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Abstract: The brain is a highly dynamic organ that requires a constant energy source to function
normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain’s prin-
cipal fuel source. Glucose transport across the blood–brain barrier (BBB) is primarily controlled
via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1)
and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent
transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial
layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 trans-
porters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate
(ATP), which supplies the energy to support cellular functions. The transport and metabolism of
glucose in the brain are impacted by several medical conditions, which can cause neurological and
neuropsychiatric symptoms. Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, traumatic
brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by
a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD
is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain
insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view
is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a
growing body of evidence points to the opposite, where hypometabolism is prodromal or at least
precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying
processes responsible for these glucose transport and metabolic abnormalities are complicated and
remain poorly understood. This review article provides a comprehensive overview of the current
understanding of hypometabolism in AD and potential therapeutic targets.

Keywords: glucose transporter; blood–brain barrier; Alzheimer’s disease; glucose metabolism;
oxidative stress; glucose uptake

1. Brain Energetics

The brain requires a constant supply of energy to carry out essential activities such as
neurotransmission, protein synthesis, and maintenance of membrane potentials [1,2]. Most
of the energy consumed by the brain is derived from glucose metabolism, which is tightly
regulated to ensure adequate energy delivery to the brain [3]. Glucose is transported into
the brain across the BBB and taken up by neurons and astrocytes. It is converted into ATP
through biochemical reactions involving glycolysis, the tricarboxylic acid cycle (TCA), and
oxidative phosphorylation [4], which is used by the brain to support a variety of cellular
processes. The brain produces 95% or more of its ATP through glucose metabolism. The
neurovascular unit, which includes the brain microvascular endothelial cells, pericytes [5],
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astrocytes, oligodendrocytes [6], microglia [7], and neurons [8] as the final recipient of
glucose absorption, coordinates glucose uptake among a variety of cell types inside the
brain [9]. The brain can utilize other energy sources, such as ketones, and lactate, in the
absence of glucose [10–12].

The energy requirements of active neurons, not the blood glucose level, determine how
much glucose is taken up by the brain from the bloodstream. Due to the increased energy
requirements for neuronal signaling, neurotransmitter release, ionic balance, and synaptic
plasticity [13–16], glucose is actively “drawn” into the brain [17,18]. Glucose transport
is accomplished by the coordinated activation of glucose transporters on the capillary
endothelium (GLUT1) [19–25], astrocytes (GLUT1 [26], GLUT2 [27], and GLUT7 [28]),
oligodendrocytes (GLUT1) [29], and neurons (GLUT3 [28,30] and GLUT4) [26,31–34]. Blood
glucose diffuses either directly from capillaries to neurons via the extracellular space, or
is mediated by the astrocyte end-feet surrounding the capillary walls [25,35–37]. The
distribution of energy and metabolic support inside the brain is greatly aided by astrocytes.
They have extensive processes that wrap around blood vessels and synapses, allowing
them to take up nutrients such as glucose and lactate from the bloodstream and deliver
them to neurons.

The astrocyte–neuron lactate shuttle is a metabolic link between astrocytes and neu-
rons. Astrocytes absorb glucose and use it to fuel glycolysis, which produces lactate as a
byproduct. Subsequently, monocarboxylate transporter 1 (MCT1) transports lactate to the
extracellular environment, where it is taken up by MCT2 and delivered to neurons [38].
Neurons can use lactate as a source of energy once astrocytes have released it and taken
it up. This metabolic coupling supports neuronal function and plasticity by providing
neurons with an extra energy source.

Unlike astrocytes and oligodendrocytes, microglia do not directly fuel neurons, al-
though the large quantities of lactate generated by active microglia are very likely to be
absorbed by nearby neurons [39]. The high energy requirements of activated microglia
significantly restrict the energy available to neurons when the brain glucose supply remains
limited for an extended time [40,41]. One example is during episodes of hypoglycemia [42],
which can occur due to various reasons, including diabetes [43], starvation/fasting [44],
critical illness [45], alcohol consumption [46], etc. When blood glucose levels drop sig-
nificantly the brain’s glucose supply becomes limited, potentially leading to confusion,
dizziness, seizures, loss of consciousness, and, in severe cases, brain damage. Therefore, the
opportunistic use of alternate fuels derived from sources outside the brain plays a signifi-
cant role in the brain’s resilience in the face of energetic strain. The primary substitute fuels
for glucose are ketones and lactate, which are transported to the brain via monocarboxylate
transporters on astrocytes and the capillary endothelium [47–51].

The brain can use ketone bodies for energy when blood levels of ketones rise suf-
ficiently, typically after several days of fasting or after several weeks of adherence to a
low-carbohydrate and high-fat (ketogenic) diet [52,53]. Fatty acid oxidation (FAO) can
provide an alternative fuel source in the brain when glucose metabolism is impaired or
in hypometabolic conditions [54,55]. During FAO, long-chain fatty acids are transported
into the mitochondria, undergoing a series of enzymatic reactions. These reactions involve
sequential cleavage of the fatty acid chain, producing acetyl-CoA units. Acetyl-CoA is then
further metabolized through the TCA cycle [56,57].

Dysregulation of brain energetics has been implicated in various neurological disor-
ders, including Alzheimer’s disease, highlighting the importance of understanding the
mechanisms involved in brain energy metabolism [58–61] (Figure 1).
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Figure 1. Healthy brain and brain with AD. The neurovascular unit comprises the brain’s microvas-
cular endothelial cells, pericytes, astrocytes, oligodendrocytes, and neurons. Glucose transport is
accomplished by the coordinated activation of glucose transporters on the capillary endothelium,
astrocytes, oligodendrocytes, and neurons. After being transported, it is converted into ATP through
biochemical reactions involving glycolysis, the TCA, and oxidative phosphorylation. It is utilized in
many other energy pathways to support a variety of intricate cellular processes. Brain energetics has
been implicated in various neurological disorders, including AD, as it leads to neurodegeneration
and neuronal death.

2. Hypometabolism in AD

Amyloid and tau are well-established AD risk factors that affect millions of people
globally [62,63]. One of the main findings in the brains of AD patients is hypometabolism, a
reduction in the brain’s metabolic rate [64,65]. This hypometabolism is seen in specific brain
regions, including the temporal and parietal lobes, which are involved in memory and
cognition [66–70]. The data from animal models and AD patients are consistent with the
findings that brain hypometabolism is a major feature of AD [64,71,72]. In animal models of
AD, there is a widespread decrease in the cerebral metabolic rate of glucose (CMRglu) in the
hippocampus, cortex, and other brain regions [73–75]. This decline in glucose metabolism
occurs progressively, worsening over time. Decrease in CMRglu can lead to neuronal death
and cognitive decline [76,77]. While the exact reason for this hypometabolism is not well
understood, it may be related to the accumulation of amyloid plaques and neurofibrillary
tangles [78]. Clinical fluorodeoxyglucose (FDG) positron emission tomography (PET)
studies have repeatedly demonstrated impaired glucose uptake in individuals with mild
cognitive impairment (MCI), early AD, and genetic risk/family history of AD [79–82]. In
AD, studies have shown that reductions in brain glucose metabolism occur early in the
disease process before significant memory impairment is observed [78,83–85]. Additionally,
neurodegeneration and loss of neurons may contribute to the decline in glucose uptake
and utilization found in AD [86,87].

The exact relationship between glucose metabolism and AD is not yet fully understood.
One theory is that the reduction in glucose metabolism may lead to decreased brain energy
production, affecting nerve cells’ normal functioning and contributing to brain damage [88].
There is evidence that changes in insulin signaling may play a role in reducing glucose
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metabolism in AD [89,90]. However, research shows that glucose uptake in the brain is
largely independent of insulin and that only a small percentage of glucose uptake in the
brain is insulin-dependent [91–93], as glucose transport into the brain is primarily mediated
by glucose transporters (GLUTs), which are insulin-independent [94]. While insulin can
regulate glucose metabolism and uptake in other tissues in the body, it appears to have
a limited role in the brain [95,96]. Research suggests that insulin may inhibit glucose
uptake in the brain under certain conditions. For example, in individuals with type 2
diabetes, where insulin resistance is present, glucose uptake in the brain is not significantly
impaired [97,98]. However, the reduction in glucose metabolism in certain brain regions in
AD suggests that it may play a role in the disease’s development; thus, targeting glucose
metabolism may provide therapeutic benefits in AD [99].

3. Glucose Transporters in AD

Glucose transporters play a critical role in regulating glucose uptake into the brain,
and their expression levels have been investigated in AD. Here are several key findings
related to glucose transporters expression in AD:

1. GLUT1 is the primary glucose transporter in the brain, and its expression is reduced in the
hippocampus and frontal cortex of AD patients compared to healthy controls [100–102].
This reduction in GLUT1 expression may contribute to the impaired glucose metabolism
observed in AD [103,104].

2. GLUT3 is another glucose transporter highly expressed in the brain, particularly in
neurons [105]; studies have shown that GLUT3 expression is decreased in AD patients’
hippocampus and parietal cortex, which may contribute to the impaired glucose
metabolism seen in AD [106,107].

3. GLUT4 is typically found in muscle and adipose tissue; however, recent studies have
suggested that it may be expressed in the brain as well [108–110]. One study found
that in AD patients GLUT4 expression was increased in the hippocampus, suggesting
that it may be upregulated in response to the impaired glucose metabolism in this
region [111–113].

These studies suggest that alterations in these glucose transporters’ expression may im-
pair glucose metabolism in AD. However, this reduced expression/activity of glucose trans-
porters in AD is likely multifactorial, resulting from a complex interplay of beta-amyloid
toxicity, inflammation, and oxidative stress in the brain. Indeed, one possible explanation is
that beta-amyloid plaques can directly impair the function of glucose transporters. Studies
have shown that beta-amyloid can bind to these transporters, promoting their internal-
ization and reducing glucose transport activity [101,114–116], thereby leading to energy
deficits that contribute to the cognitive decline in AD. Another possible explanation is that
inflammation, a common AD feature, can reduce expression of glucose transporters.

Inflammatory cytokines such as interleukin-1 beta (IL-1β) and tumor necrosis factor-
alpha (TNF-α) have been shown to decrease glucose transporter expression in brain
cells [117,118]. Finally, oxidative stress, which is increased in AD, can severely impact the
membranes of brain cells, and promote irreversible covalent modifications that destabilize
and inactivate the embedded proteins, including glucose transporters [119–121] (Figure 2).



Cells 2023, 12, 2019 5 of 19Cells 2023, 12, x FOR PEER REVIEW 5 of 19 
 

 

 

Figure 2. Neuropathological hallmarks of AD. The neuropathological hallmarks of AD include le-

sions such as amyloid plaques and neurofibrillary tangles, neuronal and synaptic loss, oxidative 

stress, hyperactivated glial responses leading to neuroinflammation, and BBB leakage. 

4. The Potential Therapeutic Targets for Hypometabolism in AD 

Studies on AD have revealed that changes in brain glucose metabolism early in the 

disease process lead to the loss of synapses and neuronal death. Insufficient neuronal glu-

cose and mitochondrial energy production compromise the clearance of amyloid and tau 

proteins from the brain [122]. On the other hand, the buildup of amyloid plaques and tau 

tangles exacerbates brain glucose hypometabolism and mitochondrial impairment, re-

duces energy output, and elevates oxidative stress [123,124]. Hypometabolism then causes 

cellular injury and neuroinflammation. This destructive cycle caused by energy failure in 

AD is comparable to the brain circuit disruption found in other neurodegenerative ill-

nesses; it worsens memory and cognition and leads to unusual behavior in those affected. 

While beta-amyloid is undoubtedly a major factor in the progression of AD, it is be-

coming increasingly obvious that a variety of other factors, such as inflammation, oxida-

tive stress, dysfunction of the innate immune system in the brain, hereditary factors, and 

lifestyle choices all play a role [122–124]. Studies have shown that AD is associated with 

decreased glucose uptake and utilization in the brain, which is thought to contribute to 

the decline in brain function observed in this condition [125–128]. 

As mentioned, the conventional thinking that reduced brain glucose metabolism in 

AD is just a byproduct of neuronal dysfunction is now being challenged; particularly in 

AD, a continuous energy gap in the brain results from the gradual loss of brain glucose 

uptake and metabolism, resulting in brain cell malfunction and the buildup of neurotoxic 

proteins long before clinical symptoms become apparent. The brain’s energy demands 

cannot be resolved only by raising blood glucose concentration if glycolysis is compro-

mised and neuronal function deteriorates. Furthermore, neuronal activities, not blood glu-

cose levels, determine brain glucose absorption. Conversely, the availability of ketones 

and lactate in the bloodstream influences their absorption by the brain, making them an 

Figure 2. Neuropathological hallmarks of AD. The neuropathological hallmarks of AD include
lesions such as amyloid plaques and neurofibrillary tangles, neuronal and synaptic loss, oxidative
stress, hyperactivated glial responses leading to neuroinflammation, and BBB leakage.

4. The Potential Therapeutic Targets for Hypometabolism in AD

Studies on AD have revealed that changes in brain glucose metabolism early in the
disease process lead to the loss of synapses and neuronal death. Insufficient neuronal
glucose and mitochondrial energy production compromise the clearance of amyloid and
tau proteins from the brain [122]. On the other hand, the buildup of amyloid plaques and
tau tangles exacerbates brain glucose hypometabolism and mitochondrial impairment,
reduces energy output, and elevates oxidative stress [123,124]. Hypometabolism then
causes cellular injury and neuroinflammation. This destructive cycle caused by energy
failure in AD is comparable to the brain circuit disruption found in other neurodegenerative
illnesses; it worsens memory and cognition and leads to unusual behavior in those affected.

While beta-amyloid is undoubtedly a major factor in the progression of AD, it is
becoming increasingly obvious that a variety of other factors, such as inflammation, oxida-
tive stress, dysfunction of the innate immune system in the brain, hereditary factors, and
lifestyle choices all play a role [122–124]. Studies have shown that AD is associated with
decreased glucose uptake and utilization in the brain, which is thought to contribute to the
decline in brain function observed in this condition [125–128].

As mentioned, the conventional thinking that reduced brain glucose metabolism in
AD is just a byproduct of neuronal dysfunction is now being challenged; particularly in AD,
a continuous energy gap in the brain results from the gradual loss of brain glucose uptake
and metabolism, resulting in brain cell malfunction and the buildup of neurotoxic proteins
long before clinical symptoms become apparent. The brain’s energy demands cannot be
resolved only by raising blood glucose concentration if glycolysis is compromised and
neuronal function deteriorates. Furthermore, neuronal activities, not blood glucose levels,
determine brain glucose absorption. Conversely, the availability of ketones and lactate
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in the bloodstream influences their absorption by the brain, making them an alternate
source of brain energy. Brain energy rescue strategies may need to target several metabolic
pathways and activities depending on the condition, because AD does not have a single
common mechanism that results in hypometabolism.

Rescue strategies could focus on a single enzyme, transporter, or metabolite. One ap-
proach involves targeting the mitochondrial dysfunction associated with hypometabolism
in AD. Several potential drugs that target mitochondrial function, such as coenzyme Q10,
have been investigated as potential treatments for AD [129,130]. Mixed results have been
found in research examining the possible therapeutic benefits of coenzyme Q10 in AD. Stud-
ies have found that CoQ10 supplementation can improve cognitive function, slow down
the progression of AD, and reduce oxidative stress in individuals with the disease. Addi-
tionally, research has shown that CoQ10 can enhance mitochondrial function [130], which
plays a crucial role in energy production and neuronal health. While several studies have
reported positive results, others have not seen significant changes [131,132]. These studies
have failed to demonstrate improvements in cognitive function or disease progression
compared to a placebo or standard treatment. For instance, a large randomized controlled
trial called the IDEAL Study did not find any significant differences in cognitive decline
between the CoQ10-treated group and the placebo group over a two-year period [130,133].
Another approach involves targeting oxidative stress, which is believed to contribute to
hypometabolism in AD [134]. Antioxidant therapies such as vitamin E and curcumin have
been investigated in clinical trials as a potential treatment to reduce oxidative stress and
improve cognitive function in patients with AD [135–137]. Vitamin E is a fat-soluble antiox-
idant shown to have neuroprotective effects in animal models of AD. Clinical trials have
suggested that vitamin E may be beneficial in slowing cognitive decline in patients with
mild to moderate AD [138–140]. In addition, vitamin E is a widely available and inexpen-
sive supplement that has relatively few side effects. However, high doses of vitamin E have
been associated with an increased risk of mortality and bleeding, and may have negative
interactions with other medications [139]. In addition, clinical trials of vitamin E have failed
to show significant cognitive benefits in patients with AD [139]. Curcumin is a naturally
occurring turmeric compound with antioxidant, anti-inflammatory, and neuroprotective
properties. Studies have suggested that curcumin may improve cognitive function and
reduce amyloid beta and tau pathology in animal models of AD [141–144]. In addition,
curcumin is a relatively safe supplement that has few side effects and low bioavailability,
meaning that it is poorly absorbed by the body and quickly metabolized [145,146]. This
has limited its effectiveness in clinical trials, as it is difficult to achieve therapeutic levels of
curcumin in the brain. Curcumin may interact with certain medications and may negatively
affect the liver in high doses [147–149].

In addition, growing evidence suggests that targeting the BBB can improve glucose
transport and metabolism in the brain [150,151]. Disruption of the BBB is a common
feature of AD, and targeting the BBB to improve glucose delivery to the brain could have
therapeutic implications for AD [20,152,153]. Studies have shown a reduction of glucose
transporter expression at the BBB endothelium [102,154,155]. In AD, the reduction in
glucose transporter expression and distribution primarily affects the GLUT1 and GLUT3
transporters. These transporters facilitate the movement of glucose from the bloodstream
into brain cells. They are integral membrane proteins that undergo conformational changes
to transport glucose in a concentration-dependent manner. The expression and activity
of these transporters are tightly regulated to maintain glucose homeostasis in the brain.
Disruptions in the expression or function of GLUT1 and GLUT3 can lead to impaired
glucose transport across the BBB, resulting in reduced glucose availability and compromised
energy metabolism in the brain.

As discussed previously, a reduction in expression may result from factors such as beta-
amyloid toxicity, inflammation, and oxidative stress. Targeting the disrupted BBB can help
to normalize the expression and function of glucose transporters, improving the transport
of glucose across the barrier and into the brain, thereby clearing amyloid-beta, modulating
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inflammatory responses, and preserving the integrity of the neurovascular unit [20,154,156].
Several of the cited studies discuss strategies to restore BBB integrity, such as by modulating
neuroinflammation, enhancing pericyte function, and promoting tight junction integrity.
Additionally, altered distribution or localization of glucose transporters within the cell
membrane may contribute to impaired glucose uptake in AD. In AD, GLUT1 expression
is reduced in regions such as the hippocampus and frontal cortex [28,100,157,158]. This
reduction in expression may impair glucose uptake from the bloodstream into the brain.
In addition, studies have reported reduced expression of GLUT3 in the hippocampus and
parietal cortex. Reduced expression of GLUT3 can lead to decreased glucose uptake in
neurons and contribute to energy deficits in the affected brain regions. However, GLUT1
has remained largely unexplored as a possible therapeutic target to alleviate cerebrovas-
cular dysfunction and subsequent AD-associated neurodegeneration. Upregulating the
expression of GLUTs at the BBB level (maintaining the apical versus basolateral distribution
ratio) or brain cells can increase glucose flux into the brain [159]. This can be achieved
through drugs or gene therapy [160].

In terms of drug-based approaches, several drugs have been investigated for their
potential to upregulate GLUT expression and enhance glucose uptake in the brain. These
drugs typically act through various mechanisms to increase the expression, trafficking, or
activity of glucose transporters. Examples include:

1. Insulin sensitizer drugs: insulin resistance has been associated with reduced GLUT
expression and impaired glucose uptake in the brain. Insulin sensitizer drugs such
as thiazolidinediones (TZDs) or peroxisome proliferator-activated receptor gamma
(PPARγ) agonists have been shown to enhance GLUT expression and glucose trans-
port in the brain [161].

2. AMP-activated protein kinase (AMPK) activators: AMPK is an enzyme in cellular en-
ergy regulation. Activating AMPK can increase GLUT expression and glucose uptake.
Compounds that activate AMPK, such as metformin, have been investigated for their
potential to enhance brain glucose metabolism and improve cognitive function [134].

3. Other potential drugs: other drugs, including histone deacetylase inhibitors (HDAC
inhibitors) [162,163], brain-derived neurotrophic factor (BDNF) [164,165], and certain
antioxidants, have been studied for their ability to modulate GLUT expression and
improve glucose metabolism in the brain [166].

Gene therapy approaches are another option; these involve introducing specific genes
into brain cells to enhance GLUT expression [167,168]. This can be achieved through viral
vectors or other delivery systems. The introduced genes can encode specific GLUT isoforms
or other factors that regulate GLUT expression. Gene therapy strategies can be targeted to
brain endothelial cells at the BBB or directly to brain cells [169]. However, gene therapy
for brain disorders, including AD, currently remains experimental and requires further
research and development [170].

5. The Current Stage of AD Treatments: Targeting the Usual Culprits

The neuropathological characteristics of AD include widespread deposition of Aβ

plaques in the neocortex and a hierarchically ordered network of neurofibrillary tangles
primarily made up of tau aggregates in the limbic and cortical association regions. Ac-
cording to the amyloid hypothesis, the buildup of beta-amyloid protein in the brain is a
major contributor to the onset of AD [62,171]. Amyloid-beta precursor protein (APP) is a
protein normally found in the membranes of neurons. Nonamyloidogenic processing of
APP involves α-secretase followed by γ-secretase. In AD, APP is cleaved by two enzymes,
beta-secretase (BACE1) and gamma-secretase, to form amyloid beta peptides. These pep-
tides have the potential to accumulate into plaques in the spaces between neurons, which
are observed in the brains of AD patients [172,173]. These plaques are thought to disrupt
communication between neurons and contribute to the death of brain cells [174,175]. This
process is thought to involve the activation of the immune system along with inflammation
and oxidative stress [122,176,177].
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On the other hand, the tau hypothesis focuses on the function of the tau protein in AD.
Under normal conditions, this protein aids in preserving the organization of the brain’s
nerve cells. Tau helps to stabilize the structure of neurons by supporting the microtubules
that form the neuron’s internal transport system. Neurofibrillary tangles are aberrant tau
protein clusters present in AD [123]. These tangles and amyloid plaques prevent nerve cells
from operating normally, which causes brain damage and cognitive deterioration. This is
fueling a growing interest in developing targeted therapies [124,125,128]. Although tangles
are more closely related to neuronal loss and clinical symptoms, genetic studies implicate
Aβ as a critical disease initiator for autosomal-dominantly inherited AD. These studies
show that mutations in APP or enzymes that produce Aβ cause AD [63,126,127,178].

The amyloid beta peptides can bind to various receptors in the brain, including
N-methyl-D-aspartate (NMDA), which plays a key role in learning and memory, Alpha7
nicotinic acetylcholine receptor (α7nAChR), which is involved in the regulation of neuro-
transmitter release, and receptor for advanced glycation end products (RAGE), which is in-
volved in the immune response [179–181]. Tau proteins have been shown to bind to several
receptors, including the low-density lipoprotein receptor-related protein 1 (LRP1) [182,183]
and the sortilin-related receptor (SORL1) [184–186]. These receptors are involved in the
transport of proteins within cells, and are thought to play a role in the clearance of tau
from the brain [187]. The enzymes and genes involved in the production and clearance of
amyloid beta and tau and their respective receptors have been extensively investigated
as potential therapeutic targets for AD [188]. There have been several medications devel-
oped for Alzheimer’s disease that have passed through clinical trials; however, none have
demonstrated significant clinical benefits. Bapineuzumab is a monoclonal antibody that
targets amyloid beta plaques [189,190]. Developed by Pfizer and Johnson & Johnson, it
went through several clinical trials, ultimately failing to show significant cognitive bene-
fits in patients with Alzheimer’s disease. Solanezumab is another monoclonal antibody
that targets amyloid beta plaques. Developed by Eli Lilly, it underwent several clinical
trials without demonstrating significant cognitive benefits in patients with mild to mod-
erate Alzheimer’s disease [191,192]. Crenezumab is a monoclonal antibody that targets
amyloid beta plaques. It was developed by Genentech and went through several clinical
trials, demonstrating no significant cognitive benefits in patients with mild to moderate
Alzheimer’s disease [193–195]. Semagacestat is a gamma-secretase inhibitor developed by
Eli Lilly. Designed to block the production of amyloid beta peptides, it ultimately failed in
clinical trials due to side effects and lack of clinical benefit [196–198].

A few monoclonal antibodies targeting beta-amyloid or drugs aimed at blocking gamma-
secretase (involved in beta-amyloid synthesis) have managed to advance through phase
I and II clinical trials; however, none of these have been successful in phase III [199,200].
Furthermore, several tau protein-targeting medications, despite being expected to enhance
cognitive or functional outcomes, have been unsuccessful:

1. LMTX (LMTM) is a small molecule that targets tau protein aggregation. It was
evaluated in clinical trials for both AD and frontotemporal dementia (FTD). However,
the Phase III trials of LMTX in AD did not significantly improve cognitive or functional
outcomes compared to the placebo [201]. The reasons for this lack of efficacy are
currently being investigated.

2. Tideglusib is a glycogen synthase kinase-3 beta (GSK-3β) inhibitor that can indirectly
affect tau phosphorylation. GSK-3β is an enzyme involved in the abnormal phospho-
rylation of tau protein. Clinical trials of tideglusib in AD showed mixed results. In a
Phase II trial it did not significantly affect cognitive decline [202], and a Phase III trial
was discontinued due to lack of efficacy (NCT02579252).

Carriers of Aβ-enhancing genetic forms of AD (i.e., mutant APP and PS1/2, E4 variant
of apolipoprotein E (APOE4) and Down’s syndrome), in which Aβ accumulates earlier in
the disease, are associated with a dramatic hastening in the age of onset, with a comparable
rate of progression of clinical symptoms relative to sporadic illness. This indicates that
there are “Aβ-dependent” and “Aβ-independent” illness stages that respectively affect
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the age of initiation and the rate of progression. If this is the case, anti-Aβ treatments may
not impact the outcome measure used in current AD clinical studies, which is the rate of
progression after symptoms appear. The difficulties in creating effective AD treatments
outline the complexity and heterogeneity of AD and the need for more focused research in
order to better comprehend the disease’s pathophysiology [203–205].

In the past few years the FDA has approved several drugs and treatments for Alzheimer’s
disease. A number of the most recent are listed below.

Drug/Treatment MOA Status Conditions

Aduhelm
(aducanumab)

A monoclonal antibody that targets
beta-amyloid plaques in the brain

Approved in June 2021
Mild cognitive

impairment due to AD or
mild AD

Gantenerumab
A monoclonal antibody that targets
beta-amyloid plaques in the brain.

Phase III clinical trials Mild AD

Donanemab
A monoclonal antibody that targets a modified

form of beta-amyloid called N3pG
Phase III clinical trials Early AD

Tauvid Imaging
(flortaucipir F18)

A diagnostic imaging agent that targets
tau protein

Approved on May 2020
Detection of tau pathology

in the brain

Leqembi
(Lecanemab)

Remove sticky clumps of the toxic protein
amyloid-β from the brain.

Approved on 6
January 2023

Alzheimer’s disease

It is important to note that while these drugs provide encouraging prospects for treat-
ing AD, much research must be undertaken in order to fully understand their effectiveness
and potential risks. Additionally, many experts agree that a multifaceted approach that
includes lifestyle modifications, social engagement, and cognitive stimulation is the most
effective way to manage the symptoms of AD (Figure 3).
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the FDA has approved several drugs and treatments for AD, targeting the usual culprits, namely,
beta-amyloid plaques and tau tangles. The potential therapeutic targets for hypometabolism in AD
include targeting the BBB and glucose transporter overexpression.

6. Discussion and Conclusions

While the exact cause of AD is unknown, researchers are actively exploring various
avenues for treatment and prevention. These include developing new drugs to target
specific pathways in the brain, using early diagnosis to start treatment earlier, and lifestyle
changes such as regular exercise, a healthy diet, and mental stimulation to delay the
onset of AD or slow its progression [206–209]. The amyloid and tau hypotheses provide a
foundation for our understanding of the underlying causes of AD. It is a complex disorder
that results from a combination of genetic, lifestyle, and medical factors. Further research is
needed to develop and optimize strategies targeting glucose transport and uptake through
the BBB. Nonetheless, the current evidence suggests that improving glucose delivery to the
brain could provide a useful therapeutic approach to reducing the burden of AD and other
neurological disorders [210]. Potential therapy approaches might try to restore the BBB’s
functioning and integrity by focusing on BBB disturbance, which may indirectly affect
AD glucose transport. It might be possible to improve energy metabolism and maintain
neuronal function by restoring the selective permeability of the BBB, which would assist in
controlling the passage of glucose and other nutrients into the brain.

Additionally, reducing the accumulation of toxic molecules through BBB repair could
alleviate their negative effects on glucose transporters. It is important to note that while
drug-based approaches or gene therapy strategies hold promise, several challenges are
associated with upregulating GLUT expression for therapeutic purposes. The key consid-
erations for developing such approaches include ensuring specific and targeted delivery
to the brain, maintaining balanced glucose homeostasis, and avoiding potential side or
off-target effects.
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Hypometabolism is a decrease in the metabolic activity of brain cells and has been
found to occur earlier in AD than other clinical symptoms, such as memory loss. However,
hypometabolism is typically detected using advanced imaging techniques such as positron
emission tomography (PET) scans, which are not routinely used in clinical practice for AD
diagnosis [211,212]. Furthermore, hypometabolism alone is not specific to Alzheimer’s,
and can be seen in other neurological conditions [213]. Therefore, a diagnosis of AD is
typically based on a combination of clinical symptoms, imaging studies, and other tests
such as neuropsychological evaluations [214].

In summary, although hypometabolism may be seen earlier in AD than other clinical
symptoms, it is not considered a primary diagnostic criterion because it is not specific to this
condition and requires advanced imaging techniques that are not routinely used in clinical
practice. Overall, this review article highlights the growing interest in hypometabolism
as a potential therapeutic target for AD and provides a comprehensive overview of the
current knowledge regarding the underlying mechanisms and potential treatments. While
much work remains to be done, the findings discussed in this review suggest that there
are possibilities for developing new treatments for AD that target brain metabolism and
related pathways.
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