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Abstract: Insulin resistance (IR) is commonly observed during aging and is at the root of many of
the chronic nontransmissible diseases experienced as people grow older. Many factors may play
a role in causing IR, but diet is undoubtedly an important one. Whether it is total caloric intake
or specific components of the diet, the factors responsible remain to be confirmed. Of the many
dietary influences that may play a role in aging-related decreased insulin sensitivity, advanced
glycation end products (AGEs) appear particularly important. Herein, we have reviewed in detail
in vitro, animal, and human evidence linking dietary AGEs contributing to the bodily burden of
AGEs with the development of IR. We conclude that numerous small clinical trials assessing the effect
of dietary AGE intake in combination with strong evidence in many animal studies strongly suggest
that reducing dietary AGE intake is associated with improved IR in a variety of disease conditions.
Reducing AGE content of common foods by simple changes in culinary techniques is a feasible,
safe, and easily applicable intervention in both health and disease. Large-scale clinical trials are still
needed to provide broader evidence for the deleterious role of dietary AGEs in chronic disease.
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1. Introduction

Insulin resistance (IR) is a pathophysiological condition in which organs—mostly
skeletal muscle, adipose tissue, and liver—do not respond at an adequate rate to insulin,
and it is considered to be a consequence of the disruption of different molecular pathways
affected by insulin in these tissues [1]. In the general population, sensitivity to insulin-
mediated glucose disposal in several tissues varies greatly [2]. The major consequence of
IR, type 2 diabetes, arises when people who are insulin-resistant are unable to maintain
the level of hyperinsulinemia required to correct the insulin action deficiency. Clinically, it
appears as a defect in insulin-mediated glucose control in tissues, prominently in the above
named muscle, fat and liver. Primary characteristics of IR are inhibited lipolysis in adipose
tissue, impaired glucose uptake by muscle and inhibited gluconeogenesis in liver [3].
Therefore, IR also encompasses defects in lipid metabolism, in line with the multifaceted
roles of insulin in metabolism regulation [4]. IR is one of the earliest manifestations of
a constellation of human pathologic conditions that include metabolic syndrome, type 2
diabetes, cardiovascular diseases and aging [5]. Lifestyle modifications, including reduced
intake of ultraprocessed foods containing advanced glycation (AGEs) and lipo-oxidation
end products (ALEs), body weight loss and increased physical activity, have been shown to
increase insulin sensitivity, thereby preventing IR [6,7].

Whether total caloric intake with body fat accretion or the presence of specific nutrients
or diet-derived insulin-signaling disruptors is mostly responsible for the IR of aging is
unclear [8]. Of the many dietary factors that may play a role in the aging-related lack
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of or decreased insulin sensitivity, AGEs appear potentially important. Recent clinical
data suggest that food-derived AGEs may contribute to IR [9]. In this review, we discuss
our current understanding of the association between dietary AGEs and IR. First, we
describe generalities about dietary AGEs and how they could influence IR, followed by a
detailed discussion of in vitro, animal and human evidence linking dietary AGEs with the
development of IR. We then review some of the controversies surrounding the assessment
of IR in human studies and finalize with concluding remarks.

2. What Advanced Glycation End Products (AGEs) and Their Biological Actions Are,
and How They Can Produce Insulin Resistance

AGEs are a heterogeneous group of compounds resulting from different pathways, the
classical one being the Maillard reaction, in which the carbonyl group of a reducing sugar
reacts spontaneously (nonenzymatically) with the free amino group of proteins. AGEs
form continuously in the body under physiologic conditions, but their rate of formation is
markedly enhanced in the presence of high glucose and increased oxidative stress [10]. Of
importance, AGEs are also formed in foods, and their formation is highly dependent on
the temperature during processing and/or cooking of food.

One of the problems in this field is that there are many identified AGEs, but no general
agreement on which one is biologically the most important. For example, very recent
data show that AGE-induced inactivation of insulin-receptor substrate 1 and decreased
phosphorylation of AKT, instrumental in leading to IR, are strongly dependent on the
AGE structure, with high molecular weight exerting a higher pathogenic effect than small
AGEs [11]. Furthermore, there are several methods available to measure AGEs, from
the very simple and nonspecific autofluorescence methods to ELISA methods utilizing a
variety of commercially available antibodies [12]. The most specific methods use mass
spectrometry, but unfortunately are more costly, require an elaborated laboratory setup,
and are more difficult to set up to measure large number of samples.

Western diets are very rich in AGEs as a result of the application of heat during
cooking and the widespread processing of food. High-heat application under dry cooking
conditions, such as grilling, leads to increased formation of AGEs, while cooking with lower
temperatures and high water content, such as stewing, poaching and boiling, decreases
the formation of AGEs. In other words, a sample of food would have very different AGE
content just in response to different cooking methods [13]. About 10–30% of food AGEs are
absorbed from the gastrointestinal tract into the systemic circulation, mainly as amino acids
or small peptides containing AGEs. Recent data, however, show that AGE products formed
in situ in the digestive system can account for a significant modification of proteins [14].
Of importance, the biological properties of AGEs may depend on the digestion step, with
digested AGEs showing more proinflammatory properties than undigested AGEs [15].
Most of the absorbed AGEs are normally eliminated by the kidneys into the urine. Be-
sides urinary excretion, there are other mechanisms regulating tissue and circulating levels
of AGEs, such as AGE receptor 1 (AGER1), which catabolizes AGEs, and glyoxalases,
enzymes that break down AGE precursors [16]. Most food AGEs escape digestion and
absorption and end up in the colon, where they affect local microbiota metabolism and gut
integrity [17]. The local colonic action of unabsorbed food AGEs may be as important in
the overall proinflammatory actions in the body as those compounds directly absorbed
into the systemic circulation [18–22]. The recent demonstration of endocytosis of dietary
AGEs by enterocytes [23] suggests the existence of unmet needs in research evaluating the
mechanisms linking dietary AGEs and pathogenic effects. In fact, an emerging area of nutri-
tion research is the role of diet and bacterial metabolites in regulating gut homeostasis and
inflammation, and thereby, indirectly, IR [24]. Diet-related metabolites engage metabolite-
sensing G-protein-coupled receptors, including GPR41 and GPR43, which are expressed in
a variety of cell types, including gastrointestinal, adipose, and immune cells. These metabo-
lites include short-chain fatty acids produced by the microbial fermentation of dietary fibers
in the colon [25]. Functions of GPR41 and GPR43 include the regulation of energy intake
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and expenditure, modulation of glucose metabolism, and the resolution of inflammatory
responses via, for example, activation of the NLRP3 inflammasome [26,27]. By inhibiting
the growth of short-chain fatty acid-producing bacterial species in the colon [28,29], dietary
AGEs may contribute to heightened inflammatory signals in the gastrointestinal tract and
other tissues, thereby increasing chances for IR to develop. AGEs have also been found to
selectively increase in vitro expression of histone deacetylases known to be upregulated in
the pathogenesis of diabetes complications [30]. This area of research, however, is still in
its infancy, and further studies must explore whether dietary AGEs have the capacity to
negatively regulate metabolite sensors in the gut.

There are no structural or functional differences between exogenous and endogenous
AGEs. Once inside our internal milieu, they all seem to induce biological effects by the
same two general mechanisms: one through direct alteration of protein structure and
therefore function (and cross-linking between different proteins) and the other indirectly
by binding to receptors. There is a large variety of receptors, including Toll-like receptors,
scavenger receptors, G-protein-coupled receptors, and pattern recognition receptors, that
interact with specific AGE structures, leading to modulation of several intracellular pro-
cesses [31,32]. The receptor for advanced glycation end products (RAGE) is one of these
and is the most studied protein interacting with AGEs. It belongs to the immunoglobulin
superfamily, which was discovered and given its name because of its capacity to bind
to AGEs [33]. However, more than a classical receptor, it may be better described as a
pattern recognition receptor [34]. Binding of AGEs to RAGE initiates a series of intracellular
pathways that eventually lead to the generation of reactive oxygen species (ROS) and
several inflammatory transcription factors and cytokines, all of which contribute to the
tissue damage associated with AGEs [10]. Specifically, persistent hyperglycemia, renal
insufficiency and probably dietary AGEs raise AGE burden in the body. These compounds,
when interacting with RAGE, cause a variety of signaling events with potential impact
on insulin signaling: activation of mitogen-activated protein kinase (MAPK), p38, stress-
activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), Ras-mediated extracellular
signal-regulated kinase (ERK1/2), and Janus kinase signal transducer and activator of tran-
scription (JAK/STAT), with subsequent activation of transcription factors such as NF-κB,
STAT3, HIF-1α, and AP-1 [35]. Briefly, inducing IR by negatively regulating insulin signal
transmission, JNK activation enhances the phosphorylation of the insulin receptor substrate
(IRS-1) at serine residues [36]. Relevant downstream insulin signaling events, such as the
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway’s enzymatic activity,
are decreased because of the phosphorylation of serine residues in the insulin receptor and
IRS-1 molecule. Additionally, NF-kB is released when inhibitor of NF-kB (IkkB) proteins
are phosphorylated and degraded by the proteasome, an event mediated by the RAGE-
transduction-initiated IkkB kinase pathway. When NF-kB is activated, it can translocate to
the nucleus and increase the expression of several inflammatory cytokines (IL-1, IL-6, and
TNF-α), which can lead to IR [36]. In addition to maintaining chronic low-grade inflamma-
tion, ongoing NF-kB activation also positively controls RAGE expression by interacting
with its proximal promoter region [37], closing a pathogenic circle. We know that RAGE
also activates the NLRP3 inflammasome, a key player of the innate immune system [38,39].
Thus, in addition to the interleukin secretion indicated above, NLRP3-induced caspase-1
cleavage impacts the secretion of inflammatory cytokines IL-1β and IL-18 [38]. NLRP3
expression is implicated in IR in humans [40]. Moreover, RAGE enhances de novo synthesis
of NF-κB p65, further fueling levels of transcriptionally active NF-κB [41]. This NF-κB
subunit, through its inhibitory binding to the Slc2a4 gene promoter that codifies GLUT4
protein, could contribute to IR by diminishing the levels of this glucose transporter in
skeletal muscles [42]. A relationship between dietary AGEs and innate system activation
is further supported by demonstrating that complement component C1q subcomponent
subunit A may be a novel AGE-binding protein in human serum [43]. In preclinical models,
thermally processed diets have been shown to cause tissue inflammation and injury via the
powerful proinflammatory effector molecule complement 5a (C5a), which also activates the
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innate immunological complement system. In fact, in a rat model of diabetes, a diet high
in resistant starch fiber preserved the integrity of the intestinal barrier through suppres-
sion of complement [44]. These findings illustrate the pathways through which processed
foods trigger chronic disease-causing inflammation and illustrate the complexity of diet–
inflammation interactions [45], which could include local enteral changes at the microbiota
and intestinal permeability levels and also immune modulation of the innate system.

In summary, enteral AGES, orally absorbed AGEs, or AGE precursors may contribute
to the pathogenesis of IR by different underlying mechanisms: (1) direct modification of
signaling molecules, such as insulin itself, which reduces its biological activity and affinity
for the insulin receptor and therefore impairs insulin signaling [46], or the modification
of the three arginine residues in the AMP binding site of AMP kinases, decreasing their
activity [47]; and (2) interference with activation of downstream proteins involved in cell
insulin signaling, including IRS 1 and Akt [48], through RAGE-dependent induction of
proinflammatory cytokines and reactive oxygen species (ROS) [49].

3. Evidence of an Association between Dietary AGEs and IR
3.1. Animal Data

A role of dietary AGEs as a causative agent in IR has been well documented in several
studies in different mouse strains by independent teams. We review some of these studies
here and in Table 1. Reduced AGE intake leads to lower levels of circulating AGEs and
to improved insulin sensitivity in the db/db mouse IR model [50]. To demonstrate this,
db/db mice were randomly placed for 20 weeks (more than 50% of their usual life span) on
a diet with either low AGE content (LAGE) or a 3.4-fold higher content of AGEs (HAGE).
LAGE mice showed lower fasting plasma insulin levels and body weight compared with
HAGE mice, despite equal caloric intake. LAGE mice had improved responses to both
glucose (at 40 min, p = 0.003) and insulin (at 60 min, p = 0.007) tolerance tests, which
correlated with a doubling of glucose uptake by adipose tissue. LAGE mice had twofold
lower serum carboxymethyllysine (CML) and methylglyoxal (MG) concentrations and a
better-preserved structure of pancreatic islets compared with HAGE mice [50]. Thus, the
effect of dietary AGEs affects multiple tissues (liver, adipose tissue, pancreas), leading
overall to impaired metabolism.

Table 1. Selected animal studies showing an association between dietary AGEs and IR.

Author, Reference Animal Model Study Design Intervention Findings

Hofmann [50] Db/Db mice
(5 week old)

Dietary intervention
with random

assignment into two
parallel groups for
20 weeks (n = 20)

High versus low
AGE diets

Lower body weight, lower serum
AGEs, better response to both
glucose and insulin tolerance

tests and better preservation of
pancreatic islets than with the

high AGE diet

Sandu [51] C57/BL6 female
mice (6 week old)

Dietary intervention
with random

assignment into two
parallel groups for

6 months

High fat (35% fat) high
AGE diet (HAGE-HF)
versus High fat low

AGE diet (LAGE-HF)

None of the LAGE-HF mice
became diabetic, while 75% of

HAGE-HF did.

Cai [52] C57/BL6

Dietary intervention
with random

assignment into three
parallel groups for

18 months

Pair-fed three diets
throughout life: (1) low
AGE (MG−) *, (2) MG

supplemented low
AGE chow (MG+) and

regular chow (Reg)

Older MG+ and Reg fed mice
developed IR (higher fasting
insulin levels and abnormal

intraperitoneally glucose
tolerance test) and dementia,

which did not happen in
MG− mice.
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Table 1. Cont.

Author, Reference Animal Model Study Design Intervention Findings

Wang [28]
C57/BL6
male mice

(12 week old)

Dietary intervention
with random

assignment into three
parallel groups for

24 weeks

Three parallel diets:
(1) regular chow

(n = 10), (2) regular
chow + MG (n = 15) or
(3) heat-treated chow

(n = 15)

IR (high fasting insulin, HOMA
and abnormal intraperitoneal

glucose tolerance test) developed
in groups 2 and 3, but not 1.

Microbiota was also altered in
groups 2 and 3 (not in group 1)

leading to loss of
butyrate-producing bacteria

Mastrocola [53] Db/Db and
C57/BL6 mice

Dietary intervention
followed by

pharmacological
intervention in the

C57/BL6 mice

C57/BL6 mice were
randomly assigned to
4 groups for 12 weeks:

(1) standard diet,
(2) high fat diet
(60%trans-fat),

(3) standard
diet + pyridoxamine for

last 8 weeks, (4) high
fat diet + pyridoxamine

for last 8 weeks

High levels of AGEs and RAGE
and abnormal enzymes of

sphingolipid metabolism were
found in the liver of Db/Db and

group 2 C57/BL6, but not in
groups 1, 3 and C57/BL6

MG * = methylglyoxal.

To overcome a potential effect of the db/db genotype itself, another group focused
on euglycemic mice. Nontransgenic C57/BL6 mice were randomly assigned to high-fat
diets (35% g fat) to induce IR, with either high (HAGE-HF group; 995.4 units/mg AGE) or
low (by 2.4-fold LAGE-HF group; 329.6 units/mg AGE) dietary AGE content for 6 months
(approximately 20% of the usual life span) [51]. At the end of 6 months, 75% of the HAGE-
HF mice had become diabetic, while none of the LAGE-HF mice had, despite a similar
rise in body weight and plasma lipids. Moreover, the HAGE-HF group showed markedly
impaired glucose and insulin responses during glucose tolerance tests and euglycemic and
hyperglycemic clamps and abnormal pancreatic islet structure and function compared with
those of LAGE-HF mice. These findings demonstrate that the development of IR and type
2 diabetes during prolonged high-fat feeding in mice are linked to the excess AGEs/ALEs
in fatty diets [51].

In addition to type 2 diabetes, IR has been associated with cognitive dysfunctions,
such as Alzheimer’s disease [54]. To determine whether dietary AGEs promote aging-
related cognitive decline, mice were subjected to different levels of AGEs in their diets for
18 months (i.e., 60% of their life span) [52]. Those mice in the high-AGE diet developed
metabolic syndrome (with IR), increased brain amyloid-β42, intracerebral deposits of
AGEs, gliosis, and cognitive deficits, accompanied by suppressed expressions of SIRT1,
nicotinamide phosphoribosyltransferase, AGE receptor 1, and PPARγ. These changes were
not due to aging or caloric intake, as none of them were present in age-matched, pair-fed
low-AGE mice. The animal data were strengthened by the demonstration of significant
temporal correlations between high circulating AGEs, impaired cognition, and insulin
sensitivity in elderly subjects [55]. Clinically, it has been postulated that IR could explain
part of the age-related decrease in cognitive function [56,57].

Considering the importance of the microbiota in IR [58,59] (see above), yet another
study showed that a high-AGE diet induced IR and altered the gut microbiota composition
and structure, reducing its diversity in mice [28]. The authors postulated that the loss of
butyrate-producing bacteria in the AGE-loaded animals might have impaired the colonic
epithelial barrier, thereby triggering chronic low-grade inflammation and possibly IR [28].

An involvement of AGEs in general, not necessarily dietary AGEs, in the development
of IR mediated by alteration of sphingolipid metabolism was demonstrated in two different
models of IR in mice, one genetically diabetic and the other diet-induced IR (fed a 60%
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trans-fat diet). Supplementation of a group of mice with pyridoxamine that lowered AGE
levels reduced the development of IR [53].

All in all, these independent studies highlight the potential role of dietary AGEs as
modifiable agents in the development of IR in mice, acting on several factors (peripheral
insulin function, microbiota, cellular stress responses).

3.2. Epidemiological Evidence Linking Dietary AGEs and IR in Humans

In a large cross-sectional study conducted in young healthy Slovakian individuals
of both sexes (n = 2769) IR, assessed through the Quantitative Insulin Sensitivity Check
Index (QUICKI), was associated with serum and urinary levels of some α-dicarbonyls
(AGE precursors, such as methylglyoxal) and AGEs, independently of cardiometabolic
risk markers and sex [60]. In an American cohort, an increased association of very high
dietary AGE intake (defined as the top quartile) and metabolic syndrome was described
in adolescents aged 12–19 years from NHANES (years 2003–2004 and 2005–2006) [61].
The latter study also demonstrated that very high dietary AGE intake was significantly
associated with three of five criteria for metabolic syndrome: waist circumference, serum
triglyceride, and HDL cholesterol levels [61].

A meta-analysis of 17 randomized controlled trials comprising 560 participants also
demonstrated that IR, measured by HOMA-IR, was significantly reduced in a low-AGE
compared to a high-AGE diet, although there was no significant difference in fasting
insulin, 2 h insulin and insulin area under the curve results between both diets after an
oral glucose tolerance test [62]. This apparent contradiction stresses the need for adequate
standardization of the methods to define IR, as is discussed in detail later in this chapter [63].

3.3. Randomized Controlled Interventional Studies Testing the Association between Dietary AGEs
and IR in Humans

Table 2 describes eight independent clinical trials [64–71] that have looked at the effects
of an AGE-restricted diet on IR markers, comprising a total of more than 440 participants.
Six of the studies demonstrated an association between decreased dietary AGE intake and
improved insulin sensitivity. One study, in healthy subjects, indicated that a low-AGE diet
led to decreased serum levels of AGEs in parallel with HOMA-IR [64]. Five other studies
looked at the effect of a low-AGE diet on IR in overweight and/or metabolic syndrome
subjects. In four of these studies, the low-AGE diet was associated with lower serum or
urinary levels of AGEs, as well as parallel decreases in IR as assessed by HOMA-IR in three
of them [65,67,68] or improved glucose uptake assessed by euglycemic clamp in the fourth
study [66].

Table 2. Summary of selected clinical trials evaluating the effect of an AGE-restricted diet on
insulin resistance.

Author,
Year, Ref-

erence

Study
Design Intervention Number of

Participants Randomized Participant
Characteristics

Duration
and

Allocation

Specified
Outcomes Findings

Birlouez,
2010 [64] Crossover

High- and
low-AGE

diets
62 Yes Healthy

individuals
1 month,
France

Changes in serum
AGEs and HOMA

Decreased
serum AGEs
and HOMA

Uribarri,
2011 [70] Parallel

High- and
low-AGE

diets
18 Yes Patients with

diabetes
3 months,

USA

Changes in serum
AGEs, markers of

OS and
inflammation and

HOMA

Decreased
levels of serum
AGEs, markers

of OS *,
inflammation
and HOMA
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Table 2. Cont.

Author,
Year, Ref-

erence

Study
Design Intervention Number of

Participants Randomized Participant
Characteristics

Duration
and

Allocation

Specified
Outcomes Findings

Luevano-
Contreras
2013 [71]

Parallel
High- and
low-AGE

diets
26 Yes Patients with

diabetes
1.5 months,

Mexico

Changes in serum
AGEs, markers of

OS and
inflammation and

HOMA

Decreased
markers of OS

and
inflammation,

but no changes
in serum AGEs

or HOMA

Mark,
2014 [65] Parallel

High- and
low-AGE

diets
74 Yes Overweight

women
1 month,
Denmark

Changes in
urinary AGEs and

HOMA

Decreased
urinary AGEs
and HOMA

De
courten

2016 [66]
Crossover

High- and
low-AGE

diets
20 Yes Overweight

individuals
0.5 months,
Denmark

Changes in serum
AGEs and insulin

resistance
(hyperinsulinemic–
euglycemic clamp
and intravenous
glucose tolerance

test)

Decreased
serum AGEs
and insulin
resistance

Vlassara,
2016 [67] Parallel

High- and
low-AGE

diets
138 Yes

Patients with
metabolic
syndrome

12 months,
USA

Changes in serum
AGEs, markers of

OS and
inflammation and

HOMA

Decreased
levels of serum
AGEs, markers

of OS,
inflammation
and HOMA

Goudarzi
2020 [68] Parallel

High- and
low-AGE

diets
40 Yes

Patients with
metabolic
syndrome

2 months,
Iran

Changes in serum
AGEs, markers of

OS and
inflammation and

HOMA

Decreased
serum AGEs,

markers of OS,
inflammation,
HOMA and

weight (were
also calorie
restricted)

Linkens
2022 [69] Parallel

High- and
low-AGE

diets
82 Yes Patients with

obesity

1.5 months,
Nether-
lands

Changes in serum
AGEs, markers of

OS and
inflammation and
insulin resistance
(hyperinsulinemic–

euglycemic and
hyperglycemic

clamp)

Decreased
circulating

AGEs but not
markers of OS/
inflammation

or insulin
sensitivity

OS * Oxidative stress.

One of the studies was a randomized 6-week prospective intervention in type 2
diabetes subjects with a standard diet (n = 13) versus low-AGE diet (n = 13), which showed
a significant decrease in TNF-α and malondialdehyde levels in the low-AGE diet group,
but without a significant change in HOMA-IR or serum AGEs [71]. Since circulating AGE
levels appear to be useful surrogates of dietary AGE exposure, their lack of change during
this study raises the possibility that the dietary intervention might not have been effective.

A second study listed in Table 2 also failed to show a relationship between dietary
AGE restriction and changes in insulin sensitivity [69]. However, several key facts, mainly
related to differences in the composition and methods to measure AGEs of the experimen-
tal diets, could help clarify the inconclusive outcome of this study in comparison with
other studies cited in Table 2. For example, mass-spectrometry-based AGE measurement
may differ profoundly in the content of several bio-accessible AGE products assessed by
immunological measurements such as ELISA. Moreover, in those studies showing a clear
effect of dietary AGEs in IR, dietary AGEs were delivered mostly by ingestion of meats and
animal products, highly processed and cooked at high temperatures, while in this negative
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study [69], most dietary AGEs came predominantly from cereals and were based on dietary
frequency in a specific Dutch population [72]. Processing of samples before AGE mea-
surement, particularly the inclusion or not of delipidation, may also be relevant, as AGE
content in dietary lipids is important [73]. All these points emphasize that standardization
is a key factor in designing dietary interventions. Of interest, individual factors, such
as ethnicity and age, may also be relevant in interpreting insulin sensitivity tests [74,75].
Genotypic characteristics have been shown to influence interaction with dietary AGEs
(for example, FADS2 (definer) polymorphisms) [76]. Lastly, intervention length is key in
interpretating data employing methods with a high interindividual variation, such as the
hyperglycemic–euglycemic clamp, which in the case of the cited negative study showed a
50% standard deviation over the mean values [69]. In fact, a prior randomized controlled
trial employing isotope-based euglycemic clamps showed that insulin sensitivity changed
only after a six-month intensive weight-loss and exercise program [6].

3.4. Clinical Trials with Mediterranean and Vegan Dietary Patterns Support the Association
between Dietary AGEs and IR in Humans

The above studies (Table 2) show that—generally, although not universally—reducing
dietary AGE intake can diminish IR markers. One of the limitations of these studies is
that they are of short duration. A longer study, CORDIOPREV, indirectly evaluated the
potential impact of dietary AGEs in IR [77]. Reduction in serum AGE levels in subjects
following a Mediterranean diet as part of the CORDIOPREV study, lasting for 5 years,
was shown to increase significantly the probability of type 2 diabetes remission, a hard
measure of IR. All participants had previous cardiovascular events and type 2 diabetes
when recruited [77].

In a cohort of overweight subjects (n = 244) randomly assigned to an intervention
with a low-fat plant-based diet (n = 122) or a control diet (n = 122) for 16 weeks, dietary
AGE consumption decreased on a low-fat plant-based diet, and this was associated with
changes in body weight, body composition, and insulin sensitivity, independently of energy
intake [78].

Therefore, the epidemiological data and most of the interventional studies in humans
support a long-term reduction in dietary AGEs being associated with an improvement in
clinically relevant outcomes (insulin sensitivity, weight loss, probability of type 2 diabetes
remission) requiring minimal time for revealing its beneficial effects.

4. Controversies about Documenting IR in Human Studies

One of the controversies about human studies dealing with the effect of dietary
AGEs on IR cited above is that most of them have quantified IR using the HOMA-IR
index. Hyperinsulinemic–euglycemic glucose clamp is the gold standard for directly
determining insulin sensitivity, but it requires a constant insulin infusion until reaching
higher steady-state insulin levels that enhance glucose disposal in skeletal muscle and
adipose tissue and inhibits hepatic glucose production [4]. Euglycemia is “clamped”
through infusion of 20% dextrose. However, the procedure is time-consuming, labor-
intensive, expensive and technically demanding [79]. Apart from several multiple-sample
methods, such as the oral and intravenous glucose tolerance tests and the Matsuda index,
two simpler methods are more widely employed, requiring only fasting blood glucose
and insulin determinations. One of them is the HOMA-IR, which estimates IR by a simple
mathematical equation using only fasting blood glucose and insulin [80]. Similarly, the
quantitative insulin sensitivity check index (QUICKI) is a simple variation of the HOMA
equation showing a better correlation with the glucose clamp and other methods [81,82].
These indices, however, have limitations, and they may not accurately reflect the complex
interplay of physiological and biochemical factors involved in IR. For example, HOMA-
IR does not account for postprandial insulin secretion, and thus may not be suitable for
evaluating IR in individuals with insulin secretion disorders or those with advanced liver
or kidney disease. Furthermore, it does not identify whether hepatic or peripheral insulin
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resistance predominates or whether the cutoff value globally employed (2.5) is appropriate
for the population under study, also considering the pulsatile nature of insulin secretion [83].
Despite these limitations, the HOMA index remains a useful tool for evaluating IR and has
frequently been used in many well-controlled epidemiological studies unrelated to dietary
AGEs [84].

5. Final Conclusions

In recent years, numerous small clinical trials have measured the effects of a low-
AGE dietary intervention on a variety of clinical conditions. These trials suggest that a
simple low-AGE dietary intervention, in a sustained manner, decreases circulating levels
of AGEs, markers of inflammation and oxidative stress in healthy, chronic kidney disease,
and diabetic patients, and improves IR, defined mostly by HOMA-IR, in diabetic and
prediabetes patients. These human data in combination with strong evidence in many
animal studies have generated a new paradigm of disease widely unrecognized, suggesting
that excessive consumption of dietary AGEs secondary to a “Western lifestyle” represents
an independent risk factor for inappropriate chronic mild oxidative stress and inflammation
during life, which over time facilitates the emergence of the chronic diseases of modern
world, especially diabetes and CVD. Simultaneously, we are seeing that an increasing
number of people are consuming modern processed foods laden with AGEs [18]. Reducing
the AGE content in common foods by simple changes in culinary techniques is a feasible,
safe, and easily applicable intervention in both health and disease. Large-scale clinical
trials must be performed to replicate the small clinical trials that have been performed
so far and provide broader evidence for the deleterious role of dietary AGEs in chronic
disease. If this evidence continues to be demonstrated, then reduction of AGE content
in common foods may convey an enormous public health impact: an opportunity for a
safe, inexpensive, and effective dietary modulation to prevent or improve diabetes and its
secondary comorbidities.

Furthermore, this detailed review of the data suggests the existence of unmet needs in
research evaluating the mechanisms linking dietary AGEs and pathogenic effects. Therefore,
there is ample room for further refinement of interventional studies aimed at evaluating the
effects of diets with a high AGE content in human health: the use of more robust methods
for evaluation of insulin signaling (including isotope-based clamp and functional imaging)
and a thorough standardization of dietary AGE components, including not only total AGE
contents but also low-molecular-weight dicarbonyl precursors, which have relevant, yet
unknown, roles in human pathogenesis.
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