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Abstract: Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod
photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of
single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient
signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are
anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the
active zone for continuous and faithful signalling. In the present study we demonstrate with indepen-
dent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)—alternative
name Dmx-like 2 (DMXL2)—is localized to the synaptic ribbons of rod photoreceptor synapses in
the mouse retina. In the brain, RC3α-containing complexes are known to interact with important
components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins
and the vesicular H+-ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmit-
ter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could
enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone
thus contributing to reliable synaptic communication.

Keywords: retina; ribbon synapse; rabconnectin-3α; DMXL2; vesicular H+-ATPase; Rab3

1. Introduction

Ribbon synapses are specialized, continuously active synapses built in the retina,
pineal gland and inner ear [1–7]. In the retina, rod and cone photoreceptors and bipolar
cells form ribbon synapses. Ribbon synapses faithfully transmit a broad range of stimulus
intensities by computing graded changes of membrane potential. Rod ribbon synapses
can even reliably transmit signals generated by the detection of single photons [8–19].
The highly reliable synaptic transmission at this type of synapse requires structural and
functional specializations. The synaptic ribbon is the characteristic presynaptic structural
specialization of ribbon synapses. Synaptic ribbons bind many synaptic vesicles and deliver
them to the active zone to promote continuous synaptic transmission in a precise and largely
indefatigable manner at high temporal resolution. RIBEYE is the main building block of
synaptic ribbons and is essential to make the synaptic ribbon [20–26]. RIBEYE consists of a
unique amino-terminal A-domain. The carboxyterminal B-domain of RIBEYE is identical
to CtBP2 except for the first 20 amino-terminal amino acids [20]. CtBP2 functions as an
NAD(H)-binding nuclear co-repressor and is highly homologous to CtBP1. The latter
proteins evolved from D-isomer-specific 2-hydroxyacid dehydrogenases [27–30].

Intense synaptic vesicle trafficking events occur at the synaptic ribbon [7,31,32]. Synap-
tic vesicles bind to the synaptic ribbon and translocate along the ribbon to the active
zone at which synaptic vesicle fusion occurs [33–37]. At many synapses, the synap-
tic vesicle-associated small GTP-binding protein Rab3A [38,39] is important for the re-
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cruitment of synaptic vesicles to the active zones, thereby also mediating aspects of
synaptic plasticity [40–45]. Rab3A interconverts between a GTP-bound active state and a
GDP-bound inactive state [40,46]. At ribbon synapses, Rab3A most likely plays a particu-
larly prominent role [34,47,48]. Rab3A mediates vesicle delivery to the synaptic ribbon [34]
and antibodies against Rab3 immunolabel synaptic ribbons in hair cells [48]. Binding
and release of synaptic vesicles depends upon a GTP/GDP cycle [34] emphasizing the
importance of proteins that regulate the nature of the guanine nucleotide bound to Rab3A.
Rabconnectin-3α (RC3α)—alternative name Dmx-like 2 (DMXL2) [49]—serves, together
with rabconnectin-3β, as a scaffold for the GDP/GTP exchange factor (GEF) protein and the
GTPase activating protein (GAP) of Rab3A [50,51]. Therefore, we aimed to analyse the distri-
bution of rabconnectin-3α/DMXL2 (RC3α/DMXL2), in retinal ribbon synapses and focused
on photoreceptor ribbon synapses that are characterized by particularly large synaptic rib-
bons and intense synaptic vesicle trafficking. In the present study, we found RC3α/DMXL2
located to the synaptic ribbon in rod photoreceptor synapses of the mouse retina (a rod
photoreceptor-dominated retina) using different antibodies against RC3α/DMXL2 and
light and electron microscopic immunolabelling techniques suggesting the importance of
proteins that regulate the nucleotide binding state of Rab3A for ribbon-associated vesicle
trafficking and related events at the ribbon synapse.

2. Materials and Methods
2.1. Materials
2.1.1. Mice

All mouse care/organ dissection procedures were approved by the responsible local
authorities (Landesamt für Verbraucherschutz; Geschäftsbereich 4; 66115 Saarbrücken,
Germany; GB 3-2.4.2.2-25-2020). Prior to organ collection, C57BL/6J mice were deeply
anaesthetized with isoflurane. Mice were killed by cervical dislocation. Organ isolation
was performed within 5 min post-mortem.

2.1.2. Primary Antibodies
Antibodies against Rabconnectin3α/DMXL2

Two mouse monoclonal antibodies against RC3α/DMXL2 (clones 2G2 and 12D8)
were generated and used in the present study for the determination of the localization
of RC3α/DMXL2 in the retina. Mouse monoclonal antibodies were raised against re-
combinant, bacterially expressed and purified GST fusion protein in which the following
110 amino acid long peptide stretch from mouse RC3α/DMXL2 (from N- to C-terminal:
KKDQLDSVSGRMENGPSESKPVSRSDGGSGADWSAVTSSQFDWSQPMVTVDEEPLRL
DWGDDHDGALEEDDGGGLVMKTTDAKKAGQEQSASDPRALLTPQDEECADGDTE)
was fused to the carboxy-terminus of GST using standard DNA cloning techniques. Fu-
sion protein expression and purification, immunization, hybridoma screening, hybridoma
sub-cloning, counter-screening against GST and antibody isotyping was performed by
Absea (Beijing, China). Two antibody hybridoma clones against RC3α/DMXL2 were used
in the present study (2G2 and 12D8; both IgG2a immunoglobulins). For peptide array
experiments the antibodies were used in a 1:20,000 dilution (~10 ng/mL final immunoglob-
ulin concentration) and for immunofluorescence (IF) and post-embedding immunogold
microscopy in a 1:10 dilution (~20 µg/mL final immunoglobulin concentration).

Furthermore, a commercially available rabbit polyclonal antibody against RC3α/DMXL2
(HPA039375; Sigma, Taufkirchen, Germany) was also used in this study. The affinity-purified
antibody has been raised against a recombinant protein fragment of 92 amino acids length
of human RC3α/DMXL2: (from N- to C-terminal: TKTSALSAKKDQPDFISHRMDDVP-
SHSKALSDGNGSSGIEWSNVTSSQYDWSQPIVKVDEEPLNLDWGEDHDSA LDEEED-
DAVGLVMKSTDA). This peptide sequence from human DMXL2 largely, though not com-
pletely, corresponds to the peptide region of mouse RC3α/DMXL2 that was used for the
generation of the monoclonal antibodies 2G2/12D8 (see first paragraph in Section 2.1.2).
The affinity-purified polyclonal antibody against RC3α/DMXL2 was used for WB in a
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1:1000 dilution; for peptide array experiments in a 1:20,000; for IF in a 1:300 dilution. Further
primary antibodies used in the present study have been summarized in Table 1.

Table 1. Further primary antibodies.

Antibody Source Reference Dilution

RIBEYE(B) U2656, rabbit polyclonal Lab-made [20] 1:10,000 (IF)

RIBEYE(B) (2D9), mouse monoclonal Lab-made [52] 1:200 (IF)
1:400 (EM)

PSD-95 (postsynaptic density
protein-95), rabbit polyclonal Gift Dr. T.C. Südhof [53] 1:1000 (IF)

CSP (cysteine-string protein),
rabbit polyclonal Lab-made Raised against recombinant

full-length mouse CSP 1:500 (IF)

Cav1.4 Nterm, rabbit polyclonal Lab-made [54] 1:500 (IF)

GST, mouse monoclonal Sigma-Aldrich, G1160 [55] 1:10,000 (WB)

2.1.3. Secondary Antibodies

All secondary antibodies used in the present study have been summarized in Table 2.

Table 2. Secondary Antibodies.

Antibody Source Dilution

Donkey anti-mouse Alexa 488 Invitrogen; Karlsruhe, Germany; A-21202 1:1000 (IF)

Chicken anti-mouse DyLight 488 Jackson ImmunoResearch; 715485150 1:1000 (IF)

Chicken anti-rabbit Alexa 488 Invitrogen; Karlsruhe, Germany; A-21441 1:1000 (IF)

Chicken anti-rabbit Alexa 568 Invitrogen; Karlsruhe, Germany; A-10042 1:1000 (IF)

Chicken anti-mouse Alexa 488 ThermoFisher; Karlsruhe, Germany; 10114192 1:1000 (IF)

Goat anti-mouse peroxidase-conjugate (POX) Sigma; Taufkirchen, Germany; A3673 1:5000 (WB)

Goat anti-mouse conjugated to 1.4 nm Nanogold Nanoprobes/Biotrend, Cologne, Germany, #N-2001 1:100 (EM)

Abbreviations: Immunofluorescence (IF), Western blot (WB) with enhanced chemiluminescence (ECL) detection,
Electron microscopy (EM).

2.1.4. Additional Materials

Silver Enhancement Kit (Nanoprobes 2012 45ML, Nanoprobes, Inc. 95 Horseblock
Road, Unit 1 Yaphank, NY, USA).

HiMarkTM Pre-stained protein standard (Invitrogen LC 5699).
Roti-Mark Standard for SDS-PAGE.

2.1.5. Plasmids

pGEX-mouse RC3α/DMXL2 (Absea), was cloned in pGEX-KG via BamHI/XhoI using
synthetic DNA encoding aa 1919–aa 2029 of mouse RC3α/DMXL2 (NP_766359) using
standard methods.

2.2. Methods
2.2.1. Embedding of Mouse Retinas and Immunohistochemistry on 0.5 µm Thin Resin Sections

Mouse retinas were processed for immunofluorescence (IF) microscopy on 0.5 µm
thin resin sections as described [25,52,54–59]. Semithin sections provide a better resolution
than cryostat sections for immunolabelling [60] and are capable of resolving single rod
terminals and single rod active zones [52,54,56–58]. Eyes were isolated within 5 min
post-mortem and the dissected posterior eyecups were flash-frozen in liquid nitrogen-cooled
isopentane. Lyophilization of the tissue was performed at ~10−7 mbar for ~48 h. During
the lyophilization, the tissue was continuously cooled by liquid nitrogen. Freeze-dried
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samples were equilibrated to room temperature, infiltrated with Epon resin at 28 ◦C on a
rotor (at 2 rpm, for ~24 h), degassed in a vacuum chamber and subsequently polymerized
at 60 ◦C for ~24 h, as described [25,52,54–59].

Semi-thin sections (0.5 µm thin) were cut from the polymerized tissue blocks with a
Reichert ultramicrotome, as described [56,57]. Sections were collected on glass coverslips.
Epon resin was removed from the sections by incubating sections with sodium methylate
(30% w/v in methanol (Sigma-Aldrich #8.18194), 10 min); xylene/methanol (1:1 v/v, 10 min);
acetone (2 × 10 min), H2O (10 min) and PBS (10 min), as previously described [25,52,54–57].
All resin removal steps were performed at room temperature (RT).

Next, sections were incubated simultaneously with the indicated primary antibodies
overnight at 4 ◦C, as also previously described [25,52,55–57]. Following the incubation in
the primary antibody dilutions, sections were washed several times with PBS and incubated
with the corresponding fluorophore-conjugated secondary antibodies (1 h at RT). After
several washes with PBS, immunolabelled sections were mounted with an N-propyl gallate-
containing anti-fading solution, as previously described [25,52,55–57]. Immunolabelling
experiments were performed with three different sets of embedded mouse retinas.

In control experiments, sections were incubated also without primary antibody; all
other steps of the immunolabelling protocol remained the same. Additional controls were
performed for double immunolabelling experiments by setting individual laser power lines
to zero. The detection settings remained unchanged. These controls were performed to
make sure that the immunosignals in the respective detection channel do not result from sig-
nals of the “neighbouring” detection channel (“bleed-through controls”). Immunolabelled
retina sections were analysed by confocal microscopy, as described in the next paragraph.

2.2.2. Confocal Microscopy of Immunolabelled Sections

We used an A1R laser scanning microscope (Nikon, Düsseldorf, Germany) for con-
focal microscopy, as previously described [25,52,55–57,61]. Images were acquired with
60×/1.40 N.A. oil objective and the 488 nm and 568 nm laser excitation lines. Image
acquisition was performed with the NIS Elements software (NIS Elements AR 3.2, 64 bit;
Nikon, Düsseldorf, Germany).

2.2.3. Preparation and Immunolabelling of Retinal Cryostat Sections

The posterior eyecups were dissected within 5 min of post-mortem and flash-frozen
in liquid nitrogen-cooled isopentane, as previously described [20,62]. Cryostat sections
of 8 µm were cut from these samples with a Leica cryostat CM950. Cryosections were
heat-fixed by putting them on a heating pad (30 min at 60 ◦C). Incubation of the heat-fixed
cryosections with primary and secondary antibodies, negative and positive controls as
well as bleed-through controls was performed as described above for semi-thin sections.
Immunolabelled sections were analysed by confocal microscopy, as described above.

2.2.4. Embedding of Retinas in LR Gold for Post-Embedding Immunogold Electron Microscopy

Mouse retinas were processed for post-embedding immunogold labelling as previ-
ously described [20,25,56]. Retinas, dissected as described above, were fixed overnight in
2% freshly depolymerized paraformaldehyde in PBS (pH 7.4) at 4 ◦C. Afterward, samples
were dehydrated with ethanol (30% ethanol (4 ◦C, 10 min); next with ethanol concentra-
tions of 50%, 70%, 80% to 99% ethanol (20 min each step, at −20 ◦C with mild agitation
using an overhead rotator). Samples were infiltrated with increasing concentrations of LR
Gold (ethanol/LR-Gold: 2/1, 1/1, 1/2 (v/v); 1 h each, at −20 ◦C) as described [20,25,56].
Samples were transferred to pure LR Gold resin (overnight at −20 ◦C) and finally infiltrated
with LR Gold containing 0.1% benzil (w/v). Polymerization was performed for ≈48 h at
−20 ◦C with UV light. Ultrathin sections (≈70 nm thin) were cut with a Reichert–Jung
ultramicrotome and collected on 100 mesh gold grids. Please note that no OsO4 can be
used for lipid-contrasting in post-embedding immunogold electron microscopy. Therefore,
membranes, e.g., synaptic vesicle membranes, are only weakly visible.
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2.2.5. Post-Embedding Immunogold Labelling with Ultrasmall Immunogold Particles and
Subsequent Silver Intensification

Post-embedding immunogold labelling was performed largely as previously de-
scribed with some modifications [20,25,56]. Ultrathin sections were obtained from LR
Gold-embedded tissue and treated with blocking buffer, containing 1% bovine serum albu-
min (BSA) in PBS, pH 7.4 (1 h, at RT) to saturate unspecific protein binding sites [20,25,56].
Then, sections were incubated with RC3α/DMXL2 2G2 mouse monoclonal antibody di-
luted 1:10 in blocking buffer (overnight, at 4 ◦C). Following several washes with block-
ing buffer, ultrathin sections were incubated with goat anti-mouse secondary antibody
(1:100 dilution in blocking buffer, 90 min, at RT). The secondary antibody was conjugated
to ultrasmall gold particles (~1.4 nm in diameter). After incubation with the secondary
antibody, sections were washed several times with PBS and treated with 2.5% glutaralde-
hyde in PBS (15 min, at RT). Next sections were washed with H2O and the immunolabeled
sections were silver-intensified according to the manufacturer’s instructions in the dark
(4 min, at RT). This enhancement procedure was done to improve sensitivity. Following
silver enhancement, sections were washed three times with H2O and contrasted with 2%
uranyl acetate (in H2O, 10 min, at RT). As negative controls in these immunolabelling
experiments, incubations in which no primary antibody was applied were used. All other
steps of the immunogold labelling procedure remained identical in these negative con-
trol experiments. Immunolabelling experiments were performed with three sets of LR
Gold-embedded mouse retinas. Immunolabelled ultrathin sections were analysed with
a Tecnai Biotwin 12 transmission electron microscope (FEI, Eindhoven, The Netherlands)
operated at 100 kV [25,56]. Images were acquired with a Megaview III digital camera
(Gatan, Unterschleissheim, Germany) under the control of the iTEM acquisition software
(Olympus; Hamburg, Germany).

2.2.6. Peptide Arrays for Antibody Epitope Mapping

We performed epitope mapping of all three RC3α/DMXL2 antibodies applied in the
present study using peptides immobilized on cellulose membranes. For antibody epitope
mapping of RC3α/DMXL2 antibodies, peptides of mouse RC3α/DMXL2 covering aa 1919–
aa 2029 of mouse DMXL2 (NP_766359) were analysed. Peptides with a length of 20 amino
acids each (overlap of 10 amino acids) were synthesized on the membrane. Peptide syn-
thesis was accomplished on hardened cellulose membranes using a ResPepSL-Synthesizer
(Intavis Bioanalytical Instruments; Cologne, Germany) [63–65]. Peptide arrays were pro-
cessed for epitope mapping as previously described [25,66]. The membrane was activated
with methanol (1 min, at RT). Next, the membrane with the peptide arrays was briefly
washed with H2O and incubated for 2 h with binding buffer (50 mM Tris-HCl, pH 7.5,
150 mM NaCl, 0.1% Triton X-100) with mild shaking at RT. Unspecific protein binding
sites were saturated by incubating the membrane in blocking buffer (1 µM BSA in binding
buffer; 1 h, at RT). Following incubation in blocking buffer, membranes were incubated
with the primary antibodies that are indicated in the respective experiments (2G2 and
12D8 RC3α/DMXL2 mouse monoclonal; RC3α/DMXL2 rabbit polyclonal (Sigma-Aldrich;
Taufkirchen, Germany); all in a 1:20,000 dilution in blocking buffer, overnight at 4 ◦C).
Next, the membrane was washed 3 × 10 min with blocking buffer and incubated with goat
anti-mouse antibody conjugated to horseradish peroxidase (HRP) (1:10,000 in blocking
buffer) for 1 h at RT on a shaker. Antibody binding was visualized by enhanced chemilumi-
nescence (ECL) with a ChemiDoc™ XRS Gel Doc system (Bio-Rad, Feldkirchen, Germany).
After ECL detection, the locations of all peptide spots were visualized by UV illumination,
as described [25,66].

2.3. Miscellaneous Methods
2.3.1. SDS-PAGE and Western Blotting

Retinas were isolated within 5 min post-mortem and dissolved in 200 µL hot Laemmli
buffer [25]. The samples were solubilized by homogenization by up/down pipetting
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in a 100 µL tip and heated at 96 ◦C for 10 min [25]. The protein concentration of these
retina samples was determined as described [67]. Retinal lysates (~50 µg total protein
per lane) were separated by 5% acrylamide SDS-PAGE. Proteins were electro-transferred
to nitrocellulose membrane (Protran 0.45 µm) (at 40 V, 10 h, at 4 ◦C). Unspecific protein
binding sites were saturated by incubation in 5% skimmed milk powder in PBS (45 min,
RT) followed by overnight incubation in primary antibody (4 ◦C). Binding of the primary
antibody was detected by the respective peroxidase-conjugated secondary antibodies and
analysed by enhanced chemiluminescence (ECL) using a ChemiDoc™ XRS GelDoc system
(Bio-Rad, Feldkirchen, Germany).

2.3.2. Expression and Purification of GST-Tagged Fusion Proteins

BL21(DE3) bacteria were transformed with the respective pGEX plasmids by electro-
poration and plated on Ampicillin plates. Induction, expression with IPTG and purification
of recombinant GST-tagged fusion protein was performed with standard methods as previ-
ously described [20,55,68,69].

3. Results

We first applied a commercially available affinity-purified polyclonal rabbit antibody
against DMXL2 to determine the localization of RC3α/DMXL2 in the retina. The polyclonal
antibody detected a single high molecular weight band in WB analyses at the characteristic
running position of ~340 kDa in mouse retinal lysates (Figure 1A). These Western blotting
data clearly demonstrated that RC3α/DMXL2 is expressed in the retina. With peptide
arrays that covered the entire region used for immunization we determined the precise
epitopes of RC3α/DMXL2 which the polyclonal antibody reacts with (Figure 1B). The
polyclonal antibody reacts with aa1949 to aa1988 of mouse RC3α/DMXL2 (NP_766359.2).
This peptide region corresponds to aa1950 to aa1989 of human RC3α/DMXL2 (AAL93215)
and is highly conserved between mouse and human DMXL2 (Figure 1C).

Next, we used the polyclonal RC3α/DMXL2 antibody for immunolabelling of 0.5 µm
thin sections obtained from mouse retina (Figure 2). In cross-sections of the retina, we
observed strong RC3α/DMXL2 immunosignals in the outer plexiform layer (OPL) in
which the photoreceptor ribbon synapses are located (Figure 2A). We found the inner
plexiform layer only weakly, if at all, immunolabeled (Figure 2A). Therefore, we focused
on the localization of RC3α/DMXL2 in photoreceptor synapses of the OPL. Photoreceptor
synapses in the mouse retina are predominantly rod photoreceptors synapses [7,70]. Rod
photoreceptor synapses typically possess a single, large active zone with a single and large
horseshoe-shaped synaptic ribbon [7,70]. The entire presynaptic terminal is filled with
many highly motile synaptic vesicles that can bind to the synaptic ribbon [71].

Double-immunolabelling with antibodies against RIBEYE confirmed the synaptic
localization of DMXL2 in the OPL (Figure 2B,C). Double immunolabelling with antibodies
against RIBEYE showed partial co-localization of RC3α/DMXL2 with RIBEYE and sug-
gested that a significant portion of RC3α/DMXL2 could be localized to the synaptic ribbon
(Figure 2(B1–B3,C1–C3)). “Bleed-through” controls demonstrated that the RC3α/DMXL2
immunosignals at the synaptic ribbon are not influenced by RIBEYE immunosignals from
the neighbouring detection channel but completely persist if the excitation for the RIBEYE
channel is completely switched off (Figure 3). These data show that the RC3α/DMXL2
immunosignals do not result from a “bleed-through” from the RIBEYE immunosignals.

Unfortunately, the rabbit RC3α/DMXL2 antibody was not suitable for electron micro-
scopic analyses and the ultrastructural distribution of RC3α/DMXL2 in rod photoreceptor
synapses could thus not be resolved with this antibody.

In order to also resolve the ultrastructural distribution of RC3α/DMXL2 in rod pho-
toreceptor synapses, we generated novel monoclonal antibodies against RC3α/DMXL2.
Two monoclonal RC3α/DMXL2 antibodies, 2G2 and 12D8, were raised against a GST fu-
sion protein containing a 110 amino acid long peptide stretch carboxyterminal of the central
Rav1P_C domains of RC3α/DMXL2 (Figure 4A,B). Both monoclonal RC3α/DMXL2 anti-
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bodies strongly reacted with the RC3α/DMXL2-GST fusion protein in Western blot (WB)
analyses (Figure 4(C1) lane 3; Figure 4(D1), lane 5), but not with GST alone
(Figure 4(C1) lane 4; Figure 4(D1), lane 6). The same WB membranes that were first
incubated with RC3α/DMXL2 antibodies were then re-probed with GST antibodies to
analyse equal loading of the respective fusion proteins (Figure 4(C2,D2)). With pep-
tide arrays we determined the precise binding epitopes of the RC3α/DMXL2 antibod-
ies 2G2 and 12D8. The 2G2 antibody strongly reacted with the RC3α/DMXL2 peptide
KKDQLDSVSGRMENGPSESK (Figure 4(E2),G) whereas 12D8 reacted with the RC3α/DMXL2
peptide ADWSAVTSSQFDWSQPMVTV (Figure 4(F2),G). UV illumination was used to
determine the localization of the peptide spots (Figure 4(E1,F1)).
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Figure 1. RC3α/DMXL2 expression in the mouse retina. (A) Retinal lysate from wild-type mice was
probed by Western blot (WB) with affinity-purified rabbit polyclonal anti-RC3α/DMXL2. A high
molecular weight band at ≈340 kDa was detected by the antibody in retinal lysates. (B) Peptide
arrays that correspond to the RC3α/DMXL2 region against which this polyclonal antibody was
generated, were incubated with affinity-purified rabbit polyclonal anti-RC3α/DMXL2 antibody.
(B1) The location of all peptide spots was visualized by UV illumination. (B2) shows the result of the
immunolabelling of the peptide array with affinity-purified rabbit polyclonal anti-RC3α/DMXL2
(ECL detection). Peptide spots #4, #5 and #6 strongly reacted with the anti-RC3α/DMXL2 poly-
clonal antibody. (B3) The amino acid sequence of spots #4, #5 and #6, that strongly reacted
with the polyclonal RC3α/DMXL2 antibody, are highlighted in red. (C) The peptide sequence
of mouse RC3α/DMXL2 (NP766359) that reacted with the affinity-purified rabbit polyclonal anti-
RC3α/DMXL2 (highlighted in red) was aligned with the corresponding sequence from human
RC3α/DMXL2 (AAL93215). The corresponding sequences are highly conserved between mouse and
human RC3α/DMXL2 (73% amino acid identities).
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Double-immunolabelling with antibodies against RIBEYE confirmed the synaptic lo-
calization of DMXL2 in the OPL (Figure 2B,C). Double immunolabelling with antibodies 
against RIBEYE showed partial co-localization of RC3α/DMXL2 with RIBEYE and sug-
gested that a significant portion of RC3α/DMXL2 could be localized to the synaptic ribbon 
(Figure 2B1–B3,C1–C3). “Bleed-through” controls demonstrated that the RC3α/DMXL2 
immunosignals at the synaptic ribbon are not influenced by RIBEYE immunosignals from 
the neighbouring detection channel but completely persist if the excitation for the RIBEYE 
channel is completely switched off (Figure 3). These data show that the RC3α/DMXL2 
immunosignals do not result from a “bleed-through” from the RIBEYE immunosignals. 

 
Figure 3. Control exposures. (A1–A3) 0.5 µm-thin retina sections were immunolabelled with rabbit 
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Figure 2. RC3α/DMXL2 is highly expressed in photoreceptor synapses in the OPL in close vicinity
to synaptic ribbons. (A) 0.5 µm-thin retina sections incubated with affinity-purified rabbit polyclonal
antibody against RC3α/DMXL2. RC3α/DMXL2 immunosignals are strongly enriched in the OPL in
which photoreceptor ribbon synapses are found. (B1–B3,C1–C3) 0.5 µm-thin sections of the retina
double-immunolabelled with rabbit anti-RC3α/DMXL2 (green channel) and with mouse anti-RIBEYE
(2D9) (red channel). Signals from green and red channels (B1,C1/B2,C2) were overlaid in (B3/C3).
Abbreviations: ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL,
inner plexiform layer; GCL, ganglion cell layer. Scale bars: 5 µm.
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Figure 3. Control exposures. (A1–A3) 0.5 µm-thin retina sections were immunolabelled with rab-
bit anti-RC3α/DMXL2 (green channel) and with mouse anti-RIBEYE (2D9) (red channel), as in
Figure 2. (B1–B3) The same immunolabelled retina section as shown in (A1–A3), but with the
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double-immunolabelled retina section as shown in (A1–A3), but with the 568 nm laser turned
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Scale bars: 5 µm.



Cells 2023, 12, 1665 9 of 18Cells 2023, 12, 1665 10 of 19 
 

 

 
Figure 4. (A) Schematic domain structure of RC3α/DMXL2. Amino- and carboxyterminal WD40 
repeats (blue boxes) and the central Rav1p_C domain (orange box) are schematically depicted. Mon-
oclonal antibodies (2G2 and 12D8) were generated against a peptide stretch downstream of the 
Rav1p_C-domain (aa1919–aa2029, highlighted in pink). (B) SDS-PAGE of the purified GST-tagged 
fusion proteins (Coomassie Blue stained gel). Lane 1: RC3α/DMXL2 (aa1919–aa2029)-GST, lane 2: 
GST alone. (C1,D1) WB analyses of purified GST fusion proteins probed with RC3α/DMXL2 mon-
oclonal antibodies. RC3α/DMXL2 (aa1919–aa2029)-GST was applied in lanes 3 and 5; GST in lanes 
4 and 6 of (C1,C2,D1,D2). In (C1), RC3α/DMXL2-GST and GST were probed with anti- 
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Figure 4. (A) Schematic domain structure of RC3α/DMXL2. Amino- and carboxyterminal WD40
repeats (blue boxes) and the central Rav1p_C domain (orange box) are schematically depicted.
Monoclonal antibodies (2G2 and 12D8) were generated against a peptide stretch downstream of the
Rav1p_C-domain (aa1919–aa2029, highlighted in pink). (B) SDS-PAGE of the purified GST-tagged
fusion proteins (Coomassie Blue stained gel). Lane 1: RC3α/DMXL2 (aa1919–aa2029)-GST, lane
2: GST alone. (C1,D1) WB analyses of purified GST fusion proteins probed with RC3α/DMXL2
monoclonal antibodies. RC3α/DMXL2 (aa1919–aa2029)-GST was applied in lanes 3 and 5; GST
in lanes 4 and 6 of (C1,C2,D1,D2). In (C1), RC3α/DMXL2-GST and GST were probed with anti-
RC3α/DMXL2 (2G2). In (C2) the same blot was re-probed with anti-GST to verify equal loading.
In (D1), RC3α/DMXL2 (aa1919–2029)-GST and GST were probed with anti-RC3α/DMXL2 (12D8).
In (D2) the same blot was re-probed with anti-GST to verify equal loading. (E1,E2,F1,F2) show
peptide arrays that cover the protein region of RC3α/DMXL2 against which the antibodies were
generated (aa1919–aa2029). These peptide arrays were probed with the indicated monoclonal anti-
RC3α/DMXL2 antibodies to determine the precise binding epitope of the antibodies. (E1,F1) UV
light was used to visualize the location of all peptide spots. (E2) shows the peptide array that was
incubated with monoclonal anti-RC3α/DMXL2 2G2; (F2) shows the peptide array incubated with
monoclonal anti-RC3α/DMXL2 12D8. Peptide spot #1 (KKDQLDSVSGRMENGPSESK) strongly
reacted with the 2G2 monoclonal antibody and peptide spot #4 (ADWSAVTSSQFDWSQPMVTV)
with the 12D8 monoclonal antibody. (G) Amino acid sequences of all peptide spots. The peptide
sequences of peptide spots #1 and #4, that strongly reacted with anti-RC3α/DMXL2 monoclonal
antibodies 2G2 and 12D8, are highlighted in red.

Both novel monoclonal RC3α/DMXL2 antibodies 2G2 and 12D8 confirmed the previ-
ously observed synaptic localization of RC3α/DMXL2 (Figure 5) that has been obtained
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with the affinity-purified, rabbit polyclonal RC3α/DMXL2 antibody (Figures 2 and 3). Both
antibodies (2G2 and 12D8) generated strong RC3α/DMXL2 immunosignals in the OPL
(Figure 5A,C,E,F). The RC3α/DMXL2 antibodies 2G2 and 12D8 worked both on cryostat
sections (Figure 5A,C) and on semi-thin sections (Figure 5E,F). The resolution of semi-thin
sections was better than the resolution of cryostat sections (Figure 5A,C vs. Figure 5E,F).
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Figure 5. Single immunolabelling of mouse retina sections with the monoclonal RC3α/DMXL2
antibodies 2G2 and 12D8. In (A,C), 10 µm—thick cryostat sections of the mouse retina were im-
munolabelled with the indicated antibodies; in (E,F) 0.5 µm thin resin sections of the mouse retina.
(B,D) represent control incubations in which the primary antibody was omitted. All other steps of
the immunolabelling procedure were identical. Abbreviations: ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 5 µm.

The 2G2 and 12D8 RC3α/DMXL2 mouse monoclonal antibodies produced discrete,
punctate immunosignals in the OPL, that partly appeared horseshoe-shaped (Figure 5A,C,E,F).
The 2G2 antibody generated stronger immunosignals in the OPL and thus appeared more
suitable for further immunocytochemical analyses.

The RC3α/DMXL2 (2G2) immunosignals were located within the photoreceptor
presynaptic terminals as judged by double-immunolabelling with antibodies against
cysteine-string protein (CSP), a synaptic vesicle protein of the presynaptic photoreceptor
terminal (Figure 6(A1–A3)). As mentioned above, the entire large presynaptic photoreceptor
terminal is occupied by many synaptic vesicles that contain CSP [72]. Double-immunolabelling
with anti-PSD-95 revealed that RC3α/DMXL2 is located within the presynaptic terminal
close to the presynaptic plasma membrane (Figure 6(B1–B3)). Please note that PSD-95
(postsynaptic density protein-95) is a presynaptic protein in photoreceptor synapses [73].
In photoreceptor synapses, PSD-95 is located beneath the presynaptic plasma membrane
of the presynaptic terminal [73]. Immunosignals for RC3α/DMXL2 and voltage-gated
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Cav1.4 calcium channels, which are located at the presynaptic active zone close to the
synaptic ribbon [58,74], showed a similar localization/distribution at the light microscopic
level (Figure 6(C1–C3)). Double-immunolabelling with antibodies against RIBEYE further
indicated an enrichment of RC3α/DMXL2 at the synaptic ribbons (Figure 6(D1–D3,E1–E3)).
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Figure 6. RC3α/DMXL2 is strongly expressed in photoreceptor synapses of the OPL in close vicinity
to the synaptic ribbons. (A1–A3,B1–B3,C1–C3,D1–D3,E1–E3) Retina sections double-immunolabelled
with mouse anti-RC3α/DMXL2 2G2 (A1,B1,C1,D1,E1) and with rabbit antibodies against CSP (A2),
PSD-95 (B2), Cav1.4 (C2) and RIBEYE (D2,E2). Signals from green channels (A1,B1,C1,D1,E1) and
red channels (A2,B2,C2,D2,E2) were overlaid in (A3,B3,C3,D3,E3). In (A1–A3,D1–D3,E1–E3), 10 µm-
thick cryostat sections were used for immunolabelling; in (B1–B3,C1–C3) 0.5 µm—thin resin sections.
Abbreviations: ONL, outer nuclear layer; OPL, outer plexiform layer. Scale bars: 5 µm.
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The RC3α/DMXL2 2G2 mouse monoclonal antibody against RC3α/DMXL2 was
suitable for post-embedding electron microscopic immunolabelling analyses (Figure 7).
Post-embedding immunogold electron microscopy demonstrated that the synaptic ribbon
is strongly decorated by the RC3α/DMXL2 (2G2) antibody. These data demonstrate also
at the ultrastructural level that the synaptic ribbon is associated with RC3α/DMXL2,
confirming the light microscopic immunolabelling data obtained with the polyclonal and
monoclonal RC3α/DMXL2 antibodies. Other components of the presynaptic terminal were
not strongly immunolabelled in our post-embedding immunogold labelling approach.
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Figure 7. Post-embedding immunogold labelling of ultrathin LR Gold sections from the mouse retina
(A–F). Rod photoreceptor synapses were immunolabelled with monoclonal anti-RC3α/DMXL2 2G2
antibody (A–E). (F) shows a representative negative control incubation in which the primary antibody
was omitted. All other steps of the immunolabelling procedure remained the same. Please note that
membrane contrast of membranes is limited because a post-embedding approach (without usage of
OsO4) was applied. Secondary goat anti-mouse antibodies were conjugated to ultrasmall (1.4 nm
diameter) gold particles that were subsequently silver-intensified. Abbreviations: sr, synaptic ribbon;
pre, presynaptic; ho, postsynaptic dendrites of horizontal cells. Scale bars: 300 nm (A–F).

4. Discussion

In the present study we have shown that rabconnectin3α (RC3α)/DMXL2 is localized
to the synaptic ribbon in rod photoreceptor synapses of the mouse retina. The presence
of RC3α/DMXL2 at the synaptic ribbon was consistently shown with three independent
RC3α/DMXL2 antibodies at the light microscopic level using high resolution confocal
microscopy. The localization at the synaptic ribbon was also confirmed at the ultrastruc-
tural level. Post-embedding immunogold electron microscopy demonstrated the pres-
ence of RC3α/DMXL2 at the synaptic ribbon in rod photoreceptor synapses. The retina
of mice is a rod-dominated retina; more than 95% of photoreceptor synapses are made
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by rod photoreceptors [7]. Rod synapses have a very characteristic morphology at the
light- and electron microscopic level [7]. Whether cone synaptic ribbons are also associated
with RC3a/DMXL2 remains to be shown by future investigations. In the inner plexiform
layer, we did not observe an obvious RC3α/DMXL2 immunosignal which might be based
on the much smaller size of synaptic ribbons in the IPL in comparison to the OPL [7].
Thus, RC3α/DMXL2 immunosignals in the IPL might be under the detection limit for
immunofluorescence microscopy on semi-thin sections.

Based on its subcellular localization at rod photoreceptor synaptic ribbons identified
in the present study, RC3α/DMXL2 might serve as an acceptor complex for synaptic vesi-
cles at the synaptic ribbon. As mentioned, RC3α/DMXL2 serves as a scaffold that binds
GAP and GEF proteins that interact with Rab3A and determine the nature of its bound
nucleotide (GDP vs. GTP) and the activity status. Rab3A is a component of synaptic
vesicles, also at retinal ribbon synapses [75]. Thus, the previously observed binding of
Rab3-containing synaptic vesicles to the synaptic ribbon [34,48] could be mediated by
Rab3A interacting proteins, such as Rab3GEF/GAP, that are recruited via RC3α/DMXL2
to the synaptic ribbon. Electron-dense connections (“tethers”) between synaptic vesicles
and synaptic ribbons have been identified by electron microscopy [76]. Rab3A and Rab3A
effectors have been previously proposed to be components of these tethers [34,48]. The
known association of RC3α/DMXL2 with both GAP and GEF proteins of Rab3A [50,51]
suggests that GTP/GDP exchange processes of Rab3A occur at the synaptic ribbon. Rab3A
interacts with important Rab3A effectors in a GTP/GDP-dependent manner [40,46,47].
Interestingly, GTP/GDP-dependent interactors of Rab3A are enriched at the synaptic rib-
bon complex [20,47,74,75,77,78]. These include the RIM family of active zone proteins,
which are important effectors of depolarization-evoked synaptic vesicle fusion at pho-
toreceptor ribbon synapses [47,77]. Therefore, these GTP/GDP exchange processes will
likely be functionally relevant for the intense vesicle trafficking events associated with the
synaptic ribbon.

In the brain, RC3α/DMXL2 was purified from a crude synaptic vesicle fraction [50,51,79]
and RC3α/DMXL2 has been localized to synaptic vesicles in the brain by a pre-embedding
immunolabelling approach [50]. In the mouse retina, we did not find a RC3α/DMXL2 sig-
nal on most of the synaptic vesicles present in rod photoreceptor presynaptic terminals. We
do not want to exclude that RC3α/DMXL2 is also present on non-ribbon-associated synap-
tic vesicles in ribbon synapses. The epitopes of RC3α/DMXL2 might be blocked/inaccessible
on synaptic vesicles in post-embedding immunogold labelling procedures or the amount
of RC3α/DMXL2 on vesicles in ribbon synapses could be less compared to the amount of
RC3α/DMXL2 at the synaptic ribbon and too low to be detected by our antibodies. Further
investigations are needed to analyse these possibilities.

RC3α/DMXL2 is a large protein with multiple amino- and carboxyterminal WD40
repeats and a central Rav1P_C domain. Interestingly, RC3α/DMXL2 not only interacts
with GAP/GEF proteins of Rab3 but also with vesicular protein H+-ATPases [80–83].
RC3α/DMXL2 is homologous to the yeast Rav1 protein, a central component of the yeast
RAVE (Regulator of H+-ATPase of vacuolar and endosomal membranes) complex [83–85].
The rabconnectin3 complex (RC3α/DMXL2 and RC3β) in higher eucaryotes/RAVE com-
plex in yeast was shown to interact with components of vesicular H+-ATPases [82–84,86,87].
In hair cells of zebrafish, RC3α/DMXL2 promotes the assembly of the vesicular H+-ATPase
and its functional activity that results in the acidification of synaptic vesicles [88].
RC3α/DMXL2 has been localized by immunofluorescence microscopy to the basal portion
of hair cells [88]. At this location, ribbon synapses are found in hair cells [88].

Acidification of synaptic vesicles and a proton electrochemical gradient generated by
the activity of the vesicular H+-ATPase drive the loading of neurotransmitter into the synap-
tic vesicles (for review, [89,90]). Full acidification allows complete neurotransmitter loading
of the synaptic vesicles, which was shown to be relevant for synaptic signalling [89–91]. Fur-
thermore, full acidification of the synaptic vesicle lumen leads to the dissociation of Vo/V1
complexes of the vesicular H+-ATPase and to a change (increase) in fusion competence of
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the respective vesicles [91]. Of note, the vesicular H+-ATPase has been found in protein
complexes that were immunopurified with RIBEYE antibodies [48]. Thus, the association of
RC3α/DMXL2 with the synaptic ribbon might ensure that only fully signalling-competent
synaptic vesicles, i.e., synaptic vesicles that are completely filled with neurotransmitter, will
be made available to the active zone. The association of RC3α/DMXL2 with the synaptic
ribbon could help to prevent synaptic transmission failures that might result from the
fusion of synaptic vesicles that are not or incompletely filled with neurotransmitter. To
prevent failures in synaptic transmission seems particularly important for rod synapses
that can faithfully transmit even very weak signals, e.g., tiny membrane potential changes
caused by the absorption of a single photon. A proton electrochemical gradient-dependent
loading with glutamate has been identified as an important determinant of synaptic vesicle
quantal size (amount of neurotransmitter in a synaptic vesicle) [92,93].

Interestingly, the rabconnectin3 complex, consisting of RC3α/DMXL2 and RC3β, has
also been reported to interact with CAPS1 (via rabconnectin-3β; [94]). CAPS1 has been
characterized in the brain as a synaptic protein with a dual role in vesicle priming and
neurotransmitter filling. The localization and function of CAPS1 in the retina remains to
be elucidated. Furthermore, RC3α/DMXL2 was found to interact with voltage-gated Cav-
channels in conventional synapses [95]. These data propose a central role of RC3α/DMXL2
for synaptic signalling.

The association of RC3α/DMXL2 with human diseases, e.g., Ohtahara syndrome (a
syndromic deafness-associated disease with mutations in the RC3α/DMXL2 gene) and
some non-syndromic hearing losses with sensorineural impairment [96–98], emphasizes
the importance to further explore its function at ribbon synapses, including ribbon synapses
of the retina.
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