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Abstract: 5q-related Spinal muscular atrophy (SMA) is a hereditary multi-systemic disorder leading
to progressive muscle atrophy and weakness caused by the degeneration of spinal motor neurons
(MNs) in the ventral horn of the spinal cord. Three SMN-enhancing drugs for SMA treatment are
available. However, even if these drugs are highly effective when administrated early, several patients
do not benefit sufficiently or remain non-responders, e.g., adults suffering from late-onset SMA and
starting their therapy at advanced disease stages characterized by long-standing irreversible loss
of MNs. Therefore, it is important to identify additional molecular targets to expand therapeutic
strategies for SMA treatment and establish prognostic biomarkers related to the treatment response.
Using high-throughput nCounter NanoString technology, we analyzed serum samples of late-onset
SMA type 2 and type 3 patients before and six months under nusinersen treatment. Four genes
(AMIGO1, CA2, CCL5, TLR2) were significantly altered in their transcript counts in the serum of
patients, where differential expression patterns were dependent on SMA subtype and treatment
response, assessed with outcome scales. No changes in gene expression were observed six months
after nusinersen treatment, compared to healthy controls. These alterations in the transcription of
four genes in SMA patients qualified those genes as potential SMN-independent therapeutic targets
to complement current SMN-enhancing therapies.

Keywords: spinal muscular atrophy; survival of motor neuron; neuromuscular disorders; serum;
biomarker; nanostring; targets

1. Introduction

A hereditary multi-systemic disorder, 5q-related Spinal muscular atrophy (SMA) is
associated with progressive muscle atrophy and weakness caused by the degeneration
of motor neurons (MNs) in the ventral horn of the spinal cord [1]. SMA is classified into
different phenotypes regarding its severity and onset. It is caused by homozygous deletion
or compound heterozygous mutation of the survival of motor neuron (SMN) 1 gene resulting
in a lack of SMN protein, which is mainly involved in the splicing process. In addition
to the SMN1, SMN is also encoded by the SMN2 gene, which differs from the SMN1 in
cytosine to thymine transition in exon 7, resulting in only around 10% of functional protein.
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In most SMN patients, the number of SMN2 gene copies negatively correlates with the
disease severity [2,3].

Recently, with nusinersen, risdiplam, and onasemnogene abeparvovec, three SMN-
enhancing drugs for SMA treatment have been approved. However, even if these drugs are
highly effective when administrated early, not all SMA patients benefit sufficiently. Some
remain non-responders, such as adult patients suffering from late-onset SMA who have
undergone a long-standing irreversible loss of MNs before starting their therapy. In these
patients, a restoral that is solely SMN related has the ability to stop the progression of SMA,
or motor functionality can only be slightly restored. Therefore, to improve the disease
stage of patients that have not benefited from the current SMA therapies, identifying other
targets to develop supporting strategies for current SMN-enhancing drugs is indispensable.
Recent work suggested inflammatory pathways and cells other than neurons as potential
targets, e.g., astrocytes, microglia, or muscle cells [4–6]. Their contribution to SMA patho-
genesis is still unclear, but high-throughput screening techniques such as proteomics or
transcriptomics could be a starting point for discovery studies.

Circulating nucleic acids can be detected in body fluids such as blood, cerebrospinal
fluid (CSF), or urine. Therefore, they may serve as a minimally invasive tool for patient strat-
ification regarding disease diagnosis and progression monitoring or may even contribute to
identifying new therapeutic targets. For example, circulating cell-free RNAs (ccfRNAs) such
as micro-RNA (miRNA) or mRNA have been identified as potential biomarkers for diag-
nostic and therapeutic responses in the “liquid biopsies” of cancer patients [7,8]. Moreover,
recent studies have introduced an association between ccfRNAs and neurological diseases
such as Amyotrophic Lateral Sclerosis (ALS) and other neurodegenerative disorders and
can be potentially used as disease progression or therapy response markers [9–11].

To identify transcription changes in genes that could contribute to SMA pathology,
serve as biomarkers, or serve as potential new therapeutic targets in circulating nucleic
acid levels, we analyzed the serum samples of 30 late-onset SMA patients before and after
six months of nusinersen treatment, as well as the serum samples of 10 healthy patients,
using nCounter NanoString technology. Furthermore, we analyzed the gene transcription
profiles of individual SMA patients in comparison to each other.

2. Materials and Methods
2.1. Serum Samples of SMA Patients and Healthy Control Individuals

Serum samples of 30 SMA patients (male and female, age 21–61 years) with 5q-SMA
(type 2 or 3) and 10 age-matched healthy control individuals (male or female) were analyzed
(Table 1, Supplementary Materials Table S1).

Table 1. Demographic data of the included SMA patients.

Age at Treatment, Years Number of Patients
Per Sex

SMN2 Copy
Number

SMA
Type Baseline HFMSE Score Baseline RULM Score

37 ± 13 (18–71) female 9 (30%)
male 21 (70%)

2 2 (6.6%)
3 11 (36.6%)
4 16 (53.3%)
5 1 (3.3%)

type 2 9 (30%)
type 3 21 (70%) 24.46 ± 21.82 24.60 ± 13.30

HFMSE: Hammersmith Functional Motor Scale Expanded. RULM: Revised Upper Limb Module.

Serum was collected from SMA patients before (T0) and 6 months after the first
treatment (T1) with nusinersen. SMA patients were classified by their therapeutic response
as measured with the Hammersmith Functional Motor Scale Expanded (HFMSE) as (R; ≥2)
or non-responder (nR).

All study participants gave written informed consent. The study was approved
by the ethics committee of the University of Duisburg-Essen, Germany (approval
number 18-8285-BO).
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2.2. RNA Extraction

RNA was purified from 500 µL of patients’ serum using the Maxwell RSC miRNA
Plasma or Serum kit, semi-quantitatively extracting high-quality, amplifiable total RNA,
including small fragments from mammalian serum or plasma samples (Promega, Fitch-
burg, WI, USA). The obtained RNA was eluted in 50 µL of RNase-free water and stored at
−80 ◦C. Before the assessment, RNA concentration was determined via Qubit Fluorometric
Quantification (Thermo Fisher Science, Waltham, MA, USA), undergoing manufacturer’s
instructions for the RNA broad-range assay kit. Due to the low free-RNA input gen-
erated from human serum, the maximum volume has been used as the input for the
subsequent analysis.

2.3. nCounter CodeSet Design and Expression Analysis

The “neuropathology” nCounter panel includes a unique cell typing feature for mea-
suring the abundance of neurons, astrocytes, microglia, oligodendrocytes, and endothe-
lial cells. It comprises 770 genes, comprehensively assessing 23 related pathways and
30 reference genes. Hybridizations were performed using the high-sensitivity protocol
on the nCounter Prep-Station. Then, post-hybridization processing was performed using
the nCounter MAX/FLEX System (NanoString, Seattle, WA, USA), and the cartridge was
scanned on the Digital Analyzer (NanoString, Seattle, WA, USA). Finally, the cartridge was
read with maximum sensitivity (555 FOV).

2.4. Nanostring Data Processing

NanoString data were processed using the R statistical programming environment
(v4.0.3). First, considering the counts obtained for positive control probe sets, raw NanoS-
tring counts for each gene were subjected to a technical factorial normalization. This was
carried out by subtracting the mean counts plus two-times standard deviation from the
CodeSet inherent negative controls. Subsequently, a biological normalization using the
included RNA reference genes was performed.

Additionally, all counts with p > 0.05 after a one-sided t-test versus negative controls
plus 2x standard deviations were interpreted as not expressed to overcome basal noise [12].

2.5. In Silico Analysis

To identify patient individual transcription differences, in silico analysis tools were
used. For creating a hierarchically clustered heatmap and PCA analysis, SRplot was
used. To further analyze the differentially expressed genes (DEGs) in a volcano plot,
discrimination was achieved by applying a significance threshold of at least p < 0.05 and a
minimum change of log2 fold changes > 0.5.

Gene ontology (GO) terms were identified using Cytoscape (3.9.1, open source devel-
opers) and the app BinGO (3.0.5, Ghent, Belgium). Using Cytoscape and NedREX Diamond
(1.1.2, multiple developers), a network using 10 interaction partners was created. Lastly,
targets for each network were identified using NedREX and the drug analysis tool.

2.6. Statistical Evaluation

Statistical analysis was conducted using the R i386 statistical programming environ-
ment (v4.0.2). Before exploratory data analysis, the Shapiro–Wilks test was applied to
test for the normal distribution of each data set for ordinal and metric variables. Result-
ing dichotomous variables underwent either the Wilcoxon Mann–Whitney rank sum test
(non-parametric) or two-sided student’s t-test (parametric).

Correlations between metrics were tested by applying Spearman’s rank correlation
test and Pearson’s product–moment correlation testing for linearity.

Basic quality control of the run data was performed by mean-vs-variances plotting in
order to find outliers in the target or sample levels. True differences and clusters on both
target and sample levels were calculated by correlation matrix analyses.
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To further specify the different candidate patterns, unsupervised and supervised
clustering were performed to overcome commonalities and principal component analysis
was performed to overcome differences.

3. Results
3.1. Alteration of Gene Transcription Assessed in Serum Samples of SMA Patients

Within the analyzed serum samples obtained from the SMA and healthy controls,
transcripts of 34 genes were detectable. Four genes, Adhesion Molecule with Ig-Like
Domain 1 (AMIGO1), Carbonic Anhydrase 2 (CA2), C-C Motif Chemokine Ligand 5
(CCL5), and Toll-like Receptor 2 (TLR2), showed alteration in their transcription in different
SMA phenotypes at T0. CA2 and CCL5 showed enhanced transcription, while AMIGO1
and TLR2 were reduced. No change in the transcription of these genes was observed
at T1 (Figure 1A).
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Figure 1. Alteration of gene transcription in serum samples of SMA patients. (A) Gene transcripts
found in serum of SMA patients and healthy individuals. (B) Venn diagram of differentially tran-
scripted genes in SMA patient subgroups.

Classifying SMA phenotypes into different subtypes revealed more specific tran-
scription patterns. While SMA type 2 patients showed alterations in the transcription of
AMIGO1, CCL5, and TLR2, in SMA type 3 patients, CA2 and CCL5 were affected. In serum
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from SMA R, only the transcription of CA2 was altered, whereas in SMA nR, AMIGO1,
CCL5, and TLR2 were also affected (Figure 1B).

3.2. CA2 Transcription Is Enhanced in Serum Samples of SMA Patients

Serum analysis showed enhanced transcription of CA2 in SMA (total) samples
compared to control at T0 (p < 0.01) (Figure 2A). No change was observed at T1
(p > 0.05) (Figure 2B).

In subtype-analysis, CA2 transcription was enhanced in both SMA R (p < 0.05) and
SMA nR (p < 0.01) groups when compared to healthy controls (Figure 2C,D) at T0. CA2
was found to be enhanced in SMA type 3 patients (p < 0.01) at T0 (Figure 2F).
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Figure 2. Transcription of CA2 in serum samples of SMA patients and healthy individuals. Tran-
scription of CA2 in serum samples of SMA patients and healthy individuals. (A) SMA patients
(total) showed enhanced CA2 transcription counts compared to healthy control individuals (p < 0.01).
(B) No difference was observed when comparing the samples of SMA patients at T0 and T1 (p > 0.05).
(C) CA2 transcription counts were enhanced in SMA R patients (p < 0.01). (D) Transcription counts of
CA2 were enhanced in SMA nR patients (p < 0.05). (E) There was no chance of CA2 transcription
in SMA type 2 patients (p > 0.05). (F) SMA type 3 patients had enhanced CA2 transcription counts
(p < 0.01). n = 10 control individuals, 29 SMA patients (total), 18 SMA responders (R), 11 SMA
non-responders (nR). Statistics: * p < 0.05, ** p < 0.01.
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3.3. Transcription of CCL5 Is Enhanced in Serum Samples of SMA Type 2 and 3 Patients Who Did
Not Respond to Treatment with Nusinersen

Transcription of CCL5 was enhanced in SMA (total) samples compared to control at
T0 (p > 0.01), but no change was observed after treatment at T1 (p > 0.05) (Figure 3A,B).
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Figure 3. Transcription of CCL5 in serum samples of SMA patients and healthy individuals.
Transcription of CCL5 in serum samples of SMA patients and healthy individuals. (A) SMA pa-
tients (total) showed enhanced CCL5 transcription counts compared to healthy control individuals
(p < 0.01). (B) No difference was observed when comparing the samples of SMA patients at T0 and
T1 (p > 0.05). (C) CCL5 transcription was unaffected in SMA R patients (p > 0.05). (D) Transcription
counts of CA2 were enhanced in SMA nR patients (p < 0.01). (E) Enhanced CCL5 transcription was
observed in SMA type 2 patients (p > 0.01). (F) SMA type 3 patients had enhanced CCL5 transcription
counts (p < 0.05). n = 10 control individuals, 29 SMA patients (total), 18 SMA responders (R), 11 SMA
non-responders (nR). Statistics: * p < 0.05, ** p < 0.01.

Enhanced CCL5 transcription was detected in samples of SMA nR (p < 0.01) at T0
(Figure 3D). In addition, in patients suffering from SMA type 2 (p < 0.01) and 3 (p < 0.05),
transcript counts of CCL5 were enhanced (Figure 3E,F).

3.4. AMIGO1 Transcription Is Reduced in Serum Samples of SMA nR Patients

AMIGO1 transcription was reduced in SMA (total) patients at T0 (p < 0.05). No change
was observed after treatment at T1 (p > 0.05) (Figure 4A,B).
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AMIGO1 transcription was reduced in SMA nR (p < 0.05) at T0 (Figure 4D). In addition,
a reduction of AMIGO1 transcription was detected in patients suffering from SMA type 2
(p < 0.01) at T0 (Figure 4E).
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Figure 4. Transcription of AMIGO1 in serum samples of SMA patients and healthy individuals.
Transcription of AMIGO1 in serum samples of SMA patients and healthy individuals. (A) SMA pa-
tients (total) showed reduced AMIGO1 transcription counts compared to healthy control individuals
(p < 0.05). (B) No difference was observed when comparing the samples of SMA patients at T0
and T1 (p > 0.05). (C) AMIGO1 transcription counts were unaffected in SMA R patients (p > 0.05).
(D) Transcription counts of AMIGO1 were reduced in SMA nR patients (p < 0.05). (E) Reduced
AMIGO1 transcription was observed in SMA type 2 patients (p > 0.01). (F) SMA type 3 patients
showed no change in AMIGO1 transcription counts (p > 0.05). n = 10 control individuals, 29 SMA
patients (total), 18 SMA responders (R), 11 SMA non-responders (nR). Statistics: * p < 0.05, ** p < 0.01.

3.5. Transcription of TLR2 Was Reduced in SMA Type 2 Patients and Those Not Responding to
Nusinersen Treatment

The transcription of TLR2 did not differ between SMA (total) patients and control
individuals at T0 (p > 0.05). Furthermore, no change in transcription was observed after
treatment at T1 (p > 0.05) (Figure 5A,B).

In contrast, TLR2 transcription counts were reduced in SMA nR (p < 0.05) (Figure 5D)
and SMA type 2 patients (p < 0.05) (Figure 5E).
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Figure 5. Transcription of TLR2 in serum samples of SMA patients and healthy individuals.
Transcription of TLR2 in serum samples of SMA patients and healthy individuals. (A) SMA pa-
tients (total) showed no alteration in TLR2 transcription compared to healthy control individuals
(p > 0.05). (B) No difference was observed when comparing the samples of SMA patients at T0 and T1
(p > 0.05). (C) TLR2 transcription counts were unaffected in SMA R patients (p > 0.05). (D) Transcrip-
tion counts of TLR2 were reduced in SMA nR patients (p < 0.05). (E) Reduction of TLR2 transcription
was observed in SMA type 2 patients (p < 0.05). (F) In SMA type 3 patients, TLR2 transcription was
not affected (p > 0.05). n = 10 control individuals, 29 SMA patients (total), 18 SMA responders (R),
11 SMA non-responders (nR). Statistics: * p < 0.05.

3.6. Gene Transcript Counts Do Not Correlate with HFMSE Motor Scores

In either of the groups (SMA R and SMN nR), transcript counts of CA5, CCL5,
AMIGO1, and TLR2 did not correlate with motor function or improvement during treat-
ment as measured with the HFMSE (p > 0.05) (Figure 6A–D).

Similarly, no correlation of CA5, CCL5, AMIGO1, or TLR5 transcript counts of each
patient at T0 with the corresponding delta HFMSE motor score was found
(p > 0.05) (Figure 7A–D).
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3.7. Heat Map Clustering Identified Two Different Clusters within Individual Patients

When using a bidirectional McQuitty Clustering within the heatmap, two clusters
could be identified at T0. Cluster 1 contains patients 18, 23, 25, 27, and 29, whereas cluster
2 contains patients 1, 2, 3, 4, 5, and 16 (Figure 8A,B). These clusters, upon comparative
analysis of diverse patient and disease parameters such as patient age (Figure 8C), HFMSE
score (Figure 8D), and ∆HFMSE score (Figure 8E), do not show any statistically significant
disparities (p > 0.05). However, patients within cluster 2 tended to have a higher HFMSE
score at T0, while ∆HFMSE scores tended to be lower than those represented by patients
within cluster 1.
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Figure 8. Comparison of gene transcription profiles of SMA patients at T0. (A) Heatmap of individual
SMA patients. Two distinct clusters of SMA patients were identified after bidirectional McQuitty
clustering, showing opposing gene transcription profiles. (B) Principal Component Analysis of SMA
patients within cluster 1 and cluster 2. (C) Age of SMA patients in cluster 1 and cluster 2 at T0. There
was no significant difference between the age of patients within the two clusters. (D) HFMSE motor
score of SMA patients within cluster 1 and cluster 2 at T0. No statistical significance between SMA
patients in cluster 1 and cluster 2 was observed, but patients within cluster 2 tended to have a higher
HFMSE score. (E) ∆HFMSE motor score (T0 to T1) of SMA patients within cluster 1 and cluster 2. No
statistical significance between the two clusters was calculated, but patients within cluster 2 tended
to have a lower ∆HFMSE score.
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Differently expressed genes (DEGs) were identified from the heatmap-based clusters
through volcano plot analysis. Discrimination was achieved by applying a significance
threshold of at least p < 0.05 and a minimum change of log2 fold changes > 0.5. Eleven
genes (EPO, ACVRL1, ATP6V0E1, AKT1, SQSTM1, ARSA, SHH, PAK1, PTDSS1, DRD1,
TLR2) were upregulated in cluster 1 and respectively downregulated in cluster 2, while
four genes (PNKD, BCL2L1, SMN1, LTBR) were upregulated in cluster 2 and respectively
downregulated in cluster 1 (Figure 9A). Based on the identified upregulated genes per
cluster, gene ontology (GO) terms were deduced to elucidate the functions related to
biological processes and molecular functions, revealing a potential increased mitochondrial
function in SMA patients within cluster 2 (Figure 9B–E).
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Figure 9. Transcriptome profiling of cluster 1 and cluster 2. (A) Volcano plot of DEGs (red) be-
tween cluster 1 and cluster 2. The transcription of eleven genes was enhanced in SMA patients of
cluster 1, while four genes were upregulated in patients of cluster 2. Upregulated genes in each cluster
were downregulated in the other one. (B,C) GO terms of upregulated genes in cluster 1 classified
into biological processes and molecular function. Terms that are upregulated in cluster 1 were down-
regulated in Cluster 2. (D,E) GO terms of upregulated genes in cluster 2 classified into biological
processes and molecular function. Terms that are upregulated in cluster 2 were downregulated in
cluster 1.
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3.8. Network and Drug Analysis of DEGs from Cluster 1 and 2

The DEGs from the various clusters are represented as networks with their top
10 interacting partners (Figure 10A,C). Furthermore, the drug analysis identified permitted
drugs for upregulated genes per cluster (Figure 10B,D). For cluster 1, five of the eleven iden-
tified upregulated genes were potentially targetable by approved drugs (Figure 10B), while
for cluster 2, two out of four upregulated genes were targetable by drugs (Figure 10D).
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Figure 10. In silico network analysis and drug-finding of upregulated genes in cluster 1 and cluster 2.
(A) Upregulated genes (orange) in cluster 1 and their top ten interaction proteins (green). ATP6V0E1,
PAK1, TLR2, AKT1, and SQSTM1 were shown to be part of an interaction network. (B) Drug analysis
for upregulated genes in cluster 1. For DRD1, SHH, ACVRL1, PAK1, and AKT1, approved drugs were
available. (C) Upregulated genes (orange) in cluster 2 and their top ten interaction proteins (green).
SMN1, PNKD, and BCL2L1 were part of an interaction network. (D) Drug analysis for upregulated
genes in cluster 1. For SMN1 and BCL2L1, approved drugs were available.

4. Discussion

Using a targeted approach, we analyzed free circulating mRNA transcripts in serum
samples of healthy individuals or SMA patients. Those circulating mRNA transcripts are
often secreted into the blood circulation by healthy and affected cells via mechanisms
such as apoptosis, necrosis, and active secretion, showing disease-related variations and
serving as prospective biomarkers for different clinical conditions or as potential therapeutic
targets [13–15].

In the first step, we compared the serum mRNA transcription of clinically defined
SMA subgroups (type 2, type 3, nR, R) to healthy control individuals. As a result, we found
alterations in the transcription of four genes (CA2, CCL5, AMIGO1, TLR2) in SMA patients,
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suggesting those genes contribute to late-onset SMA pathology and could represent new
potential therapeutic targets.

CA2 is one of 14 carbonic anhydrases (CA) isoforms in humans catalyzing the re-
versible hydration of carbon dioxide and is located in the cytoplasm [16–18]. CAs are
involved in physiological and pathophysiological processes such as respiration, glucoge-
nesis, or lipogenesis and are expressed among various tissues. CA2 is the most active
form ubiquitously expressed in primate tissues [19]. While CA3 has been associated with
neuromuscular disorders (NMD) such as Duchenne Muscular Dystrophy or Polymyositis,
CA2 has not been associated with NMD [20–23]. Here, we demonstrate the upregulation
of CA2 transcripts in the serum of SMA type 3 but not in type 2 patients, suggesting its
involvement in the pathogenesis of this subgroup. At the same time, its contributing
mechanism remains unclear, and further functional studies would be needed to elucidate
the role of CA2 in SMA.

CCL5 is a cytokine belonging to the C-C chemokine family. In the central nervous
system (CNS), CCL5 promotes inflammation, insulin signaling, and the modulation of
synaptic activity [24]. It is localized in neuroglial cells such as astrocytes, oligodendrocytes,
and microglia [25,26]. Additionally, CCL5 controls the migration of blood monocytes, such
as T-cells and eosinophils, from the periphery into the CNS [27]. We observed increased
mRNA levels in the serum of SMA type 2 and 3 patients with a slight shift to the more
severe type 2 subform.

In contrast to CA2, only SMA non-responders showed an increased count of CCL5
transcripts, suggesting the involvement of inflammatory processes within this subgroup.
These findings are supported by a recent study showing inflammatory signatures in
the serum samples of pediatric and adult SMA patients using Bio-Plex immune assays.
In addition, when patients were treated with nusinersen, not all measured cytokines were
reduced to the control level (Bonanno et al., 2022).

TLR2 is a membrane receptor that recognizes pathogen-associated molecular patterns
(PAMPs) derived from microorganisms [28,29]. Activation of those PAMPs results in the
activation of innate immunity [29]. Here, we describe a decrease in TLR2 transcripts in the
serum of non-responding and type 2 SMA patients, while in all other subgroups, TLR2 tran-
scription was unaffected. Furthermore, in cultured mast cells, pro-inflammatory cytokine
CCL5 was shown to reduce the expression of TLR2 [30], suggesting TLR2 transcription
downregulation in subgroups of SMA patients due to the enhanced CCL transcription as
observed for the same patient subgroups.

In addition to TLR2, we detected reduced transcript counts of AMIGO1 serum sam-
ples in the nR and type 2 patient subgroups, while in all other subgroups, AMIGO1 was
unaffected. AMIGO1 is an adhesion molecule involved in the fasciculation and myelina-
tion of developing axons [31]. In the nervous system of adults, AMIGO1 contributes to
regeneration and neuronal plasticity. In addition, it is known to regulate the gating char-
acteristics of delayed voltage-dependent potassium channels 2.1 (KV2.1) and 2.2 (KV2.2),
with importance for generating action potentials and neuronal excitability [32–35]. The
deletion of AMIGO1 or the reduction of its expression leads to reduced axonal guiding and
development in mice and zebrafish [36]. Such processes could contribute to the enhanced
disease severity of SMA type 2 patients. Therefore, due to its role in regeneration and
neuronal plasticity, the reduced transcription of AMIGO1 in non-responding patients could
prevent this group from gaining motor functionality after nusinersen treatment, assuming
AMIGO1 transcription to be crucial for therapeutic success. When comparing the findings
to published gene expression data of muscle biopsies from SMA type 3 patients, none of the
four presented genes were differently expressed, suggesting those secreted from the CNS
or the peripheral nervous system (PNS). However, in the muscle, genes belonging to the
same groups of signal transduction, transport, or cellular metabolism with similar mecha-
nisms have been shown to be altered [37]. A micro-array study could identify regulated
markers for immune response and cell cycle control in cultured muscle cells from SMA



Cells 2023, 12, 2374 14 of 17

type 2 patients [38]. CCL5, CA2, and TLR2 are also annotated with pathways and processes
related to the immune system [39–41].

We did not find a correlation of CA2, CCL5, AMIGO1, and TLR2 transcript counts
with motor function or improvement during treatment as measured with the HFMSE,
suggesting these genes can not serve as predictive disease progression markers. Surpris-
ingly, none of the genes described here were altered in their transcription exclusively in
responding patients, but in non-responders as well, suggesting a distinct transcription
pattern for this subgroup, defining a potential subset of prediction markers for therapeu-
tic success. Interestingly, under SMN-enhancing treatment, none of these transcription
changes were affected, suggesting those genes as potential SMN-independent targets to
support SMN-enhancing therapeutic strategies. In particular, CA2 is a likely candidate due
to the availability of approved inhibitory drugs such as the anticonvulsant topiramate [42].
This needs to be addressed in further studies. However, the presented findings could
contribute to a better understanding of the pathology of non-responding late-onset SMA
patients. Furthermore, the data presented here also suggest that while SMA patients can
be classified into different clinical phenotypes, the underlying pathomechanisms may be
more individual, complicating the identification of potential biomarkers for therapeutic
prediction. To overcome the current knowledge of the full complexity of SMA, studies
focusing on personalized medicine are necessary.

We compared the transcription profiles of individual SMA patients under baseline
conditions (T0) to identify distinct patient clusters based on genetic characteristics rather
than clinically defined phenotypes. Here, we identified two clusters of SMA patients with
significantly opposed gene transcription dynamics. These patients could be distinguished
by their genetic profiles but did not show significant differences in age, HFMSE motor score
under baseline condition, or a change in this score after nusinersen treatment. Nevertheless,
patients within cluster 2 tended to have higher HFMSE scores under baseline conditions but
lower ∆HFMSE scores after six months of nusinersen treatment, suggesting these patients
benefit less from this therapy option than patients associated with cluster 1.

In silico network and GO term analysis showed pathways enriched in cluster 1 and
cluster 2 patients, respectively. In particular, GO terms associated with mitochondria
function, regulation of locomotion, cell death, or responses to endogenous, external, or
extracellular stimuli are affected contrarily between patients of clusters 1 and 2. For
patients within cluster 1, pathways associated with dopamine receptor signaling could be
especially interesting.

In addition to network and GO term analysis, we performed in silico drug-finding,
focussing on the upregulated genes in each cluster. For cluster 1, approved drugs for 5 of
the 11 upregulated genes are available. Here, most drugs were found for DRD1, such as
haloperidol, tamoxifen, or amitryptiline, suggesting DRD1 as a potential target of interest
for additional therapeutic strategies. For cluster 2, approved drugs were found for two out
of four upregulated genes. Here, BCL2L1 could be targeted by drugs such as venetoclax.

These findings suggest an advantage of using individualized patient-based data for
therapy or biomarker studies, rather than pooled SMA subtype populations. By individ-
ually monitoring each patient profile, more differences or alterations could be identified,
which then leads to potentially individual-based approaches.

Our study demonstrates the use of free-circulating mRNA to pursue new avenues
in SMA-patient stratification. Using in silico analysis tools, we could identify patient-
individual gene transcription profiles and patient clusters based on genetics rather than
clinical phenotypes. Furthermore, potential new targets and drugs were determined to
complement current SMN-enhancing therapeutic strategies.

5. Conclusions

• There were detectable differences in gene transcript counts between the control and
SMA subtype serum samples and between individual SMA patients.
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• There was no alteration in gene transcript counts six months after nusinersen treatment,
suggesting the SMN-independence of identified genes.

• Analysis of individual SMA patients revealed more significant insights into pathologi-
cal mechanisms.

• In silico analysis can serve as a tool to identify drugs for complementing SMN-
enhancing therapies.
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