines that enter into the tissue microenvironment
and facilitate tumor progression. These events may be evident by the fact that Black/AA
individuals, who harbor a higher frequency of the Duffy null allele, exhibit (1) greater
lymphocytic tissue infiltration, (2) higher levels of immunosenescence-secreted protumori-
genic and angiogenic chemokines, and a (3) greater prevalence of protumoral immune
subsets compared to White/EA individuals [21,24–27]. Furthermore, relative to White/EA
individuals, Black/AA individuals develop breast cancer at a notably younger age and



Cells 2022, 11, 3818 3 of 23

are more likely to progress to advanced-stage disease [2]. Collectively, this body of evi-
dence supports the hypothesis that Black/AA individuals may be undergoing accelerated
inflamm-aging compared to other ethnic groups as a result of their higher prevalence of
a negative DARC status. Hence, DARC status may be highly indicative of the risk for
accelerated inflamm-aging and carcinogenesis among high-risk subpopulations.

In this article, we dissect evidence suggesting that DARC may be playing a critical
role in evading or delaying inflamm-aging and, subsequently, neoplastic transformation
and progression. We propose that individuals with high DARC expression levels may
be protected from the protumoral impact of immunosenescence and inflamm-aging, and
in contrast, individuals with low DARC levels are at greater risk for immunosenescence,
inflamm-aging, and cancer development. Our discussion may encourage increased inves-
tigation into the interplay between DARC levels, inflamm-aging, and carcinogenesis for
improved risk-prediction and clinical management of high-risk patient subpopulations.
This dialogue may also provide a strong impetus for exploiting early-stage immunothera-
peutic intervention or administration of aging-prevention drugs, based on DARC status, to
derail the progression of high-risk lesions.

Table 1. Current inflamm-aging-related biomarkers and pathways.

Biomarker Mechanism Ref.
Immune cell markers

NK↑CD14+CD56dim/↓CD14+CD56bright Accumulation of immature NK cells [28,29]

NK↓NKP30, NKP46, DNAM-1 and ↑KIR, NKG2C Decrease in activating receptors and increase in inhibitory receptors
on NK cells [29–32]

Monocyte↑CD14+(low)CD16+ and
CD14++(high)CD16+/↓CD14+(low)CD16−

Increase in immature monocytes [33]

Macrophage↓CD62L and TLR1/4/↑CD11b and TLR5 Decrease in activating receptors and increase in inhibitory receptors
on macrophages [34]

Macrophage M1→M2 Macrophage phenotype switch to proinflammatory [35,36]
CD8+ naïve T cells Decline in naïve T cells to reduce thymus T cell output [37,38]

T cell↓CD27, CD28/↑KLRG-1, PD-1, CTLA-4, Tim-3,
Tigit, CD57

Downregulation of costimulatory molecules and upregulation of
inhibitory molecules on T cells [39,40]

B cell↓CD19+ Downregulation in CD19+ B cells to impair B cell function [41]
Cytokines

↓IFN-γ, granzyme B, perforin Reduction in dendritic cell and cytotoxic T cell activity [42–46]
↑IL-10, TGF-β, VEGF, indoleamine-2,3-dioxygenase Increase in immunosuppressive cytokines [8,47]

↑IL-6, IL-1, TNF-α, CRP Increase in proinflammatory cytokines [8,48,49]
↓IL-7 Reduced activation of T cells [11]

miRNAs
MiR-9, miRNA-17, miR-10a, miR-19a/b, miR-20,
miRNA-21, miR-29a, miR-125a/b, miR-126, and

miR-146a, miR-155, miR-181a/b, miR-187, miR-195,
miR-199, miR-223, miR-517a/c, Let-7, Let-7i

Modulate signaling pathways implicated in inflamm-aging
including NF-κB, mTOR, sirtuins, and TGF-β [50,51]

Cell signaling pathways

NF-κB A nuclear transcription factor that serves as the primary molecular
switch for inflammatory pathways [52]

mTOR Activates NF-κB -mediated regulation of inflamm-aging [53]

RIG-1 Interacts with increased IL-6 and IL-8 levels in senescent cells and
upregulates IL-6 expression [54]

Notch Induces senescence of endothelial cells [55]
Sirtuin Interacts with NF-κB to suppress its proinflammatory activity [56]

TGF-β Anti-inflammatory cytokine that deactivates macrophages to
maintain immune homeostasis [56]

Ras Upregulates expression of proinflammatory cytokines [57]

Abbreviations: ↑, upregulation; ↓, downregulation; NK, natural killer cells; CD, cluster of differentiation; DNAM-
1, DNAX accessory molecule; KIR, killer cell Ig-like receptors; TLR, toll-like receptor; KLRG1, killer cell lectin-like
receptor G1; PD-1, programmed cell death protein 1; CTLA-4, cytotoxic T-lymphocyte associated protein 4; Tim-3,
T cell immunoglobulin, and mucin-domain containing-3; Tigit, T-cell immunoglobulin, and ITIM domain; IFN,
interferon; IL, interleukin; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; TNF, tumor
necrosis factor; CRP, c-reactive protein; MiRNA, microRNA; NF-κB, nuclear factor kappa B; mTOR, mammalian
target of rapamycin; RIG-1, retinoic acid-inducible gene I.
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2. Oncogenesis: Cellular Aging, Senescence, and the Senescence-Associated
Secretory Phenotype

The risk of developing malignant tumors increases with age; thus, cancer is typically
defined as an age-related disease [9,58,59]. Cellular aging or senescence has been suspected
to be the cornerstone of malignant transformation for decades. In the 1960′s, Hayflick and
Moorhead discovered that human diploid fibroblasts in culture divide a maximum number
of times (~50–60) before halting cellular growth irreversibly, also known as the “Hayflick
limit” [60]. This phenomenon, known as replicative senescence, occurs as a physiological re-
sponse as cells age to prevent cancer-causing genomic instability and accumulation of DNA
damage [60,61]. Thus, cellular senescence is a physiological tumor-suppressive mechanism
that prevents pre-neoplastic cells from progressing into malignant tumors, and the ability
of these cells to bypass senescence barriers can result in oncogenic transformation [62–65].
Conversely, mounting evidence now suggests that the same senescent cells can induce
changes in the tissue microenvironment that actually fosters tumorigenesis. The most
well-studied mechanism for this senescent cell-mediated neoplastic transformation is the
senescence-associated secretory phenotype (SASP).

The SASP is a key feature of senescent cells that has been suggested to facilitate the
initiation of cancer and tumor progression via secreting a myriad of molecules, proteins
and growth factors that can induce alterations in the tissue microenvironment. Specifi-
cally, the SASP can stimulate cell proliferation via secreting growth-related oncoproteins
such as b-raf (BRAF), epidermal and insulin-like growth factor (EGF and IGF) receptor
ligands such as amphiregulin and IGF-1, and vascular endothelial growth factor (VEGF)
to stimulate new blood vessel formation [7,66,67]. The SASP can also stimulate WNT
signaling, which can drive stem cell proliferation and differentiation [67]. Furthermore,
the SASP can secrete factors that induce epithelial-to-mesenchymal transition, such as
matrix metalloproteinases (MMPs), serine proteases, and inhibitors, including urokinase-
or tissue-type plasminogen activators (uPA or tPA, respectively), uPA receptor (uPAR), and
plasmogen activator inhibitor 1 and 2 (PAI-1 and -2) [68–73]. Fibronectin production is
another mechanism that the SASP exploits to increase cell adhesion, survival, growth, and
migration [74,75]. Additionally, the SASP can secrete molecules, such as reactive oxygen
species, and transported ions, such as nitric oxide, that modulate cellular phenotypes to
accelerate aging and cancer progression [76–81].

Perhaps, the most critical mechanism that the SASP employs to promote malignant
transformation and tumor progression is by direct or indirect promotion of inflammation
via secreting interleukins (ILs) as well as pro-inflammatory cytokines and chemokines.
These inflammatory factors include IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, monocyte chemoat-
tractant proteins, macrophage inflammatory proteins, and inflammatory regulators such
as granulocyte-macrophage colony-stimulating factor (GM-CSF) [7,67,82]. IL-6 is perhaps
the most critical proinflammatory cytokine secreted by the SASP; IL-6 directly activates
neighboring cells in the tissue microenvironment that express the IL-6 receptor (IL-6R)
to increase inflammatory activity that can promote oncogenic transformation [7]. IL-1
secretion by the SASP can act on surrounding cells expressing IL-1 receptor (IL-1R) and
toll-like receptors to stimulate nuclear factor kappa B and activate protein 1 oncogenic
signaling pathways [83,84]. Most senescent cells also overexpress the chemokine CXCL and
CCL family members [7]. The CXCL family members released by the SASP include IL-8
(CXCL-8), chemokine growth-regulated protein alpha (GRO-α/CXCL-1), GRO-β/CXCL-2),
GCP-2/CXCL-6, ENA-78/CXCL-5, as well as CXCR2(IL-8RB)-binding chemokines. The
CCL family members secreted by the SASP include MCP-1,-2,-3,-4 (CCL-2,-8,-7,-13), HCC-4
(CCL-16), eotaxin-3 (CCL-26), macrophage inflammatory protein (MIP)-3α, -1α (CCL-20,-3),
and I-309 (CCL-1). Dysregulation or chronic expression of these chemokines has been
implicated in tissue damage, angiogenesis, and tumorigenesis [85,86]. Specifically, CXCL-1,
IL-6, and IL-8 exhibit autocrine growth effects via stimulating proliferation of the cells
they are produced in, and EGF, IL-1, and VEGF have been shown to display paracrine
growth effects via modulating the tissue microenvironment to support tumor growth and
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progression [87]. CXCL-1 has also been suggested to be a diagnostic biomarker of aging
and cancer [87]. Furthermore, the SASP has been shown to suppress the antitumor immune
response and promote tumor metastasis via secreting cytokines and chemokines that re-
cruit tumor-infiltrating myeloid-derived suppressor cells (MDSCs) [88,89]. These recruited
MDSCs to block CD8+ T cell response via releasing IL-1 receptor antagonists that interfere
with IL-1 signaling in tumor cells [90].

Collectively, these changes in the tissue microenvironment have been suggested to
accelerate immune system aging or immunosenescence [91]. The factors secreted by the
SASP into the microenvironment can induce senescence of surrounding immune cells and
drastically deregulate their function [9]. Furthermore, alterations in the tissue microen-
vironment during aging has been linked to metastasis in elderly cancer patients [92,93].
Thus, the SASP is the cornerstone of immunosenescence-mediated tumor development
and progression [37,94].

3. Inflamm-Aging: Illuminating Immunosenescence

The immune system plays a critical role in thwarting malignant transformation and
tumor progression via immune surveillance and mounting an antitumor response. Dys-
regulation of the immune system can mount a defective antitumor immune response and
result in tumor initiation and progression [95]. Immunosenescence is a natural progression
of immune cells in the tissue microenvironment that accompanies an increase in age and
results in a decline in immune system function. It has been characterized by a decline
in innate and adaptive immunity as well as infection resistance but increased risk for au-
toimmunity [10,11]. In fact, studies show that the innate and adaptive antitumor immune
systems differ between young and elderly individuals, with younger individuals displaying
stronger and more effective antitumor immunity [9]. Inflamm-aging occurs as a result of
these age-related changes and is considered to be low-grade chronic inflammation, in which
the anti-inflammatory response is overwhelmed by the pro-inflammatory response [8]. This
dysfunctional immune system can lead to a weak antitumor immune attack and potentially
result in tumorigenesis and progression. Although limited, many groups have begun
unraveling the mechanisms of how the immunosenescence of immune cell mediators in the
tissue microenvironment predisposes cells to malignant transformation and progression.

3.1. Innate Immunosenescence

Natural killer (NK) cells dominate the antitumor innate immune response via immune
surveillance. However, aging can hinder their activity, which can lead to oncogenesis.
The levels of mature NK cells were observed to significantly decrease in all lymphoid
organs in aged mice [28]. Increased accumulation of immature CD14+CD56dim and mature
CD14+CD56bright indicates aging and remodeling or immunoediting of mature NK cell
subsets as well as an increased risk for disease progression [28–30,96]. Furthermore, the
expression of activating receptors (i.e., NKP30, NKP46, and DNAM-1) on NK cells, which
allows them to recognize and lyse tumors, is often decreased, while the expression of
inhibitory receptors (i.e., KIR, NKG2C) is often increased on NK cells during immunosenes-
cence [29–32]. Collectively, this remodeling of the NK cell profile is often characterized by
a reduced capacity to respond to cytokines, which can result in dendritic cell inactivation
and reduced interaction with macrophages [35,97].

In addition to age-related changes in NK cells, monocytes and macrophages also
undergo phenotypic remodeling during immunosenescence. This immunoediting includes
an increase in CD14+(low)CD16+ and CD14++(high)CD16+ populations and a decrease in
CD14+(low)CD16− monocytes [33]. A decrease in the expression of CD62L and TLR1/4
and an increase in CD11b and TLR5 expression on macrophages were also observed, which
can facilitate neoplastic progression [34]. In addition, macrophages exhibit decreased
phagocytic activity as well as a switch from an M1 to and M2 proinflammatory phenotype
during aging [36,98]. The ability of neutrophils to phagocytose pathogens and recruit
chemokines also wanes, along with them being more prone to apoptosis with age [99–101].
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These age-related changes in macrophages and neutrophils can result in chronic low-
grade inflammation and suppression of the immune system, which has been linked to
carcinogenesis [99]. It has also been discovered that circulating levels of dendritic cells
significantly decline with age [102]. Additionally, the antigen presentation, endocytic, and
interferon-gamma (IFN-γ) production functions of dendritic cells are also weakened during
immunosenescence, including the ability to prime CD8+ and CD4+ T cells [42–44,103].
MDSCs, which impair T cell function and tumor cell clearance, increase in the bone marrow,
blood, and spleen of aged mice bearing tumors [89]. MDSCs can also induce changes in the
tissue microenvironment during aging by secreting TGF-β and IL-10 [47].

3.2. Adaptive Immunosenescence

A critical feature of adaptive immunosenescence that elevates the risk of neoplastic
transformation is the decline in CD8+ naïve T cells and, therefore, T cell output as a result of
the thymus gland degenerating with age [37,104]. This decline in naïve T cells can reduce T
cell antigen receptor diversity and disrupt T cell homeostasis [38,105–107]. Thus, reduction
in these cytotoxic T cells can lead to a weaker antitumor immune response and, therefore,
increased susceptibility to tumorigenesis. The cytotoxic activity of these T cells can also
wane during immunosenescence, including a significant reduction in the expression of the
functional molecules involved in this cytotoxic response, such as IFN-γ, granzyme B, and
perforin [45,46]. Conversely, naïve memory T cells have been discovered to accumulate
with age [108]. Senescent T cells can also release pro-inflammatory cytokines such as IL-6
and TNF-α [48,49]. Furthermore, costimulatory molecules of T cells such as CD27 and CD28
have been shown to be downregulated, whereas the expression of inhibitory receptors such
as killer cell lectin-like receptor subfamily G (KLRG-1), programmed cell death protein 1
(PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), Tim-3, Tigit, and CD57 have
been uncovered to be upregulated on T cells during immunosenescence [39,40]. This upreg-
ulation in immune checkpoint-related molecules can increase the risk of tumor development
and progression. In addition, these senescent T cells can exhibit decreased replicative ca-
pacity and reduced survival upon T cell receptor activation [39]. T cell senescence is also
often accompanied by an increase in levels of tumor-associated macrophages (TAMs) and
regulatory T cells (Tregs) that can suppress the antitumor immune response [109–113].
Downregulation in CD39 expression during aging has been linked to the reduction in CD4+

T cell levels [114]. Levels of the PD-1+ memory CD4+ T cells gradually increase with age
and are the predominant phenotype in aging mice [115].

Similar to T cells, B cells, which produce antibodies to mount an antitumor response,
undergo remodeling during aging. The bone marrow niche becomes skewed toward
generating myeloid cells as opposed to lymphocytes, and the levels of circulating naive B
cells significantly decline during aging [116,117]. Mature B cell subsets are redistributed,
and their activation is also weakened during the aging process [118,119]. B cell receptor
repertoire diversity is lost during aging, which may reflect the expansion of memory B
cell clones [120]. These age-related changes may alter antibody specificity and increase
auto-antibodies. The proportion of CD19+ B cells in the peripheral blood decrease with
increasing age along with impairment of their B cell function [41]. This event is often
accompanied by a reduction in autoimmune regulator (AIRE) expression and autoantigen
genes in thymic B cells [121]. In addition, mature spleen B cell turnover often declines with
age [122,123].

A key event that occurs during immunosenescence and increases vulnerability to
oncogenesis is a disruption in the IL-7/IL-7R signaling network [124]. The IL-7/IL-7R
pathway plays a significant role in the development and homeostatic regulation of T, B,
and NK cells. In fact, as the thymus ages, IL-7 production decreases, which has been
associated with compromised activation of T cells [11]. Hence, dysregulation in IL-7/IL-7R
signaling can interfere with proper immune function and the successful mounting of an
antitumor attack.
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3.3. Inflamm-Aging

Collectively, this age-related decline in innate (i.e., reduced NK, DC, monocyte/macrophage,
and neutrophil functions but increased MDSC functions) and adaptive (i.e., reduced lev-
els of naïve T cells but increased levels of memory T cells) immunity, ultimately results
in low-grade chronic inflammation or inflamm-aging. This inflamm-aging further alters
the immune response by producing more pro-inflammatory cytokines such as IL-1, IL-6,
and TNF-α as well as generating more immunosuppressive cells and cytokines such as
indoleamine-2,3-dioxygenase, TGF-β, IL-10, VEGF, and PD-1 [8]. These resulting changes
further increase susceptibility for tumor development and progression.

4. A Light in the DARC: Gaining Back Time
4.1. Chemokines: Small Proteins, Big Roles

Chemokines are small, secreted proteins whose “roles and responsibilities” portfo-
lios are vast and diverse [125]. Chemokines display cytokine-like activities and serve as
leukocyte chemo-attractants that regulate the migration of appropriate receptor-bearing
cells to sites of inflammation [126,127]. They are categorized on the basis of the number
and position of conserved cysteine residues in two major (CXC and CC chemokines) and
two minor (C and CX3C chemokines) subsets and according to the stimuli that provoke
their production into homeostatic (i.e., produced constitutively and regulate homeostatic
trafficking of leukocytes and lymphocyte recirculation) and inflammatory (i.e., induced
in response to inflammatory or immunological stimuli, and direct leukocytes to inflamed
peripheral tissues) molecules [128,129]. Chemokines engender extracellular patterns of
chemotactic or haptotactic gradients, depending on whether they are in solution or bound
to extracellular matrix components, respectively. Furthermore, chemokines are immobi-
lized and presented on endothelial cell surfaces; they may then cause rolling leukocytes that
harbor cognate receptors to stop, adhere firmly, and then undergo extravasation. Following
this trans-endothelial migration, leukocytes further respond to chemokine gradients by
directional migration into specific microdomains. Thus, chemokines are implicated in mod-
ulating leukocyte entry into the circulation, extravasation from blood vessels, influencing
leukocyte placement in tissue microenvironmental contexts, and their function in innate
and acquired immunity [128].

It is no wonder that chemokines have emerged as powerful regulators in the patho-
physiology of cancer. Preexisting chronic inflammatory conditions can increase the risk of
cancer developing, and conversely, oncogenic mutations can lead to the establishment of an
inflammatory tumor microenvironment (TME), a hallmark of cancer [130,131]. As key medi-
ators of chronic inflammation that may also be transcriptionally induced by oncogenes and
transcription factors deregulated in the pathogenesis of cancer, chemokines are culpable in
both these aspects [131]. Their altered expression can shape the evolution of the neoplastic
process in profound ways as they dictate leukocyte recruitment and activation, angiogene-
sis, cancer cell proliferation, and metastasis in all stages of the disease. Chemokines can be
produced by tumor cells themselves, by cancer-associated fibroblasts, and by infiltrating
leukocytes. When inflammatory leukocytes accumulate at a tissue site, they generate an
environment that promotes early tumor development, possibly through the production
of cytokines, proteases, and angiogenic factors. Furthermore, the transformation of a
preneoplastic lesion to a neoplastic state, growth of tumors larger than 2–3 mm [3], in-
vasion, and metastases all depend on the establishment of a proangiogenic environment,
which is produced when the local concentrations of angiogenic factors exceed those of
angiostatic ones [132]. In 1995, Strieter et al. showed that CXC-ELR+ chemokines have
angiogenic properties; by contrast, CXC-ELR- chemokines have angiostatic properties [133].
Angiogenesis makes available routes for malignant cells to access and enter circulation for
subsequent systemic dissemination and is also important in the establishment of these cells
at the site of metastasis [134].

The spatial and temporal expression patterns of chemokines are critical determinants
of the composition of the TME and the behaviors of various tumor-infiltrating leukocytes.
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Inflammatory chemokines recruit immature cells of myeloid origin, or MDSCs, to the tumor
site [135], as well as more mature cells, such as monocytes and neutrophils, which then
differentiate into tumor-associated macrophages (TAMs) or tumor-associated neutrophils
(TANs) [136]. Other immune cells, such as lymphocytes, cancer-associated fibroblasts
(CAFs), mesenchymal stem cells (MSCs), and endothelial cells, may also be recruited into
the TME [137–139]. Collectively, these infiltrating cells provide a secondary source of
chemokines that may affect tumor growth, cell survival, senescence, angiogenesis, and
metastasis. Cancer cells produce chemokines and chemokine receptors which enable them
to respond specifically to chemokines in their milieu, thus forming a complex chemokine
network. MDSCs are subverted in their function and aid and abet tumor growth by
promoting neo-angiogenesis and impeding anti-tumor T-cell responses [140]. Furthermore,
some chemokines can lead to the recruitment of Tregs and Th2 lymphocytes that hinder
antitumor responses and thus support tumor survival [141,142]. Chemokines also direct
tumor cell migration in vivo. The expression of chemokine receptors by tumor cells not only
endows them with the ability to metastasize and colonize specific anatomical sites where
their cognate chemokine is present but also bolsters their proliferation via the activation
of the PI3K-AKT-NF-kB, MEK1/2, and Erk1/2 axes [143,144]. Additionally, by tipping
the balance of pro-apoptotic and pro-survival factors, chemokines may favor the survival
of malignant cells [145,146]. Thus, the gamut of cancer-related roles chemokines regulate
extends beyond immunity and inflammation to the regulation of leukocyte recruitment
into the tumor mass, promotion of tumor cell survival, proliferation, and dissemination.

4.2. DARC: A Time Decoy

Cytokines and chemokines elicit their effects by binding and signaling via signaling
receptor complexes. Cytokine and chemokine activity needs to be tightly regulated for the
proper antitumor immune response. Overactive immune signaling can lead to immune
cell exhaustion, inflammation-induced tissue damage, and autoimmunity and, thus, be
counterproductive in preventing tumor growth and progression [147]. Decoy receptors,
also known as silent non-signaling receptors, are often employed by the immune system to
counteract and balance out this overactive immune response via serving as a molecular
“sink” that traps and internalizes these pro-inflammatory cytokines and chemokines for
lysosomal degradation, thereby suppressing their immune activity [83,148–150]. Thus,
decoy receptors serve a critical role in mounting a successful antitumor immune attack.

DARC is one of the most known critical decoy receptors. DARC is a seven-transmembrane
G-protein-coupled receptor that was originally discovered to be expressed on human
erythrocytes, or red blood cells, and serves as a portal to allow the malarial parasite, P. vivax,
to enter and infect [151]. It is also expressed on endothelial cells that line post-capillary
venules and has recently been observed on lymphoblast cells [12]. Evidence now supports
the primary role of DARC as a depot for a host of pro-malignant and pro-inflammatory
chemokines involved in immunosenescence, such as CXCL1, CXCL2, CXCL3, CXCL4,
CXCL5, CXCL7, CXCL8/IL-8, CXCL12, CCL2, CCL5, CCL7, CCL11, CCL13, CCL14, and
CCL17 [152,153]. Thus, DARC heavily influences and modulates (a) homeostatic levels of
chemokines in circulation and (b) leukocyte trafficking, which is critical for forestalling
tumorigenesis and progression [154].

A mutation in the promoter of the GATA box in the DARC gene removes DARC
expression from erythrocytes, which is known as the Duffy-null allele [13,16,17].” The ma-
jority of the West African population harbor this mutation at a 100% fixed allelic frequency
and, thus, are resistant to P. vivax-induced malaria [18]. The Black/AA subpopulation
harbors the Duffy-null allele at an over 70% allelic frequency, owing to their predominate
West African genetic ancestry [19,20]. Although more protected from malaria infections,
individuals of West African descent are less likely to harbor homeostatic chemokine circu-
lation and leukocyte trafficking owing to their DARC-negative status, which may explain
their less effective antitumor immune response compared to individuals of European de-
scent [21–24]. Thus, this deficiency may underlie the increased incidence of breast tumor



Cells 2022, 11, 3818 9 of 23

growth in Black/AAs at a younger age and has been suggested to underlie the large gap in
breast cancer outcomes between Black/AA and White/EA patients [155,156].

4.3. Shedding Light on Erythrocytic DARC

The expression of DARC is under tight tissue-specific regulation. The Duffy-null allele
does not affect the expression of DARC in non-erythroid tissues, including endothelial
cells [149]. Erythrocyte DARC is believed to act as a chemokine buffer; on the one hand,
it sequesters cognate chemokines when the latter is present at excessively high levels in
the serum [157] and dampens plasma chemokine surges. On the other hand, erythrocytic
DARC serves as a chemokine reservoir or depot that helps maintain a homeostatic level
of these chemokines in the plasma by discharging them into the circulation when the
plasma chemokine concentrations subside [157,158]. Since plasma chemokines likely
desensitize circulating leukocytes, buffering by erythrocytic DARC potentially preserves
leukocyte sensitivity to pro-inflammatory chemokines. By muting circulating chemokine
“noise”, erythrocytic DARC may also enhance leukocyte emigration in response to the
chemokine signals.

4.4. No Longer a DARC Secret: Endothelial DARC Mediates Chemokine Transcytosis

When present on the cell membranes of polarized endothelial cells, DARC mediates
abluminal internalization and transcellular transport of cognate chemokines. Endothelial
DARC internalizes chemokines on the basolateral cell surface by a micro-pinocytosis-like
process, and transports them unidirectionally to the apical surface of the endothelial cell,
where they are immobilized on the tips of microvilli [159]. In this manner, DARC allows pro-
emigratory chemokines produced in the extravascular tissues to be presented to circulating
cells, such as leukocytes, which may then be recruited to inflammation sites [157,160–162].
Endothelial DARC is, therefore, referred to as a “chemokine interceptor”, or internalizing
receptor. Endothelial DARC thus prevents the escape of soluble tissue-derived chemokine
molecules into circulation and allows them to associate with the tips of luminal microvilli
and stimulate firm adhesion of leukocytes and subsequent extravasation [154]. Additionally,
the removal of chemokines from perivascular spaces may be a potential mechanism by
which endothelial DARC can negatively regulate chemokine-induced angiogenesis. The
pattern of endothelial cells that express high levels of DARC is similar to areas that are key
in leukocyte trafficking and extravasation [163,164]. Expression of DARC on endothelial
cells additionally leads to the senescence of these cells and subsequent attenuation of
angiogenesis [165].

4.5. Shot in the DARC: How DARC Stops Circulating Tumor Cells in Their Tracks

Most cancer patients ultimately succumb to metastatic disease. During metastasis, the
attachment of cancer cells to the endothelial cells on microvasculature not only determines
the physical site of metastasis but also provides the necessary anchorage to facilitate tumor
cell extravasation. However, recent evidence indicates that this interaction also serves as
a host defense mechanism that thwarts metastasis. The membrane-bound KAI1/Cd82
protein, also known as Kangai1 (Kai1), is a bona fide metastasis suppressor protein in
multiple cancer types [166–168]. KAI1 is highly expressed in the normal epithelial cells of
the prostate, breast, and lung, and its expression is substantially reduced in carcinoma [166].
Recent studies showed that in addition to transcytosing chemokines, endothelial DARC
also binds KAI1 in post-capillary venules. Tumor cells dislodged from the primary tumor
and expressing KAI1 (a member of the tetraspannin family) attach to endothelial cells in
the post-capillary venules and directly interact with DARC. This direct interaction inhibits
circulating tumor cell proliferation and induces senescence in the tumor cells by regulating
the expression of the transcription factor TBX2 and the cyclin-dependent kinase inhibitor
p21 [169]. The tumor cells at the senescent stage (when KAI1 binds DARC) are expected
to be cleared swiftly by immune cells in the blood vessels, as it has been reported that
senescent tumor cells trigger innate immune responses which target these tumor cells [165].
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Such direct physical contact between endothelial and “in transit” tumor cells can control
the survival of the disseminating metastatic cells. These lines of evidence position DARC
as a promising therapeutic candidate for preventing the onset of metastatic disease or
for neutralizing disseminated tumor cells. They also raise the intriguing possibility that
DARC expression on tumor cells may limit the proliferation of KAI1-positive angiogenic
endothelial cells. Studies have shown that overexpression of DARC in breast cancer cells
significantly suppressed spontaneous pulmonary metastases [170]. Therefore, DARC
may even function as a metastasis suppressor. In sum, DARC can modify functional
chemokine gradients and patterns in tissues via local regulation of chemokine presentation
and function.

5. Painting a DARC Picture: DARC, Immunosenescence, and Neoplastic
Transformation

Chemokines are key modulators of the antitumor inflammatory response by dictating
the composition of the tissue microenvironment via leukocyte recruitment and activation,
angiogenesis, cell proliferation, and metastasis [14]. Aberrant levels of chemokines have
been associated with an exacerbated or defective inflammatory response and suggested
to underlie cancer development and progression [171,172]. As previously mentioned,
DARC sequesters and degrades these chemokines that are often secreted by the SASP
as well as regulates the trafficking of leukocytes that can display age-related changes
during immunosenescence. Thus, DARC status may be able to indicate the likelihood of
inflamma-aging-induced malignant transformation and progression. Specifically, DARC
expression levels may reveal the capacity of clearing pro-tumorigenic and pro-metastatic
chemokines secreted by the SASP, reducing infiltration of immunosuppressive cells, and
limiting trafficking of age-remodeled leukocytes that have declined in their antitumoral
functions into the tissue microenvironment (Figure 1).

DARC can limit levels of chemokines released by the SASP that recruit immunosup-
pressive cells into the tissue microenvironment that hinder antitumoral immunity, such as
TAMs, Tregs, MDSCs, and TANs. Specifically, DARC binds and internalizes the chemokines
(i.e., CCL2, CCL5, CCL7, CXCL1, CXCL2, CXCL5, and CXCL8) responsible for recruiting
monocytes and neutrophils, which differentiate into TAMs and TANs to exert pro-tumoral
effects via suppressing antitumor immune cells [173–176]. CCL2, in particular, recruits
TAMs and MDSCs, which inhibit CD8+ T cell activation [177–181]. CCL5 has been associ-
ated with breast carcinogenesis and progression via increasing TAM infiltration [182,183].
These TAMs also release the chemokine, CCL22, which recruits Tregs into the tissue mi-
croenvironment to suppress T cell-mediated antitumor immunity [184]. DARC can also trap
the chemokines (i.e., CCL5) that attract dendritic cells and Tregs to promote tumor growth
and proliferation [185,186]. These chemokines can also activate growth signaling pathways,
such as phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated protein
kinases 1 and 2 (ERK 1/2), to promote cell proliferation [144,173,187]. Hence, DARC can
prevent excessive infiltration of immunosuppressive immune cells and growth signaling
activation that can support malignant transformation and progression.

DARC also regulates levels of pro-angiogenic chemokines secreted by the SASP. DARC
can internalize chemokines (i.e., CCL2, CCL11, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7,
CXCL8) that promote angiogenesis or formation of blood vascular, which can foster tumor
growth, as well as promote endothelial cell survival via inhibiting apoptosis [132,188,189].
TANs, which are also recruited by chemokines that DARC binds and sequesters, can also se-
crete angiogenic factors that enhance angiogenesis [190]. A major ligand for DARC secreted
by the SASP, CXCL8, upregulates VEGF expression to also stimulate new vessel formation
and the production of additional angiogenic chemokines [189]. Conversely, DARC does not
bind angiostatic chemokines that inhibit angiogenesis, such as CXCL10 and CXCL9 [191].
DARC also modulates levels of chemokines involved in tumor progression. Specifically,
DARC internalizes CXCL12, which signals via the CXCL12/CXCR4 axis, to promote mi-
gration and metastasis of cancer cells [172,192]. Inhibition of the CXCR4/CXCL12 axis has
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been shown to suppress breast tumor metastasis to the lung [15]. DARC has also been
implicated in modulating levels of other pro-tumorigenic inflammatory factors released
by the SASP. Specifically, DARC has been linked to regulating IL-1β, IL-6, and TNF-α
inflammation levels in mice post-bone fracture [193]. Hence, DARC may be playing a
critical role in limiting circulating levels of pro-tumorigenic chemokines secreted by the
SASP, which may avert tumorigenesis and progression.
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Figure 1. Potential role of DARC expression in influencing risk of inflamm-aging-mediated progres-
sion among high-risk patients. Illustration of how endothelial or epithelial DARC IHC expression
levels may be influencing risk of progression among patients with high-risk lesions. High-risk pa-
tients with low DARC IHC expression may exhibit increased tissue infiltration of pro-tumorigenic
cytokines and chemokines, immunosuppressive cells and T cells expressing co-inhibitory molecules,
which can increase likelihood for neoplastic transformation and progression to occur. Early-stage
immunotherapeutic or age-prevention drug intervention based on DARC status could potentially
derail progression to malignancy or metastatic breast cancer.
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DARC may also be playing a critical role in attenuating the detrimental effects of
innate and adaptive immunosenescence. Regarding innate immunity, DARC may be able to
internalize chemokines that recruit age-remodeled NK cells, neutrophils, and macrophages
that have waned in their antitumor abilities and can foster tumorigenesis. During adaptive
immunosenescence, DARC may be clearing chemokines that stimulate migration of aged T
cells that have declined in their cytotoxic activity, exhibited a reduction in the expression
of their functional molecules (i.e., IFN-γ, perforin), and downregulated in costimulatory
molecules (i.e., CD27) but upregulated in coinhibitory molecules (i.e., KLRG-1, PD-1,
CTLA-4). These senescent T cells also secrete pro-tumorigenic cytokines such as IL-6 and
TNF-α that are also regulated by DARC. T cell senescence can also increase the recruitment
of TAMs and Tregs that release immunosuppressive chemokines that DARC can bind
and sequester. Thus, DARC expression levels may indicate the capacity to deaccelerate
inflamm-aging.

Low DARC expression levels have been linked to the onset of tumorigenesis and pro-
gression. Overexpression of DARC in breast cancer cells transfected into mice xenografts
led to the in vivo inhibition of tumorigenesis and metastasis via interfering with neovascu-
larity [148]. This inhibition was accompanied by a reduction in CCL2 levels, microvessel
density, and MMP-9 expression. Negative DARC expression was also strongly associated
with neoangiogenesis as well as lymph node, bone, and hepatic distant metastasis in
breast cancer patient tissue [194]. DARC-negative mice displayed enhanced prostate tumor
growth along with increased levels of the angiogenic chemokines CXCL8 and CXCL2 [195].
Downregulation of DARC has also been suggested to potentiate colorectal and melanoma
tumor development and progression via increased angiogenesis [196,197].

Since immunosenescence occurs as a function of time, age is a well-established risk
factor for breast cancer. Women display a significantly higher likelihood of developing
breast cancer at an older age [198]. Rates of breast cancer remain low in women under
the age of 40 but rapidly increase after age 40 and are the highest among women over
the age of 70. Approximately only 4% of women develop breast cancer under the age of
40 in the U.S., according to the American Cancer Society. However, Black/AA women
notoriously exhibit higher breast cancer incidence rates at a younger age in comparison to
their White/EA counterparts. The median age at diagnosis for White/EA women is 63,
whereas, for Black/AA women, the median age is 60 [2]. The median age at death is 70 for
White/EA women and 63 for Black/AA women [2]. Under the age of 40, Black/AA women
display significantly higher incidence rates and are more likely to die from breast cancer
compared to non-Hispanic White/EA women [2,155]. Specifically, incidence and survival
disparities between Black/AAs and White/EAs are largest among the young subpopulation
but decline with age [2]. These indirect lines of evidence collectively support the notion
that Black/AAs are undergoing aging and likely inflamm-aging at a significantly faster
rate than their White/EAs counterparts.

Since, as previously mentioned, the Duffy null allele is significantly more prevalent
in individuals of West African ancestry and their weaker antitumor immune response
has been suggested to underlie their poor prognosis, the lack of DARC expression among
Black/AAs could be associated with their faster rates of inflamm-aging and, therefore,
higher incidence rates of breast cancer and mortality at a younger age compared to in-
dividuals of European ancestry. It was discovered that among invasive tumors in The
Cancer Genome Atlas (TCGA), Black/AAs exhibited a significantly higher proportion of
DARC-low expression compared to White/EAs, and DARC tumor expression positively
correlated with levels of the pro-inflammatory chemokines released by the SASP, CCL2
and CXCL8 [26]. Furthermore, Black/AA, compared to White/EAs breast cancer patients,
harbor higher levels of chemokines released by the SASP, such as IL-6, IL-8, VEGF, CCL7,
and CCL8, which has been suggested to correlate with lower levels of DARC expression in
the Black/AA subpopulation [25]. Moreover, among breast cancer patients, Black/AAs
harbor greater levels of immunosuppressive cells recruited by the SASP via cytokines
and chemokines, such as TAMs consisting of the protumorigenic M2 phenotype, Tregs,



Cells 2022, 11, 3818 13 of 23

and MDSCs [25]. The Black/AA subpopulation harbor higher expression levels of im-
munosuppressive markers such as PD-1, PD-L1, and CTLA-4 compared to the White/EA
group [199]. In TNBC, Martini and colleagues recently showed that West African genetic
ancestry is significantly associated with PD-1 expression [200]. Within the inherently ag-
gressive TNBC subtype, Black/AAs display greater immune infiltration and inflammation
compared to non-Black/AA patients [21]. The Women’s Circle of Health Study recently
reported that Black/AA patients harbor a significantly higher density of CD8+ T cell tumor
infiltration but a more exhausted CD8+ T cell profile compared to White/EA breast cancer
patients [24,27]. Martini et al. recently uncovered that West African genetic ancestry is
highly associated with increased immune cell migration and infiltration but simultaneous
repression of immune cell activation or naïve cells in TNBC [200]. The group also discov-
ered that shared West African genetic ancestry is highly associated with greater infiltration
of CD8+ memory T cells and immunosuppressive FOXP3+ Tregs. Based upon these indirect
lines of evidence, we postulate that the absence of DARC could be contributing to individu-
als of West African descent being less protected from clearing pro-tumorigenic chemokines,
reducing infiltration of immunosuppressive cells, and age-remodeled leukocyte recruit-
ment, and may thus be more susceptible to undergoing neoplastic transformation and
progression at a younger age. Thus, the investigation into the potential role of the Duffy
null allele and accelerated inflamm-aging in underlying higher incidence rates of breast
cancer at a younger age among the Black/AA subpopulation could yield valuable insights
into circumventing this major health disparity.

6. Turning Back the Clock on Time: Intervention Strategies for Employing DARC as a
Biomarker of Breast Inflamm-Aging, Oncogenesis, and Immunotherapy Response
among High-Risk Subpopulations

The immune system remains the cornerstone of fighting off tumor growth and pro-
gression. Thus, inflamm-aging poses a major threat to the immune system in successfully
accomplishing this task. Since approximately one in eight American women will develop
breast cancer in their lifetime, and certain subpopulations are at higher risk for develop-
ing the disease at an earlier age, such as Black/AAs, certain individuals may be more
susceptible to the detrimental effects of immunosenescence than others [155]. Hence, this
disparity warrants a closer look to identify high-risk subpopulations that are predisposed
to undergoing accelerated inflamm-aging, which could result in neoplastic transformation
and progression, as well as a more favorable response to immunotherapy as an early-stage
intervention strategy.

Atypical ductal hyperplasia (ADH) is a common abnormal but benign breast lesion
that is four- to five-fold more likely to progress to malignancy or ductal carcinoma in situ
(DCIS) than a normally benign lesion [201]. It is discovered by clinicians among approxi-
mately 5–20% of breast biopsies and classified as a “high-risk” lesion. DCIS encompasses
roughly 20–25% of all breast cancer diagnoses and harbors a greater risk of developing
into invasive breast cancer [202]. Current clinical management of these pre-malignant and
pre-invasive lesions has been challenging with the severe lack of risk-stratifying biomark-
ers and, therefore, reluctant administration of cytotoxic and invasive treatments such as
lumpectomies, mastectomies, radiation, and endocrine therapy [201,202]. Thus, there is an
urgent need for robust biomarkers that can identify high-risk subpopulations harboring a
greater propensity to progress and most susceptible to targeted therapeutic intervention.
Since the immune system plays a critical role in preventing neoplastic transformation and
progression, robust biomarkers of accelerated inflamm-aging may be valuable in improving
risk-stratification and management of high-risk subpopulations.

We previously discussed that DARC could play a key role in protecting individuals
from immunosenescence-mediated malignant transformation and progression. This role
may be accomplished via DARC clearing protumorigenic chemokines, reducing infiltration
of immunosuppressive cells, and reducing recruitment of age-remodeled leukocytes that
have waned in their antitumor immune function into the tissue microenvironment. Thus,
DARC may serve as a robust biomarker of inflamm-aging in pre-malignant and pre-
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invasive patient subpopulations and aid in predicting the likelihood of a high-risk patient
progressing to DCIS or invasive breast cancer.

Drug interventions have been shown to slow down the aging process and deter the
onset or progression of age-related diseases [203]. Some of these drugs include metformin,
an antidiabetic drug, and nicotinamide mononucleotide (NMN), which increases NAD+
levels in the body; these compounds have been shown to prevent aging and age-related
diseases in preclinical models [204,205]. Inhibiting the mTOR pathway via the anticancer
drug rapamycin is perhaps one of the most effective strategies in slowing or reversing
age-related changes in preclinical models [206,207]. One of the critical mechanisms ra-
pamycin has demonstrated to achieve this prolonged lifespan is via reversing the increase
in SASP among the senescent cell population [208–210]. Hence, administering these aging-
prevention drugs to high-risk populations at a higher risk of undergoing accelerated
inflamm-aging, or exhibiting a low DARC status, could potentially reduce or slow down
inflamm-aging, therefore, derailing neoplastic transformation or progression. Immunother-
apeutic strategies currently in clinical trials and or approved for clinical practice may
also circumvent inflamm-aging in high-risk patient subpopulations. These strategies may
include adoptive T cell therapy to replenish levels of cytotoxic T cells, chemokine inhibitors
(i.e., CCL2/CCR2 axis inhibitors such as PF-04136309 and CCX872) to reduce excessive
infiltration of pro-inflammatory chemokines to restore homeostatic levels, and immune
checkpoint therapies (i.e., PD-L1, CTLA-4) to counteract the immunosuppressive functions
of the SASP and age-remodeled leukocytes [14,211,212]. Essentially these cutting-edge
immunotherapies may be able to “fine tune” the immune system of a high-risk patient,
who may be at risk for accelerated inflamm-aging, to mount a stronger immune defense
against malignant growth and progression.

Precise evaluation of DARC expression levels in high-risk patient samples will be
critical in implementing DARC as a risk-stratifying biomarker for progression and im-
munotherapeutic response. DARC is expressed on endothelial cells even in individuals
that are negative for DARC expression in erythrocytes [149]. Hence, accurate evaluation of
DARC levels for refining clinical decisions for high-risk patients will require understanding
and investigation into how the interplay between erythoid and endothelial expression in-
fluences chemokine levels and leukocyte recruitment. Furthermore, accumulating evidence
suggests that endothelial DARC function may be more complex than erythoid DARC,
suggesting that further investigation into these differences will be critical to exploiting
DARC successfully for clinical management [195]. Jenkins and colleagues demonstrated
the feasibility of integrating immunohistochemistry (IHC) DARC expression into the clinic
to glean insight into the levels of circulating chemokines and immune cell infiltration into
the tissue microenvironment via quantitating tumor-specific DARC epithelial cell expres-
sion [26]. This practical methodology could potentially reveal to clinicians the immune
response profile of an individual high-risk patient for optimal prediction of progression and
immunotherapeutic intervention response. Understanding the prognostic and predictive
role of DARC expression on each cell type (erythoid, endothelial, and epithelial) and how
it pertains to an individual’s immune response profile will be critical to implementing
IHC-based DARC in the clinic for high-risk patient management.

We also propose that for research purposes, the adoption of more comprehensive
three-dimensional spatial phenotyping approaches, in combination with consideration
of the host genotype, may yield rich insights and help us better understand how DARC
truly shapes the composition and architecture of the TME in each individual patient, and
enable more rational and precise prediction of disease progression. As discussed earlier, a
complex network of interactions between chemokines and their receptors sculpts the TME
immune cell landscape and the patterns and extent of neovascularization. For example, the
chemotactic gradients and immune cell populations, distributions, interactions, and cell
states in DARC-negative tumors, would differ substantially from those in DARC-positive
ones and need to be assessed in three dimensions across the tumor space, compared across
and between microdomains and cell neighborhoods, with extensive quantification of cell
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types and mapping of vascularization patterns. Such careful consideration of spatial
context and development of datasets by multiplexing several biomarkers and deploying
high-resolution multiplex immunofluorescence and image analysis approaches is more
likely to help us derive valid and biologically meaningful signatures of disease development
and progression. Only then can we perhaps discern and reliably predict which tumors are
more likely to progress or to respond to specific therapies.

Immunosenescence and inflamm-aging pose a major threat to patients at higher risk
for developing breast malignancy and progressing to invasive breast cancer. Thus, a closer
look into the molecular mechanisms driving accelerated inflamm-aging in some patients
and not others could unlock key biomarkers that may significantly improve clinical risk-
stratification and management of high-risk subpopulations. Characterization of circulating
senescent cells for appropriate immunotherapeutic intervention can be time-consuming and
complicated via exploiting techniques such as multicolor flow cytometry and single-cell
RNA sequencing [213]. DARC status represents a promising single-biomarker IHC-based
approach that may be able to inform clinicians of the propensity of a high-risk patient pro-
gressing based on their unique immune response profile and guide potential immunothera-
peutic intervention to reduce their risk of progression. Preclinical investigation of the role of
erythoid, endothelial, and epithelial DARC expression in human mammary epithelial cell
systems and in patient-derived in vivo organoid models that reflect neoplastic progression
will be pertinent to appropriately incorporating DARC into the routine clinical management
of patients harboring pre-malignant and pre-invasive lesions. Furthermore, exposure and
response evaluation of these model systems to aging-prevention drugs (i.e., metformin,
rapamycin) and approved immunotherapeutics based on DARC status may yield critical
insight into appropriate therapeutic intervention for high-risk patients. The establishment
of optimal cut-offs for DARC IHC expression that is associated with risk of progression and
therapeutic response will also be necessary for exploiting DARC expression to guide and
inform clinical decision-making. Hence, the investigation into this unique role of DARC
could be a potential game-changer in high-risk patient management by (1) better informing
clinical decisions, (2) allowing for the avoidance of unnecessary administration of cytotoxic
and invasive treatments, and (3) providing targeted, more “cytofriendly” therapeutic ap-
proaches, which may ultimately “turn back the clock on time” for inflamm-aging-prone
high-risk patients.
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