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Abstract: Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound
by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic
astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmis-
sion mainly within individual synapses, there is growing evidence for the physiologically important
extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such
actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound
by transporters could be released back into the extracellular space before being translocated into
astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and
transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter
was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the
brain neuropil (overlapping spheroids of varied sizes), rather than using the ‘average’ morphology,
thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant
activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-
micron from the glutamate release site, with glutamate–transporter unbinding playing an important
role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending
support to the concept of significant volume-transmitted actions of glutamate in the brain.

Keywords: glutamate spillover; astrocyte; glutamate uptake; GLT-1; extrasynaptic actions; proba-
bilistic synaptic model; Monte Carlo simulations

1. Introduction
1.1. Glutamate Actions outside the Synaptic Cleft

Information handling and storage by the brain relies on rapid signal transfer and
integration via excitatory circuits which use glutamate as their main neurotransmitter.
Cell-to-cell glutamatergic synaptic connections have, thus, been considered an essential
prerequisite for performing neural computations. A similar principle of one-to-one connec-
tivity is at the core of theoretical neural network learning algorithms, which reflects the
physical nature of wired electronic circuits. Consistent with this communication principle,
remote actions of glutamate escaping the synaptic cleft of individual cell–cell connections
are prevented via rapid binding to its high-affinity transporters, which are predominantly
of the GLAST/GLT-1 type [1–5] and are expressed at high densities on astrocyte pro-
cesses [6–10] that often permeate the perisynaptic neuropil [11–15]. However, experimental
evidence has emerged suggesting that high-affinity glutamate receptors could be activated
by synaptic discharges of glutamate, at least under repetitive or relatively strong stimuli,
for up to a micron away from the release site [16–24]. This notion is consistent with recent
observations that employed genetically encoded optical sensors to monitor glutamate
released from individual axons in organised brain tissue [15,25,26]. Because excitatory
synapses in the brain neuropil are only 0.5–0.8 µm apart, across species [27–31], extrasy-
naptic actions of glutamate could potentially constitute a significant volume-transmitted
component of excitatory transmission. How this component is controlled by glutamate
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transporters and what the neurocomputational implications of such signalling are have
remained an open question.

1.2. Glutamate Diffusion and Buffering in Probabilistic Synaptic Environment

Glutamate binding by its high-affinity transporters, such as GLT-1, occurs on the
sub-millisecond scale, whereas the uptake itself, that is, the translocation step, takes tens of
milliseconds [1,32]. Therefore, the stochastic nature of molecular reactions suggests that,
in the case of GLT-1, approximately 35% of bound glutamate molecules could be released
by their transporter molecules before being taken up [32]. Indeed, a ‘secondary’ wave
of glutamate was predicted in detailed simulations of its release, diffusion, and uptake
using detailed multicompartmental models [33]. A similar buffering phenomenon has been
described in relation to genetically encoded optical glutamate sensors, which by definition
release all initially bound glutamate molecules, thus slowing down their extracellular
diffusion [34].

The complex phenomena of extrasynaptic glutamate diffusion, uptake, and buffering
depend directly on the architecture of the synaptic environment and the expression patterns
of glutamate transporters and other binding sites. However, attempts to model the fate of
released glutamate have traditionally employed either contiguous-space approximation of
the synaptic environment (with a space tortuosity factor) [18,19,28,34–36] or regular arrays
of cubes or other shapes (e.g., [25,37–39]). In all such models, glutamate transporters are
considered to be evenly distributed throughout the extracellular space.

In reality, the synaptic environment is less deterministic. Firstly, the perisynaptic
extracellular space is highly heterogeneous, as represented by a system of gaps, channels,
and dead ends [38,40] of variable shapes and sizes [40–42]. Secondly, glutamate transporters
are expressed primarily by perisynaptic astroglial processes, which occupy only 8–10% of
neuropil volume in the hippocampus (~30% in the cerebellum) [15,33,43,44]. Finally, the
morphology of perisynaptic extracellular space and the occurrence of transporter-enriched
astroglia both vary strongly from synapse to synapse. The latter makes the concept of
an ‘average synaptic environment’ somewhat unsatisfactory because the process of shape
averaging effectively removes, or ‘chisels out’, any heterogeneities or outstanding features
of individual environments. The latter features, however, could potentially determine the
key characteristics of extrasynaptic glutamate activity.

Thus, we attempted to introduce a simulation platform that models porous synaptic
neuropil as a random scatter of overlapping spheres with a distributed size (that reflects
3D electron microscopic observations) [45–47]. The resulting ‘voids’, which vary arbitrarily
in shape and size, represent the tortuous extracellular space occupying the corresponding
tissue volume fraction (
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). Importantly, rather than having one fixed ‘average’ extracellular
environment, each simulation run that tracks the release and diffusion of glutamate particles
generates this environment anew. Thus, the effects of ‘outliers’, such as transporter-free
diffusion escape routes, could be preserved in the average outcome of multiple space
realisation runs.

Our earlier attempt to simulate glutamate release and diffusion with this model
generated virtually omnipresent transporter-enriched perisynaptic astroglia, with little
chances of having diffusion escape routes [46]. While this arrangement might reflect the
case of glutamatergic cerebellar synapses encircled by Bergmann glia [48], or synapses
inside synaptic glomeruli [49], it is less representative of the common excitatory synapses
occurring in cortical neuropil. The simulation paradigm was, therefore, developed further
by assigning, in an arbitrary fashion, the roles of neuronal and astroglial elements to
individual simulated spheroid shapes in accordance with their corresponding tissue volume
fractions, as established empirically [47]. In that model, the interaction between diffusing
glutamate molecules and transporter-enriched ‘astroglial’ spheroids was simulated as a
stochastic binding event that may occur, with the probability operator incorporating both
the experimental transporter affinity and their surface density, as further explained below.
Introducing these realistic parameters revealed clear theoretical plausibility for a released
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glutamate to diffuse over a significant distance from its synaptic release site [47]. However,
high demand for computational resources limited our previous exploration of glutamate
escape of up to ~3 ms post-release [47], which is the time period before any significant
glutamate–transporter unbinding in the extracellular space could occur [32,33]. In the
present study, we attempted to understand how incorporating such multi-faceted factors in
the model would affect the predicted activation of high-affinity glutamate receptors, such
as of the NMDA type, outside active synapses.

2. Materials and Methods
2.1. Generating Probabilistic Synaptic Environment

Similar to the previous study [47], Monte Carlo simulations were carried out over a
cube arena of 4 µm wide. In the arena centre, 1000 or 2000 Brownian particles representing
glutamate molecules were released instantaneously into the synaptic cleft (release con-
strained within a 120 nm wide, 20 nm high cylindrical volume, and the rest of the cleft being
made up by the adjacent extracellular space). The space outside the cleft was filled with
randomly scattered, overlapping sphere shapes, with the smallest gap between the cleft and
the nearest sphere constrained at ~10 nm. This was proceeded by generating random 3D
coordinates of sphere centroids within the simulation arena and a random radius value for
each sphere: the latter was distributed uniformly between 50 and 300 nm to roughly reflect
the sizes of cellular elements seen in 3D EM reconstructions of the synaptic neuropil [38,50].
This space generation procedure was carried out anew for every new simulation run. The
extracellular tissue volume fraction,
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ing randomly the ‘test points’ over the 3D arena and (ii) calculating their fraction falling
inside the spheres [46,47]. In the present study, the value of
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0.3 [51–53]. Similarly, each generated spheroid was assigned the role of either a neuronal or
an astroglial element, with the probability reflecting their respective tissue volume fraction
(VF) that was established empirically (Figure 1A), such as VFs of ~0.1 and ~0.3 occupied
by astrocyte processes in the hippocampal and cerebellar neuropil, respectively [33]. The
diffusion coefficient of glutamate in the free extracellular space was set at D = 0.5 µm2/ms,
in accordance with the in situ measurements of extracellular diffusivity in brain slices using
time-resolved fluorescence anisotropy imaging [54].

2.2. Glutamate Binding to and Unbinding from Astroglial Surfaces

The interaction of glutamate and ‘neuronal’ spheroids was simulated as an elastic
(mirror reflection) collision. In the case of ‘astroglial’ spheroids enriched in high-affinity
transporters, the interaction was simulated for individual diffusing particles as a stochastic
binding event that occurs with probability P. For each particle, P is a function of time t
elapsed from the particle’s first collision with an ‘astroglial’ spheroid in accordance with
the classical lifetime expression for first-order reactions, P = 1 − exp(−tΨ−1). Here, Ψ is
the time constant (free parameter) that determines how soon, on average, the forthcoming
binding event occurs when a particle remains near an astroglial surface. Parameter Ψ,
thus, combines, in a single quantity, the effects of the transporter binding affinity, the
transporter cell surface density, and the proximity of the binding surface to the diffusing
particle. During the simulations, P was computed at every diffusion time step [32] as long
as a diffusing particle remained within 5 nm of an ‘astroglial’ spheroid. P was reset to zero
once the particle departed from the ‘astroglial’ surface by >5 nm. We tested that increasing
the cut-off distance above 5 nm in our conditions had no detectable effect on P.
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Figure 1. Simulating extrasynaptic glutamate escape and transporter binding and unbinding using a
stochastic model of probabilistic synaptic environment. (A) Diagram depicting the extracellular space
filled with overlapping spheroids representing neuronal (light green) and astroglial (light magenta)
structures, with an extracellular space volume fraction
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VFastro = 0.1; the ring illustrates approximately the extent of the synaptic cleft (with two hemispheric
obstacles representing pre- and postsynaptic elements [33]); and a tissue fragment (2 × 2 × 1 µm3

slab of the 4 × 4 × 4 µm3 simulation arena) is shown for presentation clarity. (B) The average spatial
profile of iGluSnFR fluorescence (green) with respect to the glutamate release site (zero distance) near
an individual CA3-CA1 synapse at its peak post-release, as recorded earlier [26], and the average
profile (mean ± SEM, n = 10) of the simulated transporter-bound glutamate concentration (blue) at
4 ms post-release, for Ψ = 1 ms, as indicated. (C) Diagram as in A, but shown, for clarity, with astroglial
transporter-bound (red) and free (blue) glutamate molecules (1000 particles, 1 ms post-release) using
three presentations: as a space slab similar to A (left); with astroglial elements only (centre); and as a
2 × 2 × 2 µm3 arena filled with both neuronal and astroglial elements (right). (D) Simulated spatial
profiles of free glutamate concentration at various time points post-release, as indicated, with no
transporter unbinding (left) and with unbinding at a probability Punbind = 0.35 (right).
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To constrain the value of Ψ, we first analysed the data from our previous experiments
reporting the spatial profile of glutamate bound to the optical glutamate sensor iGluSnFR,
following its release from a single axonal bouton, near the fluorescence signal peak [26], as
explained in the results. The expected time constant of glutamate unbinding from GLT-1
is ~4 ms, with the expected glutamate unbinding probability (as opposed to glutamate
translocation into an astrocyte) of ~0.35 [32]. To introduce the effect of unbinding into
our simulations, glutamate molecules that were bound to transporters were released into
the extracellular space with the time-dependent probability that followed an S-function
(cumulative Gaussian distribution, σ = 2 ms) crossing 0.5 at t = 4 ms, in accordance with
the approximate unbinding lifetime statistics. Once unbound, glutamate molecules were
allowed to diffuse freely and bind to their transporters repeatedly if encountered. Because
the time of simulation (<10 ms) was much shorter than the typical time for glutamate to be
transported inside an astrocyte [32], the latter was not considered.

2.3. Kinetics of Free Glutamate and NMDA Receptor Activation

Typically, each test run lasted for 9–10 ms (system time) post-release, with 1000 diffus-
ing Brownian particles (glutamate molecules) tracked at every time step. Following 10 or 20
(as specified) runs, the average numbers of bound and free glutamate molecules were cal-
culated within the 20 nm thick concentric shells centred at the release site, at required time
points. The corresponding particle numbers and extracellular space volumes provided the
absolute concentration values. It has been estimated that approximately 12,000 molecules of
the main astroglial glutamate transporter, GLT1, normally occur per 1 µm3 of hippocampal
neuropil [10]. In such non-saturating conditions (unlimited supply of transporters even
in the vicinity of the synapse), the concentration time course of a much smaller glutamate
amount will scale linearly with the number of molecules. Thus, assuming that the average
synaptic vesicle contains ~3000 glutamate molecules, the resulting concentrations were
multiplied by a factor of 3.

The glutamate concentration time course obtained this way was used as the initial
conditions to generate NMDA receptor kinetics (5 channel states) [55] by solving the
corresponding system of differential equations, as shown previously [28,39,55], for different
distances from the release site, using the MATLAB built-in ‘ode45’ function with an accuracy
of 10−8. Monte Carlo simulations were run using two computing environments. The initial
testing used a UCL Myriad cluster: processors per node, Intel(R) Xeon(R) Gold 6240 CPU
@ 2.60 GHz; cores per node of 36 + 4 A100 GPUs; and RAM per node of 192 GB, tmpfs
1500 G, with a total of 6 nodes. The second environment was cloud computing with
Amazon AWS: t4g.medium, with a memory of 4 GB. Parallelisation and optimisation of
the algorithms and program codes were implemented by AMC Bridge LLC (Waltham,
MA, USA), Unboltsoft (Dnipro, Ukraine), with internet security assistance provided by
Cybecurio Ltd. (Berkhamsted, UK).

The kinetics of the glutamate transporter GLT-1 involving glutamate and ion fluxes
have been incorporated into our ASTRO simulation platform [56] and are available on-
line (description in the GluTrans.mod file) at https://github.com/LeonidSavtchenko/
Astro/tree/master/neuronSims (accessed on 7 April 2023). The NMDAR kinetics scheme
that we and many others use is available from the mod file in the NEURON-ModelDB
platform at https://senselab.med.yale.edu/modeldb/ShowModel?model=18198&file=
/SYN_NEW/nmda5.mod#tabs-2 (accessed on 7 April 2023), with the set of parameters in
accordance with [55].

3. Results
3.1. Constraining the Glutamate–Transporter Binding Parameter Ψ

GLT-1 transporters and the optical glutamate sensor iGluSnFR display their binding
rates within a similar diffusion-limited range, and neither is saturated by individual
glutamate release events [3,26,57,58]. Therefore, their interactions with glutamate should be
similar on the small millisecond scale [34]. Based on this notion, we sought to compare the

https://github.com/LeonidSavtchenko/Astro/tree/master/neuronSims
https://github.com/LeonidSavtchenko/Astro/tree/master/neuronSims
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experimental and simulated data reporting the spatial concentration profiles of glutamate
bound to either iGluSnFR (experimental) or GLT-1 (simulated) following its release into
the synaptic cleft. Thus, as a first approximation, we compared the profile of iGluSnFR
fluorescence (near its peak) recorded following a single-synapse glutamate discharge in an
earlier study [26], with the concentration profile of bound glutamate simulated using the
present model (a snapshot of 4 ms post-release, near the peak of binding), while varying the
value of Ψ between 0.1 and 10 ms. The best fit between the simulated and the experimental
profiles of glutamate (bound to either GLT-1 or iGluSnFR molecules) corresponded to Ψ~1
ms (Figure 1B). This value was, therefore, used in subsequent simulations.

3.2. Simulating the Dynamics of Glutamate in Probabilistic Environment

We started by simulating a synaptic environment that would possess the main mor-
phometric parameters of hippocampal neuropil (mainly area CA1) obtained experimentally.
This included an extracellular space volume fraction
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~250 µm wide synaptic apposition area including
the cleft (a ~1 µm slab of simulated tissue is depicted in Figure 1A). An instantaneous
release of Brownian particles (glutamate molecules) into the clef centre generated a time-
dependent diffusion and astroglia-binding scatter, with the 3D co-ordinates of all individual
molecules, either freely diffusing or bound, traced and recorded throughout the system
time (Figure 1C; same scatter shown with partially complete representations of the tissue
environment for illustration purposes).

In each simulation run, we calculated the concentration of both free or bound gluta-
mate within 20 nm thick concentric shells centered at the release site, at varied distances
from the site, and at different time points post-release. We noted that every individual
stochastic generation of the synaptic environment produced a relatively unique geometric
configuration (albeit with the same VF values for the extracellular space and astroglia),
adding to the variability of the glutamate concentration profile. Thus, to obtain the ‘aver-
age profile’, we carried out 10 such realisations, generating both the tissue environment
and glutamate diffusion in it, and calculated the average concentration readout. The re-
sults were used to monitor and compare the free-glutamate profile under no unbinding
from transporters (Figure 1D, left) and under an unbinding probability of 0.35 (Methods;
Figure 1D right).

3.3. Glutamate–Transporter Unbinding Facilitates NMDAR Activation at >500 nm from
Release Site

We obtained the time–distance maps for the free-glutamate concentration dynamics
in the ‘baseline’ case (
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simulated as a stochastic binding event that may occur, with the probability operator 

= 0.2 and VFastro = 0.1), with and without glutamate–transporter
unbinding being enabled (Figure 2A). These data generated the corresponding maps for
the NMDAR activation (Figure 2B), under relieved Mg2+ block (see Discussion). Firstly,
the results predict significant activation (or at least double occupancy) of NMDARs in the
probabilistic synaptic environment at up to 0.5 µm from the release site (Figure 2C, left and
centre). Secondly, at distances up to 1 µm form the synapse centroid, glutamate–transporter
unbinding appears to increase NMDAR activation by almost two-fold (Figure 2C).
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Figure 2. Glutamate–transporter unbinding facilitates NMDAR activation away from the release site
at the micron scale. (A) Diagrams illustrating the free-glutamate concentration kinetics (false colour
scale) at different distances from the release site, with no transporter unbinding and with unbinding
with Punbind = 0.35, as indicated. (B) Diagrams illustrating NMDAR activation kinetics (assuming no
Mg2+ block) under the conditions shown in (A). (C) Examples of the NMDAR activation time course
at three different distances from the release site, with (red) and without (grey) transporter unbinding,
as indicated and shown for comparison. Key model parameters:
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3.4. Glutamate–Transporter Unbinding Makes a Difference under Varied Synaptic Environments

Finally, we examined if the effect of glutamate–transporter unbinding on NMDAR
activation remained detectable when both astroglial presence and the key features of
the synaptic environment varied within the known range. We, therefore, carried out
our simulations under the condition of reduced extracellular space (
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= 0.1) or reduced
expression (occurrence on the astrocyte surface) of glutamate transporters (Vastro = 0.05),
which is believed to take place in some pathological conditions [60–62], and under the
condition of an increased astroglial VF (VFastro = 0.3), such as in the cerebellum [33].
The results indicate, firstly, that increasing the presence of transporter-enriched astroglia
sharply reduces the chance of NMDAR activation beyond 0.5 µm from the release site,
whereas changes in the extracellular space fraction appear to have a lesser effect (Figure 3A).
Secondly, in all the cases considered here, glutamate unbinding increases the activation of
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NMDARs at various distances beyond 0.4.-0.5 µm (Figure 3A,B). Interestingly, the latter
effect is particularly prominent at distances as large as 1 µm from the release site (Figure 3C).
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4. Discussion

The traditional neuroscience view has been that informative signal propagation and
memory formation in the brain occurs mainly through the activity of neuronal networks
equipped with point-to-point, or ‘wired’, excitatory connections. However, the main
excitatory neurotransmitter glutamate, once released from a synaptic vesicle, rapidly leaves
the synaptic cleft; several thousands of released molecules bind to no more than a hundred
or two hundreds of target receptors or transporters within the cleft. The escaping glutamate
molecules could, therefore, activate their extrasynaptic receptors, at least in theory, and
thus compromise connection specificity. To counter such effects, many excitatory synapses
are surrounded by astroglial processes that express high-affinity glutamate transporters,
such as GLT-1. However, electron microscopy studies indicated that such processes cover
only a proportion of synapses and that astroglial coverage of individual synapses is often
incomplete [12–14,63]. Thus, there often remain perisynaptic diffusion escape routes for
glutamate, which could potentially lead to the activation of its target receptors away from
the synapse. However, theoretical models that test this possibility normally consider an
‘average’, hence homogeneous, spatial distribution of extracellular diffusivity and high-
affinity transporters in the synaptic environment. The latter, even though diluting the
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transporter density to fill the entire perisynaptic space, would still appear sufficient to
block, at least theoretically, longer-range escape of glutamate.

The present study attempts to abandon the idea of the ‘average’ environment, pre-
ferring instead an exploration of the probabilistic extracellular space that varies from
synapse to synapse [47]. Thus, every modelled realisation of the perisynaptic environ-
ment may leave significant diffusion escape routes devoid of astroglial membranes and,
hence, glutamate transporters. When implemented, such an approach predicts significant
presence of escaping glutamate up to 1 µm from its release site. In fact, this prediction
appears consistent with recent experimental data documenting a significant signal gener-
ated by the glutamate sensor iGluSnFR at similar distances from an individual activated
synapse [25,26].

Thus, under the conditions of a probabilistic synaptic environment, we attempted to
evaluate the chances for glutamate molecules to activate NMDARs at various distances
from their release site. We found that, firstly, such activation is plausible, assuming no
Mg2+ block, beyond an average nearest-neighbour inter-synaptic distance (~0.5 µm in the
hippocampal neuropil [28]). In fact, the data represent the kinetics of NMDAR double
occupancy by glutamate, leading to NMDAR activation if a host cell becomes depolarised
above approximately -50 mV. Thus, glutamate discharge by one synapse can result in the
NMDARs at some neighbouring cells being doubly occupied, or ‘tagged’, by glutamate
for up to 150–250 ms. The ‘tagged’ NMDARs can be activated by host cell depolarisation
or spiking, without any synaptic input at the location of ‘tagged’ NMDARs. Because
of the relatively close inter-synaptic distances in the neuropil, these data predict that a
significant proportion of synapses could carry ‘tagged’ NMDARs during network activity.
This may have important repercussions for signal integration rules in the brain. Secondly,
because of stochastic unbinding of glutamate molecules from transporters [32,34], our
simulations predict significant NMDAR activation up to 1 µm from the synapse. With
a synaptic density of ~2 µm−3, this distance would reach approximately eight synaptic
neighbours, thus raising questions about the contribution of volume-transmitted glutamate
signal to the excitatory activity of brain networks. Notably, a reduction in the expression of
the main astroglial glutamate transporter GLT1, which is characteristic for some common
neurological conditions [61,64], could expand dramatically the volume-transmitted actions
of glutamate (Figure 3).

The theoretical approach outlined here is not devoid of limitations. Firstly, while
overlapped spheroids appear more realistic than regular geometric shapes when modelling
the tortuous and variable extracellular space, they are still not equivalent to natural cellular
forms. Secondly, the exact value of glutamate–transporter unbinding probability Punbind
requires further experimental validation, although an exploration of the plausible range of
kinetic constants has indicated that this value probably has a lower estimate [32]. Finally,
we assumed no Mg2+ block of NMDARs to evaluate their activation kinetics, which is
unlikely to occur continuously in the brain neuropil. However, NMDARs that are double
bounded by glutamate for hundreds of milliseconds after glutamate release would be
‘primed’ for activation, if and when the host cell is depolarised. Thus, long-range actions
of glutamate might provide a time window to lower the threshold of spatial integration
for excitatory signals and their NMDAR-dependent plasticity [39]. Finally, it would seem
critical to establish whether the volume-transmitted extrasynaptic glutamate actions occur
to a similar extent in the intact brain.

5. Conclusions

Recent experimental studies have reported that optical sensors can detect escaping
glutamate more than half-micron away from an individual synapse that discharge it. This
is difficult to explain mechanistically using the traditional detailed models of an ‘aver-
age’ synaptic environment that incorporates experimentally established prevalence of
astroglial glutamate transporters. Here, we modelled the synaptic environment using
trial-by-trial stochastic generation of astroglial and neuronal elements to reflect highly
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probabilistic configurations of the perisynaptic extracellular space. It appears that the
presence of occasional transporter-free escape routes around synapses, and the relatively
rapid transporter-unbinding kinetics of glutamate, may lead to the significant occupancy
of high-affinity glutamate receptors at micron-scale distances from active synapses. Estab-
lishing an adaptive role for such volume-transmitted glutamate signalling in the brain is an
important and intriguing question.
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