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Abstract: Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated
HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity
of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the
activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and
in the pericellular matrix, where they interact with various components of the cell microenvironment,
including growth factors. By binding to and regulating ocular morphogens and growth factors,
HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for
lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have
shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs,
differentiated by thirteen different core proteins, are differentially localised in a cell-type specific
manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated
GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout
murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation
is essential for growth factor-induced cellular processes during embryogenesis, and the unique and
divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play
specialized roles during lens induction and morphogenesis.
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1. Introduction

During early embryogenesis, the morphogenesis of the eye lens begins with the
proximal interaction between the surface head ectodermal cells with the evaginating optic
vesicle, resulting in a thickening of this apposing ectoderm to become the lens placode. The
apical constriction of these cells leads to placode invagination to form the lens pit, which
will separate from the neighbouring head ectoderm to form the hollow lens vesicle. The
cells at the anterior aspect of the lens vesicle will differentiate to form the lens epithelium,
while the posterior lens vesicle cells elongate to form the primary lens fibre cells. The
elongation of these primary fibres that extend to reach the overlying epithelium rids the
vesicle of its lumen to form the basic structure of the lens [1,2]. From this point onwards,
the lens continues to grow, as proliferating epithelia at the lens equator exit the cell cycle
and elongate and differentiate to form secondary fibre cells, displacing the older fibre cells
towards the centre of the lens [1,2]. As fibre cells mature, there is autophagy of their nuclear
material and organelles, and the formation of specialized membrane interdigitations, as
they acquire their distinctive transparency, a characteristic that allows the lens to perform
its primary function to transmit and focus light onto the retina [3].

Lens development and maintenance are governed by the interplay of a complex net-
work of signalling molecules within the ocular microenvironment [4]. Extensive research
conducted over several decades has led to the identification of these crucial molecules
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and elucidation of their distinct and complementary functions in regulating specific mor-
phogenic events and cellular behaviour [5,6]. Secreted primarily from the different ocular
tissues, including the lens, retina and ciliary body, these diffusible growth factors, including
members of the fibroblast growth factor (FGF) [7–9], Wnt [10–12], bone morphogenetic
protein (BMP) [13,14] and Hedgehog (Hh) [15,16] families, that are found in the ocular
milieu, influence lens cell behaviour (i.e., proliferation, migration, differentiation, and cell
death) [4]. For the defined stages of lens morphogenesis, these factors need to be tightly
controlled in a spatial and temporal manner to regulate the induction, and anteroposterior,
left–right, and dorsoventral patterning of the lens [5,6]. While the various effects of growth
factors on lens cell behaviour are well known, and often overlapping, the mechanisms
governing the movement of these factors through the extracellular space, their precise
arrival and signal transmission within target cells, remains unknown. Recent studies
in mice and other animal models have highlighted the significance of heparan sulphate
proteoglycans (HSPGs) localised to the cell membrane and extracellular matrix (ECM) of
tissues, in facilitating the signalling and distribution of growth factors, respectively [17].

HSPGs are composed of a specific core protein structure, covalently linked to a small
number of heparan sulphate (HS) glycosaminoglycan (GAG) chains. Of the thirteen
full-time HSPGs, they are divided into three major families depending on this core pro-
tein structure: the transmembrane family (i.e., syndecans), glycerophosphatidylinositide
(GPI)-anchored family (i.e., glypicans) and the secreted family (e.g., perlecan, agrin, and
collagen XVIII) [17,18]. The syndecans and glypicans are generally localised to the cell
surface, whereas perlecan, agrin, and collagen XVIII are more commonly found in the ECM
and basement membranes [17].

In the synthesis of HS-GAG chains, HS sulfotransferases facilitate the transfer of sul-
phate ions (SO4-) from the sulphate-donor molecule, 3′-phosphoadenosine 5′-phosphosulfate
(PAPS), to HS-GAGs. PAPS is a crucial and rate-limiting sulphate donor molecule that
regulates all post-translational sulfation reactions in the golgi apparatus and is produced
by cellular PAPS synthetases (PAPSS1/2) [19,20]. The negatively charged sulphate groups
of the HS-GAG chains interact with the positively charged lysine/arginine-rich regions of
many proteins [17], allowing HSPGs to interact with and modulate the activity of various
growth factors including FGFs [21,22], BMPs [23,24], Wnts [25,26], Hh [27,28], and ECM
molecules, such as integrins [29,30], laminin [31], and fibronectin [32].

The downstream effects of HSPG–protein interactions include the activation of high-
affinity receptor signalling complexes, and the mediation of intracellular signalling cascades
leading to the activation of key effector genes and changes in the cell behaviour and
phenotype [17,33]. The pleiotropic modulation of growth factor receptor signalling by
HSPGs (altering ligand density and activity) can locally stabilise mitogen and morphogen
gradients at the tissue level [33]. These gradients are critical for organogenesis and for the
maintenance of normal tissue homeostasis [34]. As the activity of HSPGs primarily depends
on its fine structure (i.e., sulphation) and location (i.e., the cell surface or ECM) of their
HS-GAG glycosaminoglycan chains, the specific activity of HSPGs in a given cell-type or
tissue, at a given time can be determined by its HSPG profile: the localisation of HSPG core
proteins and its complement of HS-GAG sulfation enzymes [17,33]. Previously, we have
shown all HSPG core proteins are present in the postnatal rat lens, localised to its epithelia,
fibres and basement membrane, the lens capsule, in unique and distinct expression patterns
that align with key functional regions [35]. The distinct spatial and temporal expression of
HSPGs implies that differentiating lens cells may acquire a unique set of HSPGs, leading
to specific patterns of HS–protein interactions and function during lens morphogenesis.
Here, we report for the first time the comprehensive spatial and temporal localisation of
all HSPGs in the developing murine lens. Taken together with the current literature, we
highlight putative roles for specific HSPGs during key stages of lens development, as well
as provide support for the requirement of HS sulphation in growth factor-induced lens
cellular processes.
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2. Materials and Methods
2.1. Animals

Animal experimentation protocols were authorized by The University of Sydney Ani-
mal Ethics Committee and were conducted in accordance with the guidelines established by
the National Health and Medical Research Council (Australia) as well as the Association for
Research in Vision and Ophthalmology’s declaration for the Use of Animals in Ophthalmic
and Vision Research. Mouse conception was recorded as midnight on the day of mating
and embryos were routinely collected post conception at embryonic (E) day 9.5 (E9.5),
E10.5, E11.5, E14.5, and E16.5, representing key stages of lens development (see Figure 1).
Pregnant FvB/N mice were sacrificed by asphyxiation with carbon dioxide, and embryos
were extracted and sacrificed by decapitation. Embryonic heads were collected for histolog-
ical processing. Ten-day-old (P10) albino Wistar rats (Rattus norvegicus) were sacrificed by
asphyxiation with carbon dioxide followed by cervical dislocation.
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Figure 1. Representative stages of murine lens development. Arrows in lens placode formation
indicate inductive interactions. Other arrows indicate cell movements/growth.

2.2. Immunolabelling of Heparan Sulphate Proteoglycans

Intact embryonic heads were collected and fixed for 24 h in 10% neutral buffered
formalin (NBF; Sigma, Castle Hill, NSW, Australia) before processing for routine paraffin
embedding. Paraffin-embedded tissues were serially sectioned at 5–6 µm. Mid-sagittal
sections of embryonic heads from at least three independent animals were used for im-
munolabelling and for periodic acid–Schiff’s (PAS) staining to highlight lens morphology.
Monoclonal antibodies were used to detect all highly sulphated HSPGs as previously
described [35]. Embryonic head sections were first labelled for highly sulphated forms
of HS-GAG (HS-GAG F58-10E4, 370255; Amsbio LLC, Abingdon, UK). We also labelled
for sulphated chondroitin sulphate (CS)-GAGs (CS-56, C8035; Sigma), as some HSPGs
(syndecans -1/-3, agrin and collagen XVIII) carry CS-GAG chains alongside their predom-
inant HS-GAG chains. To characterize the spatial localisation of the different HSPGs in
the developing murine lens, we immunolabelled mid-sagittal sections using commercially
available antibodies (see Supplementary Table S1). For all immunofluorescent labelling
studies, cell nuclei were counter-labelled with bisbenzimide (Hoechst 33258; Sigma). Im-
ages in figures are oriented with the ventral side positioned to the right and the dorsal
side to the left. Controls were included to account for any effects of autofluorescence
(unlabelled tissue controls), secondary antibodies (chain-specific isotype and secondary
antibody alone controls), co-labelling effects (single label controls), and nuclear staining
(no Hoechst controls). Tissue samples from at least three individual animals (up to 6 eyes)
at different stages of development were used for each label/antibody investigated.

A light microscope equipped with epifluorescence (Leica DMLB 100S, DFC-450C
camera and LAS software v4.8.0, Leica Microsystems, Wetzlar, Germany) was used for
PAS-staining (brightfield). For immunolabelling (immunofluorescence) studies, images
were captured using a ZEISS LSM-800 microscope with an AxioCam 506 camera and ZEN
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Blue Edition v2.3 software (Carl Zeiss, Jena, Germany), or a ZEISS AxioScan.Z1 microscope
with a Hamamatsu ORCA-flash 4.0 v2 camera and ZEN SlideScan 2012 software (Carl
Zeiss). All images were saved as uncompressed tagged information field format (TIFF) files
at 16-bit depth. Image processing was performed using Photoshop v21.1.1 (Adobe, Inc.,
San Jose, CA, USA) and ImageJ (FIJI) v2.0 (Wayne Rasband, NIH, Bethesda, MD, USA) on
the Mac OS X 10.15.6 (Apple Inc., Cupertino, CA, USA) and Windows 10 (Microsoft Inc.,
Seattle, WA, USA) operating systems.

3. Results

A summary of the labelling for HS-GAG, CS-GAG, PAPSS2, and all thirteen HSPG
core proteins during murine lens development is outlined in Table 1.

3.1. PAPS Synthetase-2 Is Localised to the Developing Mouse Lens

We first immunolabelled the PAPSS2 (HSPG sulfation) in the developing mouse lens
(Figure 2). PAPSS2 reactivity was absent from all early eye structures, including cells com-
prising the lens placode (E9.5, Figure 2(A1)), and lens pit (E10.5, Figure 2(A2)). It was not
until E11.5, in the lens vesicle that PAPSS2 immunolabelling appeared, strongly localised to
the elongating primary lens fibre cells (Figure 2(A3)). This fibre-specific label persisted and
was also observed in the early secondary lens fibre cells at E14.5 (Figure 2(A4–A7)) and
E16.5 (Figure 2(A8–A10)). At E16.5, PAPSS2 reactivity was also evident in the anterior lens
epithelium but was not present in the lens capsule (Figure 2(A9)).

3.2. Heparan Sulphate Is the Predominant Sulphated Glycosaminoglycan Expressed throughout
Murine Lens Development

HSPG core proteins can carry HS-GAG GAG chains or a combination of both HS-GAG
and CS-GAG chains. To determine which of these two GAG species represents the major “ac-
tive” sulphated fraction of HSPGs in the developing lens, the distribution of HS-GAG and
CS-GAG was compared during key stages of lens development (Figure 3(A1–A8,B1–B8))
using antibodies specific for the sulphated domains on HS-GAG (HS-10E4, Figure 3(C1–C8))
or CS-GAG (CS-56, Figure 3(D1–D8)) chains. HS-GAG chain labelling was first observed at
very low levels in the cells of the lens placode (E9.5, Figure 3(C1)) with stronger labelling in
the lens pit (E10.5, Figure 3(C2)). At E11.5 (Figure 3(C3)), HS-GAG labelling was prominent
in the developing lens capsule, anterior lens epithelium and ubiquitously in elongating
primary lens fibre cells. HS-GAG reactivity was maintained in the lens capsule and cy-
toplasm of anterior epithelial cells at E14.5 (Figure 3(C4)) and E16.5 (Figure 3(C5–C8)).
The HS-GAG chain labelling was the strongest throughout the cytoplasm of secondary
lens fibre cells (Figure 3(C4)), with decreased reactivity at the germinative and transi-
tional zones (Figure 3(C4,C8)). The concentrated immunolabelling of HS-GAG was also
observed at the posterior tips (E14.5, Figure 3(C4)) and in the nuclei (Figure 3(C4,C7)) of
elongating secondary fibre cells. Although absent from the extracellular matrix of the early
developing eye (E9.5 and E10.5; Figure 3(B1,B2)), HS-GAG was strongly associated with
the matrix connecting the posterior lens vesicle and early retina (Figure 3(C3)), and the
developing vitreous humour from E14.5 (Figure 3(C4)). In contrast to the localisation of
active HS-GAG chains in early lens development, CS-GAG chain labelling was primarily
observed in the pericellular matrix (Figure 3(D1–D3)). CS-GAG immunolabelling was
completely absent from the lens placode (Figure 3(D1)), lens pit (Figure 3(D2)), and lens
vesicle (E11.5, Figure 3(D3)). Similarly, CS-GAG reactivity was first observed at low levels
in the E14.5 lens capsule, anterior lens epithelium, and anterior pole of the secondary
lens fibre cells (Figure 3(D4)). CS-GAG immunostaining was strongly correlated with the
extracellular matrix at all early stages of eye development, particularly in the preplacode
matrix (E9.5; Figure 3(D1)), and the interstitial matrix connecting the invaginating lens pit
and optic cup (E10.5; Figure 3(D2)) and surrounding the lens vesicle (E11.5; Figure 3(D3)).
CS-GAG was weakly evident in the ocular humours in the later stages of eye develop-
ment (E14.5 and E16.5; Figure 3(D4–D6)). CS-GAG immunolabelling was absent from



Cells 2023, 12, 1364 5 of 20

the lens capsule at E16.5 (Figure 3(D5,D6,D8)), and decreased in the fibre cells relative to
E14.5 (Figure 3(D7,D8)). The CS-GAG labelling remained in the anterior lens epithelium
(Figure 3(D5)) and decreased in the germinative and transitional zones (Figure 3(D8)).
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Figure 2. Immunolocalisation of PAPS synthetase-2 in the developing murine eye. Mid-sagittal mouse
(FvB/N) eye sections from embryonic day-9.5 (E9.5; (A1), E10.5 (A2), E11.5 (A3), E14.5 (A4–A7) and
E16.5 (A8–A10)) labelled for 3′-Phosphoadenosine 5′-Phosphosulphate Synthase 2 (PAPSS2; yellow).
Nuclei counterstained with Hoechst (blue). Dotted white lines indicate lens equator (A5,A8). Magenta
arrowheads indicate localisation at lens fibre tips (A5–A10). Lens placode (lpl), optic vesicle (ov), head
ectoderm (ect), lens pit (lp), optic cup (oc), lens vesicle (lv), anterior lens epithelium (epi), primary
lens fibre cells (1◦ lf), secondary lens fibre cells (2◦ lf), cornea (cor), retina (ret), ciliary body (cb), iris
(ir), germinative zone (gz), transitional zone (tz), anterior lens capsule (ac), and posterior lens capsule
(pc). Scale bars = 25 µm. Images in figures are oriented with ventral side positioned to the right and
the dorsal side to the left.
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Figure 3. Distribution of sulphated GAGs in mouse eye development. Eye sections from embryonic
day 9.5 (E9.5; (A1,B1,C1,D1), E10.5 (A2,B2,C2,D2), E11.5 (A3,B3,C3,D3), E14.5 (A4,B4,C4,D4), and
E16.5 (A5–A8,B5–B8,C5–C8,D5–D8)) FvB/N mice. Mid-sagittal eye sections stained with periodic
acid–Schiff’s (PAS, (A1–A8)) show cell morphology. Sections stained with a secondary antibody
only show representative negative controls (negative control; (B1–B8)). Sections labelled the highly
sulphated “active” forms of heparan sulphate (HS-GAG, red, (C1–C8)) or chondroitin sulphate (CS-
GAG, green, (D1–D8)) glycosaminoglycan chains. Nuclei counterstained with Hoechst (blue). Yellow
arrowheads indicate nuclear localisation (C4,C7). Dotted lines indicate the lens equator (A8). The
lens placode (lpl), head ectoderm (ect), preplacodal matrix (ppm); optic vesicle (ov), lens pit (lp), optic
cup (oc), lens vesicle (lv), anterior lens epithelium (epi), primary lens fibre cells (1◦ lf), secondary lens
fibre cells (2◦ lf), cornea (cor), retina (ret), ciliary body (cb), iris (ir), germinative zone (gz), transitional
zone (tz), anterior lens capsule (ac), posterior lens capsule (pc). Scale bars = 25 µm. Images in the
figures are oriented with a ventral side positioned to the right and the dorsal side to the left.

3.3. Syndecan HSPGs Are Differentially Spatially Localised in the Lens throughout Development

The different syndecan HSPGs differ in their expression, both temporally and spatially,
at all major stages of eye development. Syndecan-1 remains absent from the developing
lens until E16.5, where it is strongly localised to the lens capsule and posterior vessels of
the tunica vasculosa lentis (tvl). Weak syndecan-1 staining is also observed in a subset of
anterior lens epithelial cells and anterior secondary fibre cell tips (Figure 4(A5)). Syndecan-2
(Figure 4(B1)), -3 (Figure 4(C1)) and -4 (Figure 4(D1)) are found at E9.5 in both the optic vesi-
cle and the lens placode. The expressions of these syndecans persist at embryonic day 10.5,
with strong labelling in the lens pit and optic cup (Figure 4(B2,C2,D2)). Syndecan-2 strongly
stained throughout the invaginating lens pit, while syndecan-3 and -4 labelled particularly
strong in the posterior cells of the lens pit (Figure 4(C2,D2)). At E11.5, the prospective
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lens epithelial cells and elongating primary lens fibre cells showed strong labelling of
syndecan-2 (Figure 4(B3)) and -3 (Figure 4(C3)). For syndecan-2, this label was restricted
to the primary lens fibres and absent from the anterior aspect of the lens (Figure 4(D3)).
Syndecan-1 was absent from the lens up to E11.5, where it first appears to localise to the
inner aspect of the retina (Figure 4(A3)). At E14.5, the localisation of each of the syndecans
was distinct from each other. Syndecan-1 was primarily localised to the differentiating reti-
nal ganglion cells, and the lens capsule and blood vessels (Figure 4(A4)). Syndecan-2 was
strongly localised to the lens capsule, tvl, lens epithelial cells, and nuclei of fibre cells. It also
showed strong localisation in the cornea and developing iris (Figure 4(B4)). Syndecan-3
(Figure 4(D3)) and -4 (Figure 4(D4)) were both present in the lens epithelium and fibres
in different patterns. Syndecan-3 staining was primarily observed in the secondary lens
fibres, concentrated on the anterior fibre tips. It was absent from newer secondary lens
fibre cells (Figure 4(C4)). On the other hand, syndecan-4 staining was primarily observed
in early secondary fibre cells, with distinct staining at the anterior and posterior fibre cell
tips (Figure 4(D4)). These expression patterns were maintained at E16.5 for syndecan-2
(Figure 4(B5–B8)), -3 (Figure 4(C5–C8)), and -4 (Figure 4(D5–D8)). At E16.5, syndecan-1 was
still absent from the lens cells, but strongly localised to the lens capsule (Figure 4(A5–A8)).

3.4. Glypican HSPGs Differ in Temporal Expression at Key Stages of Lens/Eye Development

At E9.5, glypican-4 is exclusively localised to the pre-placodal matrix (Figure 5(D1)),
while glypican-2, -5, and -6 are present in both the lens placode cells and optic vesicle
(Figure 5(B1,C1,E1,F1)). Glypican-1 was absent at this early stage (Figure 5(A1)). By E10.5,
all glypicans were present in the lens pit and optic cup, apart from glypican-4, that was
localised to the extracellular matrix between the lens pit and optic cup (Figure 5(D2)). The
label for glypican-3 and -5 was concentrated upon the basal aspect of the lens pit in the
presumptive primary lens fibre cells (Figure 5(C2,E2)). Glypican-1, -2, -5, and -6 were also
present in the surface head ectoderm (Figure 5(A2,B2,E2,F2)). All glypicans were present
in the lens vesicle (Figure 5(A2,B2,C2,E2,F2)), except for glypican-4, that was primarily
localised to the lens capsule, differentiating retinal ganglion cells, and posterior lens blood
vessels (Figure 5(D3)). At E11.5, glypican-3 stained all lens vesicle cells diffusely, with
more intense staining in the presumptive lens epithelial cells (Figure 5(C3)). Glypican-1,
-2, -5, and -6 were predominantly localised to the posterior elongating primary lens fibre
cells (Figure 5(A3,B3,E3,F3)). These glypicans were mostly localised in a concentrated
region at the posterior tips of the primary lens fibres, apart from glypican-6, that strongly
labelled all fibre cells (Figure 5(F3)). From E14.5, the expression of glypicans was gener-
ally consistent. Glypican-1 (Figure 5(A4–A8)), -2 (Figure 5(B4–B8)), -3 (Figure 5(C4–C8)),
and -5 (Figure 5(E4–E8)) were predominantly localised to the lens epithelium and newly
differentiating secondary lens fibre cells, where perinuclear staining was observed for all
four glypicans (Figure 5(A7,B7,C7,E7)). Glypican-4 was absent from lens cells, with some
punctate staining in the anterior lens epithelium, and strong localisation to the lens capsule
(Figure 5(D4–D8)). Glypican-6 was absent from the epithelium and transitional zone, but
strongly labelled the cytoplasm of the fibre cells (Figure 5(F4–F8)).

Postnatally, in the 10-day-old rat lens, labelling for glypican-5 was localised to both
epithelial and fibre cells, with stronger labelling at the germinative and transitional zones
(Supplementary Figure S1(B1–B4)). Glypican-5 was also found in the corneal epithelium
and endothelium (Supplementary Figure S1(B5,B7)), ciliary non-pigmented epithelium
(Supplementary Figure S1(B8)), and in remnant blood vessels of the tunica vasculosa lentis
(Supplementary Figure S1(B4)). Glypican-5 was absent from the lens capsule (Supplementary
Figure S1(B1,B2,B4)).
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Figure 4. Distribution of syndecan core proteins in the developing mouse eye. Mid-sagittal sec-
tions from embryonic day-9.5 (E9.5; (A1,B1,C1,D1)), E10.5 (A2,B2,C2,D2), i5cat (A3,B3,C3,D3),
E14.5 (A4,B4,C4,D4) and E16.5 (A5–A8,B5–B8,C5–C8,D5–D8)) FvB/N mice. Sections labelled for
syndecan-1 (A1–A8), syndecan-2 (B1–B8), syndecan-3 (C1–C8), or syndecan-4 (D1–D8) HSPG core
proteins (red). Nuclei counterstained with Hoechst (blue). Labelling of cell nuclei indicated in (B7,B8).
White arrowheads indicate the staining of lens fibre cell tips (C4–C6,C8,D3, D4,D6–D8). The dotted
line indicates the lens equator (A8). Lens placode (lpl), head ectoderm (ect), preplacodal matrix (ppm),
optic vesicle (ov), lens pit (lp), optic cup (oc), lens vesicle (lv), anterior lens epithelium (epi), primary
lens fibre cells (1◦ lf), secondary lens fibre cells (2◦ lf), cornea (cor), retina (ret), ciliary body (cb),
iris (ir), germinative zone (gz), transitional zone (tz), anterior lens capsule (ac), and posterior lens
capsule (pc). Scale bars = 25 µm. * denotes artefact. Images in the figures are oriented with the ventral
side positioned to the right and the dorsal side to the left.

3.5. Localisation of High-Molecular-Weight HSPGs Extends beyond the Lens Capsule

Immunoreactivity for perlecan is weak in early lens structures (Figure 6(A1,A2)) but
labelling appears to be stronger in the matrix and basement membranes of the E11.5 eye
(Figure 6(A3)). At this stage, perlecan is observed in the anterior cells of the lens vesicle
(Figure 6(A3)). This pattern of staining is maintained in the fully formed lens at E14.5
and E16.5, with perlecan mostly restricted to the lens capsule and anterior lens epithelium
(Figure 6(A4–A8)). Diffuse perlecan staining was observed in the nuclei of some differenti-
ating lens fibre cells (Figure 6(A7)). Both collagen XVIII/endostatin (Figure 6(B1,B2)) and
agrin (Figure 6(C1,C2)) were observed in the cells of the lens placode and lens pit. Collagen
XVIII/endostatin reactivity was restricted to a punctate label in the primary lens fibres
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of the lens vesicle (Figure 6(B3)). This label persisted in the E14.5 lens (Figure 6(B4)). At
E16.5, collagen XVIII/endostatin labelled in condensed patches throughout the cytoplasm
of both lens epithelial and fibre cells (Figure 6(B5–B8)). On the other hand, agrin stained
strongly throughout the cells of the lens vesicle, concentrated apically in the presumptive
anterior lens epithelial cells, and basally in the new elongating primary lens fibre cells
(Figure 6(C3)). From E14.5, agrin immunoreactivity was strongly visible throughput the
cytoplasm of the central lens fibre cells (Figure 6(C4)), and this label persisted in the E16.5
lens (Figure 6(C5–C8)). Agrin was clearly associated with a subset of fibre cell nuclei
(Figure 6(C4,C7)). Agrin staining was almost completely absent from the anterior lens
epithelium and transitional zone (Figure 6(C4,C5,C8) and Table 1).
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Figure 5. Distribution of glypican core proteins in the developing mouse eye. Mid-sagittal
sections from embryonic day-9.5 (E9.5; (A1–F1)), E10.5 (A2–F2), E11.5 (A3–F3), E14.5 (A4–F4),
and E16.5 (A5–A8,B5–B8,C5–C8,D5–D8,E5–E8,F5–F8) FvB/N mice. Sections labelled for glypican-1
(A1–A8), glypican-2 (B1–B8); glypican-3 (C1–C8), glypican-4 (D1–D8), glypican-5 (E1–E8), or
glypican-6 (F1–F8) HSPG core proteins (red). Nuclei counterstained with Hoechst dye (blue). Yellow
arrowheads indicate nuclear localisation (A4,A5,A7,A8,B4,B5,B7,B8,C7). White arrowheads indicate
the staining of lens fibre cell tips (A3). Dotted lines indicate lens equator (A8). Lens placode (lpl),
head ectoderm (ect), preplacodal matrix (ppm), optic vesicle (ov), lens pit (lp), optic cup (oc), lens
vesicle (lv), anterior lens epithelium (epi), primary lens fibre cells (1◦ lf), secondary lens fibre cells
(2◦ lf), cornea (cor), retina (ret), ciliary body (cb), iris (ir), germinative zone (gz), transitional zone (tz),
anterior lens capsule (ac), and posterior lens capsule (pc). Scale bars = 25 µm. Images in figures are
oriented with ventral side positioned to the right and the dorsal side to the left.



Cells 2023, 12, 1364 10 of 20Cells 2023, 12, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 6. Distribution of high-molecular-weight HSPG core proteins in the developing mouse eye. 
Mid-sagittal sections from embryonic day-9.5 (E9.5; (A1–C1)), E10.5 (A2–C2), E11.5 (A3–C3), E14.5 
(A4–C4), and E16.5 (A5–A8,B5–B8,C5–C8) FvB/N mice. Sections labelled for perlecan (A1–A8), col-
lagen-XVIII/endostatin (B1–B8), or agrin (C1–C8) HSPG core proteins (red). Nuclei counterstained 
with Hoechst dye (blue). Yellow arrowheads indicate nuclear localisation (A7,C4,C7,C8). White ar-
rowheads indicate the staining of the lens fibre cell tips (C3). Dotted lines indicate the lens equator 
(A8). The lens placode (lpl), head ectoderm (ect), optic vesicle (ov), lens pit (lp), optic cup (oc), lens 
vesicle (lv), anterior lens epithelium (epi), primary lens fibre cells (1° lf), secondary lens fibre cells 
(2° lf), cornea (cor), retina (ret), ciliary body (cb), iris (ir), germinative zone (gz), transitional zone 
(tz), anterior lens capsule (ac), and posterior lens capsule (pc). Scale bars = 25 μm. Images in figures 
are oriented with ventral side positioned to the right and the dorsal side to the left. 

  

Figure 6. Distribution of high-molecular-weight HSPG core proteins in the developing mouse
eye. Mid-sagittal sections from embryonic day-9.5 (E9.5; (A1–C1)), E10.5 (A2–C2), E11.5 (A3–C3),
E14.5 (A4–C4), and E16.5 (A5–A8,B5–B8,C5–C8) FvB/N mice. Sections labelled for perlecan (A1–A8),
collagen-XVIII/endostatin (B1–B8), or agrin (C1–C8) HSPG core proteins (red). Nuclei counterstained
with Hoechst dye (blue). Yellow arrowheads indicate nuclear localisation (A7,C4,C7,C8). White
arrowheads indicate the staining of the lens fibre cell tips (C3). Dotted lines indicate the lens equator
(A8). The lens placode (lpl), head ectoderm (ect), optic vesicle (ov), lens pit (lp), optic cup (oc), lens
vesicle (lv), anterior lens epithelium (epi), primary lens fibre cells (1◦ lf), secondary lens fibre cells
(2◦ lf), cornea (cor), retina (ret), ciliary body (cb), iris (ir), germinative zone (gz), transitional zone (tz),
anterior lens capsule (ac), and posterior lens capsule (pc). Scale bars = 25 µm. Images in figures are
oriented with ventral side positioned to the right and the dorsal side to the left.
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Table 1. Summary of HSPG immunolocalisation in mouse eye lens development.

Embryonic Day GAG Other Core Proteins

E9.5

Lens placode HS
Sdc2, Sdc3, Sdc4, Gpc2, Gpc4,

Gpc5, Gpc6, perlecan, collagen
XVIII, agrin

Optic vesicle HS, CS
Sdc2, Sdc3, Sdc4, Gpc2, Gpc5,

Gpc6, perlecan, collagen
XVIII, agrin

Preplacodal matrix CS Sdc2, Sdc4, Gpc4, Agrin

E10.5

Lens pit HS
Sdc2, Sdc3, Sdc4, Gpc1, Gpc2,
Gpc3, Gpc5, Gpc6, perlecan,

collagen XVIII, agrin

Head ectoderm HS
Sdc2, Sdc3, Sdc4, Gpc1, Gpc2,

Gpc3, Gpc4, Gpc5, Gpc6,
perlecan, agrin

Optic cup HS, CS
Sdc2, Sdc3, Sdc4, Gpc1, Gpc2,

Gpc3, Gpc4, Gpc5, Gpc6,
perlecan, collagen XVIII, agrin

Extracellular matrix
(lens pit-optic cup) CS Sdc2, Gpc4, perlecan?

E11.5

Anterior lens
epithelium HS PAPSS2

Sdc2, Sdc3, Sdc4, Gpc1, Gpc2,
Gpc3, perlecan, collagen

XVIII, agrin

1◦ lens fibre cells HS PAPSS2
Sdc2, Sdc3, Sdc4, Gpc1, Gpc2,
Gpc3, Gpc5, Gpc6, perlecan,

collagen XVIII, agrin
Lens capsule HS Sdc1, Sdc2, Gpc4, perlecan

E14.5

Anterior lens
epithelium HS *, CS

Sdc2 *, Sdc3, Sdc4, Gpc1, Gpc2,
Gpc3, Gpc4, perlecan,

collagen XVIII

2◦ lens fibre cells HS *, CS PAPSS2
Sdc2 *, Sdc3, Sdc4, Gpc1, Gpc2,

Gpc3, Gpc5, Gpc6, collagen
XVIII, agrin

Lens capsule HS, CS Sdc1, Sdc2, Gpc2, Gpc4, perlecan
Tunica vasculosa

lentis HS, CS Sdc1, Sdc2, Gpc1, Gpc2, Gpc4,
Gpc5, perlecan

E16.5

Anterior lens
epithelium HS *, CS

Sdc2 *, Sdc3, Sdc4, Gpc1 *, Gpc2 *,
Gpc3 *, Gpc5, perlecan, collagen

XVIII, agrin

2◦ lens fibre cells HS *, CS PAPSS2
Sdc2 *, Sdc3, Sdc4, Gpc1 *, Gpc2 *,

Gpc3 *, Gpc5, Gpc6, perlecan *,
collagen XVIII, agrin *

Lens capsule HS Sdc1, Sdc2, Gpc4, perlecan
Tunica vasculosa

lentis HS, CS Sdc1, Sdc2, Gpc1, Gpc2, Gpc4,
Gpc5, perlecan

* Nuclear localisation in cells.

4. Discussion

While there are many reports to date studying vertebrate lens morphogenesis and the
growth factors involved, less is understood about how these different growth factors are
positioned to drive this development. Given the important role of HSPGs in regulating
many growth factors, together with recent studies implicating HSPGs as essential for
the induction and development of the eye, here we present the most comprehensive
spatiotemporal labelling of all the different HSPG core proteins and their associated GAGs
throughout murine lens development. This study complements and extends from our
earlier report on the localisation of HSPGs in the postnatal rat lens [35], wherein we
described how the defined patterns of all HSPGs associate with lens cellular activity. Of
note is that our earlier study reported the absence of glypican 5 in the postnatal lens, of
which we now have corrected and clearly show that it is indeed also present in the lens
when using a more selective and effective commercial antibody. Given that all HSPGs are
expressed in the lens, by linking the defined localisation of their respective HSPG core
proteins, along with their reported mode of activity, it can provide valuable insights into
their functional roles [36,37].
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The activity of HSPGs is largely dependent on the distinct sulfotransferases of their
HS chains, which source sulphate from PAPS produced by PAPSS1/2 synthetases [38,39].
Transcriptome data identify both papss1 and papss2 in the lens [40], with strong PAPSS2
protein labelling in the developing murine and postnatal rat eye, specifically in the lens [38].
Here, we found that PAPSS2 was absent in very early lens induction (i.e., lens placode,
lens pit), with strong reactivity first appearing in the lens vesicle, distinctly labelling the
elongating primary lens fibre cells. This fibre-specific label persisted and was later observed
in secondary lens fibres at E14.5 and E16.5 when the differentiating lens epithelium also
began to label strongly for PAPSS2. The weak to no immunolabelling for PAPSS2 in the
lens placode and pit is of interest as we see the strong labelling of not only HS-GAG but
many HSPGs that require PAPSS for their sulfation. The absence of PAPPS2 suggests
that the activity of HSPGs in early lens induction may be largely mediated by HSPG core
protein–protein interactions, and is independent of GAG–protein interactions, implying an
expected low sulfation and binding potential of these HSPGs with ocular growth factors.
An example of this is glypican-4, that only carries HS chains but does not overlap in
expression with HS-GAG. Alternatively, it is also plausible that the other PAPSS isoform,
PAPSS1 (encoded by the papss1 gene), is the predominant sulphate donor at this early
stage of lens development, consistent with transcript expression profiles from published
embryonic mouse lens datasets [41–44].

The selectivity of interactions between HSPGs and proteins is not solely determined
by the type of core protein (such as syndecan or glypican) or its location (for example,
on the cell surface or in the extracellular matrix), but also by the precise structure (i.e.,
sulphation) of the HS-GAG chains. Although HSPGs are primarily composed of HS-GAGs,
certain species such as syndecan-1/-3 [45,46], agrin [47], and collagen XVIII [48] may also
carry CS-GAGs. Lens cells produce some proteoglycans carrying both HS-GAG and CS-
GAG, although HS-GAG is the most common [35,49,50]. Consistent with this, here we
report that HS-GAG, and not CS-GAG, is the predominant GAG associated with HSPGs
throughout murine lens development. Unlike HS-GAG, CS-GAG was absent from the
lens until E14.5, indicating that HS-GAGs are likely the major species regulating the early
events of lens induction, invagination, and cell fate specification. The presence of CS-GAG
in the pre-placodal and peri-lenticular matrix throughout development may suggest a role
in cell–matrix interactions or morphogen gradient formation. In contrast, HS-GAG was
absent from the ocular matrix throughout the early stages of lens development, instead
appearing and localising predominantly to the presumptive and differentiating lens cells.
These patterns were often associated with regions of lens cell activity (i.e., lens placode,
posterior aspect of lens pit/vesicle and lens transitional zone). The expression patterns
of HS-GAG and CS-GAG in the developing lens suggest that both GAG types may have
overlapping and distinct roles in regulating functional cellular processes. For instance, fibre
differentiation may be regulated by both GAG types, while morphogen gradient formation
in the lens capsule may be predominantly regulated by HS-GAG. In other tissues, such as
the developing brain, HS-GAG and CS-GAG have been shown to serve distinct functional
roles, with CS-GAG stabilizing existing synaptic connections and HS-GAG stimulating the
formation of new synapses [51]. These functional differences are likely due to the selective
interaction of each GAG type with different proteins in a structure-dependent manner [52].
The reported differential localisation of HS-GAG and CS-GAG [51,53,54] is consistent with
their distinct functional roles [55].

Most of the HSPG core proteins that we examined localised to the cells of the surface
head ectoderm and optic vesicle; however, syndecan-1 and glypican-1 were both absent
at this stage. Despite being a traditionally cell-associated HSPG, glypican-4 was absent
from the head ectoderm and optic vesicle but was strongly localised to the pre-placodal
matrix. Similarly, syndecan-2, which is traditionally a cell-associated HSPG, was also
observed in the pre-placodal matrix, along with the surface head ectoderm and optic
vesicle, consistent with previous reports of syndecan-2 being a matrix-associated HSPG in
ocular tissues [35,56]. The pre-placodal matrix is thought to prevent this defined region
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of proliferative head ectodermal cells from spreading, so that their continued prolifera-
tion and progressive cell crowding thickens this region of the ectoderm to form the lens
placode [57]. The regulated signalling activities of several mitogens and morphogens,
such as BMPs, Hh, FGFs, and Wnts, orchestrate the inductive events associated with the
optic vesicle-presumptive lens interaction [58,59], and all these growth factors have been
shown to be regulated by the HSPGs that we localise to the lens placode [60–64]. FGF,
Hh, BMP, and Wnt-signalling are each essential regulators in eye development, with their
on/off switching essential for different stages of lens development [6], and defects in
their signalling activity shown to compromise lens development. While the sustained
inductive signalling of BMP and FGF are essential for lens placode development and
the early stages of lens specification [65], these early stages also require the inhibition
of Hh- [16] and Wnt- [66] signalling, with heightened Hh-signalling activity shown to
suppress lens formation in zebrafish [67]. Later in lens morphogenesis, Wnt-signalling is
activated to promote epithelial cell adhesion, integrity, and polarity, as well as fibre differ-
entiation [11,66,68,69]. Constitutively active Hh-signalling through its receptor, patched,
promotes epithelial maintenance at the expense of fibre differentiation [70]. Thus, the
inhibition of Hh-signalling, once again with fibre cell differentiation, is essential for normal
lens development. BMP-signalling promotes apical constriction and pro-survival signals
during lens placode invagination and drives proliferation of lens epithelial cells and cell
cycle exit at the transitional zone, that is bolstered by FGF-signalling driving lens epithelial
cell proliferation and fibre differentiation [13,14,71].

The spatiotemporal regulation of the ocular morphogens, together with other extra-
cellular signalling proteins, forms the basis of lens patterning, polarity, growth, and cell
fate specification [1,6,72], that are regulated by the many HSPGs we report to be expressed
herein. Many of these same HSPGs regulate other matrix-related proteins, including
β1-integrins and fibronectin [73–75], that are also co-localised to the early lens placode
cells, and play an essential role in this inductive process [76–79].

Glypicans are predominantly expressed during embryonic development, and increas-
ing evidence suggests that they are major regulators of morphogenic signalling and gradient
events in development, controlling left/right and dorsal/ventral patterning, as well as
controlling tissue size and growth cues [80]. Genetic and biochemical studies have shown
that glypicans can stimulate or inhibit the signalling pathways triggered by Wnts, Hh,
BMPs, and FGFs, that have been mentioned to be responsible for patterning and tissue
formation during embryogenesis, depending on the context of the tissue to drive growth
patterning events [80]. Not surprisingly, mutations in genes encoding glypicans often result
in developmental abnormalities or overgrowth [80]. For instance, Glypican-3 has been
shown to inhibit hedgehog signalling during development by competitively binding to the
ligand, preventing it from binding to patched, through a HS-GAG independent process [61].
Similarly, Glypicans-1, -3, and -4 negatively regulate BMP-signalling by competing with
BMP receptors for ligand binding in a similar fashion [81,82]. On the other hand, glypicans
seem to both positively and negatively regulate Wnt-signalling in different developmental
systems. Glypican-4 promotes cardiac specification and differentiation by attenuating
canonical Wnt- and BMP-signalling [81], while glypican-1 can act as a Wnt-coreceptor to
activate Wnt-signalling [82]. For different morphogens, glypicans seem to mainly activate
or enhance signalling. Glypicans can interact with FGFs and their receptors to stabilize
their assembly and enhance downstream ERK1/2 or PI3K/Akt, as well as bind to TGF-β
and its receptors to promote SMAD-signalling [82].

As the mouse lens placode and optic vesicle invaginate at E10.5, we find that most of
the HSPG core proteins localise to the cells of the lens pit, with syndecan-1 and glypican-4
yet to appear. Glypican-4 was predominantly localised to the surrounding matrix together
with syndecan-2 and perlecan. Here, we begin to observe subtle changes between some of
the core proteins, such as syndecan-4, that appears to distinctly label the posterior tips of
lens pit cells, with the majority of the other core proteins localising diffusely throughout
all the lens pit cells. BMP-4/-7 activity [83] and the downstream activation of GTPases
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(RhoA, Rac1, ROCK) drive changes in cytoskeletal architecture essential for cell elongation,
apical constriction, and epithelial invagination during lens pit formation [84]. Glypican-3 is
well established as a primary regulator of cellular responses of BMP-4/-7 in developing
tissues [85], although emerging evidence suggests that other HSPGs, such as agrin [86]
and syndecan-3 [87], may also play tissue-specific roles in BMP regulation. On the other
hand, the syndecans are major regulators of RhoA/Rac1/ROCK GTPase-signalling and
cytoskeletal modifications, through interactions with the intracellular domains of their core
proteins [88–90].

As the mouse lens acquires more of an antero-posterior polarity with the formation
of the lens vesicle at E11.5, we see that the acute change in posterior lens vesicle cell
elongation to form the first primary fibres is associated with much HSPG activity. In the
first instance, we not only have PAPPS2 appearing in these cells, but also co-localising
with HS-GAG and the core proteins of most HSPGs, suggesting their putative roles in
the differentiation, attachment, and elongation of primary lens fibre cells. Syndecan-1
continues to remain absent not only from lens cells but from all developing eye structures.
Given that PAPSS2 appears distinctly at this developmental stage, overlapping with many
HSPGs and HS-GAGs, this suggests a marked rise in HS sulfotransferase activity that
may be essential to drive primary lens fibre differentiation. With the differentiation of the
primary fibres, we also have the concomitant differentiation of the anterior lens vesicle
cells to form the epithelium. Lens epithelial cell differentiation is known to be regulated
by Wnt/beta-catenin signalling [68] which in turn is regulated by glypican-3 [91], that is
perfectly positioned for this, given the strong reactivity we observe in the anterior lens cells.

While we show that glypicans appear to generally localise in similar patterns to syn-
decans, the glypicans display temporal differences in their onset. This may be indicative of
different core proteins regulating different developmental/cell fate specification/patterning
events. It may be the case that the variable spatiotemporal localisation of the different
HSPGs, particularly glypicans, throughout lens development is representative at least in
part by their differential regulation of the morphogenetic switches in signalling events [80].
Although no lens-specific phenotypes have been reported for animals deficient in glypicans,
compensatory regulation between closely related HSPGs (i.e., glypicans-2/-4 and -3/-5)
is likely. Our understanding of this family of HSPGs and how they function in different
tissues is still very limited.

The larger secreted HSPGs, perlecan [35,92–94], collagen XVIII [35,92], and agrin [35,95]
are recognized as the predominant HSPGs in the postnatal lens capsule; however, we have
previously reported different patterns of other HSPG core proteins (syndecans-1/-2/-4
and glypicans-2/-4) in the postnatal rat lens capsule: syndecan-2 and perlecan are abun-
dant throughout the lens capsule, while syndecan-4, glypican-2, glypican-4, collagen
XVIII/endostatin, and agrin are restricted to the outer reticular lamina of the lens cap-
sule [35]. In contrast, syndecan-1-labelling appeared to be uniquely limited to the basal
lamina. In the developing mouse eye, we only observed a subset of these HSPGs in the lens
capsule (syndecans-1/-2/-4, glypican-4 and perlecan), suggesting that some HSPGs (i.e.,
glypican-2, collagen XVIII, and agrin) are deposited in the capsule at later stages. Of the
minor HSPG core proteins we observed in the developing lens, three are syndecans, that
bind to several structural and matrix regulatory proteins found in the lens capsule (e.g.,
collagen IV, laminin, fibronectin and integrins), and have previously been implicated as
key regulators of ECM assembly, cell–matrix interactions, and cell adhesion [38].

Perlecan exists in an antero-posterior gradient in the lens capsule, consistent with com-
plimentary antero-posterior gradients of FGF bioavailability and signalling activity [96,97].
Perlecan HSPGs are also required for the structural integrity of the lens capsule [36], as it
is shown here to be progressively deposited to the capsule over the course of lens devel-
opment, consistent with its label in the embryonic chick lens [98]. While the other large
secreted high-molecular-weight HSPGs, collagen XVIII, and agrin are often reported to
be associated with ECM and basement membranes, here we report that both these core
proteins are present from the earliest stages of lens development, primarily within the cells
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of the presumptive and developing lens, and are not observed in the lens capsule, as we
previously reported in the postnatal rat lens [38]. Rather, they are primarily associated with
the lens epithelium, and show particularly strong staining in lens fibre cells. Mice deficient
for col18a1, encoding the collagen XVII core protein, have a widespread malformation of
ocular tissues [99,100], with the overexpression of the endostatin domain of Collagen XVIII
leading to cataract and structurally compromised basement membranes [101,102]. The
overexpression of agrin also produces a dysgenic phenotype that is specific to the eye [95].
Similarly, the knock-down of agrin in zebrafish embryos results in a small eye and lens phe-
notype, leading to decreased HS-GAG staining in the lens, but not retina, suggesting that
other HSPGs may be upregulated in response to this loss of agrin [103]. The knockdown of
agrin in zebrafish also leads to selectively decreased FGF-signalling and the downstream
activity of MAPK/ERK in the lens, providing strong evidence that agrin is likely regulating
FGF-ERK signalling activity in the developing lens [103]. Interestingly, the strong pattern
of HSPG-labelling in the posterior lens vesicle cells mirrors that of phospho-ERK1/2 stain-
ing [104]. Since FGF/ERK-signalling is required for lens fibre cell elongation [105], and
agrin is strongly localised to both the rapidly elongating primary and secondary lens fibres,
it may be playing an important role in FGF-induced lens fibre differentiation. Notably,
agrin is absent from the transitional zone of the lens, where cells exit the cell cycle and begin
to differentiate into fibres, instead of selectively staining the elongated/ing lens fibres.

Here, we report on the immunolabelling of HS-GAG and specific core proteins in
the nuclei of lens epithelial cells (syndecan-2) and fibre cells (syndecan-2, glypican-1,
glypican-5, perlecan, and agrin). Some of these HSPGs have previously been reported in
the cell nuclei of other tissues, such as glypican-1 (neurons, glial cells); [106] and agrin
(developing rat brain cells) [107], while other HSPGs (i.e., glypican-5), to the best of our
knowledge, are reported herein for the first time in the nuclei of lens cells. HS-GAG and
HSPG core proteins in select cell types have been proposed to play roles in the transport
of cargo or growth factor/receptor complexes to the cell nucleus (e.g., FGF/FGFR) to
regulate gene expression [35,108]. The presence or absence of HSPGs correlates with cellular
function, phenotype, and changes in cell cycle phases, suggesting that their placement
in the nucleus may control cellular function [35,108]. Here, we report that most HSPGs
associated with lens cell nuclei are present in the transitional zone or in new fibre cells,
where the lens epithelial cells exit the cell cycle and undergo major morphological changes
to differentiate into fibre cells, suggesting that these specific HSPGs may play a regulatory
role in these processes. Further investigations are necessary to elucidate the specific
functional roles of HSPGs in lens cells. The current study is the first to comprehensively
map all HSPG localisation in a developing tissue during organogenesis. The unique
patterns of expression observed here for HSPG core proteins in the developing lens imply
that, during differentiation, lens cells acquire a distinct set of HSPGs that may interact
selectively with proteins, resulting in distinct patterns of HS-protein binding and signalling
regulation. Moreover, our findings suggest that different HSPGs may play distinct and
overlapping roles at different stages of lens induction and morphogenesis. In conjunction
with earlier research, our findings also suggest that HS-GAG sulfation is necessary for
growth factor-induced cellular processes in the lens, and that PAPSS2 plays a distinct
temporal role as a sulphate donor. By further characterizing and specifically modulating
the different sulphated HSPGs expressed in the lens, we hope to better understand how
HSPGs regulate different growth factor-mediated signalling, and its respective lens cell
behaviour. With this, the specific roles of HSPGs in modulating growth factor activity could
facilitate the development of innovative approaches for manipulating cellular behaviour.
Such strategies could have broader implications beyond the context of lens biology and
diseases, extending to other growth factor-mediated pathologies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12101364/s1, Figure S1: Distribution of glypican-5 core protein in
the 10-day-old rat eye; Table S1: Primary antibodies used for GAG and core protein immunolocalisation.
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