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Abstract: The global health concern posed by age-related visual impairment highlights the need
for further research focused on the visual changes that occur during the process of aging. To date,
multiple sensory alterations related to aging have been identified, including morphological and
functional changes in inner hair cochlear cells, photoreceptors, and retinal ganglion cells. While
some age-related morphological changes are known to occur in rod bipolar cells in the retina, their
effects on these cells and on their connection to other cells via ribbon synapses remain elusive. To
investigate the effects of aging on rod bipolar cells and their ribbon synapses, we compared synaptic
calcium currents, calcium dynamics, and exocytosis in zebrafish (Danio rerio) that were middle-aged
(MA, 18 months) or old-aged (OA, 36 months). The bipolar cell terminal in OA zebrafish exhibited a
two-fold reduction in number of synaptic ribbons, an increased ribbon length, and a decrease in local
Ca2+ signals at the tested ribbon location, with little change in the overall magnitude of the calcium
current or exocytosis in response to brief pulses. Staining of the synaptic ribbons with antibodies
specific for PKCa revealed shortening of the inner nuclear and plexiform layers (INL and IPL). These
findings shed light on age-related changes in the retina that are related to synaptic ribbons and
calcium signals.

Keywords: aging; retina; vision; ribbon synapses; electrophysiology; calcium dynamics; confocal
imaging; patch clamping

1. Introduction

Visual impairment represents a significant global health concern that affects millions of
people. The underlying causes of aging are intricate and involve factors such as abnormal
mitochondria, epigenetic alterations, elevated levels of reactive oxygen species (ROS),
and a reduction in the length of chromosomal telomeres [1–3]. Age-related changes are
particularly evident in the gradual loss of sensory systems such as hearing and vision [4]. In
the auditory system, age-related hearing loss is linked to the decline of inner hair cell ribbon
synapses and decreased hearing sensitivity, leading to decreased speech comprehension [5].
Hallmark changes to the visual system that specifically affect the retina include neuronal
loss in the macula, tissue thinning, increased retinal pigment epithelium, and reduced
visual function [3,6–8].

Of note, the decline in scotopic vision is much more evident than in cone-mediated
photopic vision, indicating that the rod pathway is more susceptible to the effects of aging
than cone-mediated vision [9]. Rod-generated signals pass to the inner retina via the rod
bipolar cell, and in diurnal Chilean Degu (Octodon degus), more significant age-related
degeneration was observed in a number of rod bipolar cells, dendrites, and terminals than
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in those of younger rodents [10]. Despite the extensive characterization of age-related
changes in the retina and sensory systems, functional changes in rod bipolar cells and their
ribbon synapses have not been deeply explored.

To better define the impact of aging on vision, we investigated the changes in the
function and morphology of rod bipolar cell ribbon synapses in zebrafish (Danio rerio).
Zebrafish are highly effective model organisms because they are easily maintained and
cost-effective, attain sexual maturity after 3–4 months, and yield 200–300 offspring on
a weekly basis [11]. Most importantly, when the protein-coding genes of zebrafish and
humans are compared, 71% of human genes have at least one orthologue in the zebrafish
genome, with 82% of human disease-related genes exhibiting homology with at least
one zebrafish gene [12]. The short life span of zebrafish provides a unique advantage to
studying the progression of aging using markers comparable to those used in humans. For
example, aged zebrafish often display spinal curvature, cognitive impairment, and visual
impairments such as cataracts [13,14].

The primary aim of the current study was to investigate age-related changes in the
function and morphology of rod bipolar cell ribbon synapses and synaptic ribbons from
zebrafish retinas. Our approach combined patch-clamp electrophysiology, high-resolution
calcium imaging, and semi-quantitative immunohistochemistry in the retinas of zebrafish
of the wild Indian karyotype (WIK) that were categorized as middle-aged (MA, 18-months-
old) or older-aged (OA, 36-months-old). These age groups were selected to align with
those used in previous studies that demonstrated detrimental sub-organismal effects of
aging in zebrafish [15–19]. Based on previously reported age correspondence, these age
groups correspond to human ages of approximately 38 and 75 years of age, respectively [20].
Bipolar ribbon synapses can transmit release signals for both tonic and phasic signals in
response to sustained depolarization [21–31]. Here, we focused primarily on comparing
the release properties to brief stimuli, local calcium signals, and synaptic ribbons in the MA
and OA zebrafish.

2. Materials and Methods
2.1. Zebrafish Rearing

Male and female middle-aged (18-month-old) and older-aged (36-month-old) zebrafish
were raised under a 14 h light/10 h dark cycle. Following dark adaptation to allow the
separation of the retinal epithelium from the retina, their retinas were dissected as described
below to isolate the retinal bipolar cells used to assess retinal structure and function, using
whole-cell patch-clamping, IHC, and cellular imaging. All methodological procedures were
performed in agreement with The University of Tennessee Health Science Center (UTHSC)
Guidelines for Animals in Research. All procedures, including euthanasia (rapid chilling at
4 ◦C followed by decapitation) and tissue extraction methods, were reviewed and approved
by the UTHSC Institutional Animal Care and Use Committee (IACUC; protocol #20-0170).

2.2. Retinal Bipolar Cell Isolation

Retinal bipolar cells were isolated from the harvested retinas using our established
protocols [32–34]. Briefly, the retinas were harvested from the eyecups of dark-adapted
zebrafish and treated with a saline solution containing 115 mm NaCl, 2.5 mm KCl, 0.5 mm
CaCl2, 1 mm MgCl2, 10 mm HEPES, 10 mm glucose pH 7.4, and 1100 units/mL type V
hyaluronidase (Worthington Biochemical Corp., Lakewood, NJ, USA) at 25 ◦C for 25 min.
The retinal pieces were washed with saline, incubated in saline containing 5 mm DL-cysteine
and 20~30 units/mL papain (Sigma-Aldrich, St. Louis, MO, USA), and gently triturated
using a fire-polished glass Pasteur pipette. The resulting dissociated cells were plated onto
glass-bottomed dishes in a saline solution containing 2.5 mm CaCl2. Mb1 ON-bipolar cells
were identified on the basis of their characteristic morphology in the light microscope.
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2.3. Bipolar Cell Voltage Clamp Recordings

Whole-cell patch-clamp recordings were made from bipolar cells that were acutely
dissociated, as described previously [32–34]. The patch pipette solution contained 120 mm
Cs-gluconate, 20 mm HEPES, 10 mm tetraethylammonium chloride, 3 mm MgCl2, 0.2 mm
N-methyl-D-glucamine (NMDG)-EGTA, 2 mm Mg-ATP, and 0.5 mm GTP. The pipette
solution was prepared with 35 ribbon-binding peptides (RBP) labeled with fluorescent
5-carboxytetramethylrhodamine (5-TAMRA) dye, custom ordered from LifeTein, LLC
(Somerset, NJ, USA), and a low-affinity calcium indicator dye, Cal 520™ (AAT Bioquest,
Inc., Pleasanton, CA, USA). Experiments designed to localize calcium signals to ribbon
sites used a pipette solution that contained EGTA at 2 mm or 10 mm or the selective
calcium chelator BAPTA at 2 mm. Calcium currents were evoked under a voltage clamp
using an HEKA EPC-10 amplifier controlled by PatchMaster software version v2x90.4
(HEKA Instruments, Inc., Holliston, MA, USA). For all recordings, the holding potential
was−65 mV and stepped to−10 mV for 10 ms. Membrane capacitance, series conductance,
and membrane conductance were measured using the sine DC method of the PatchMaster
lock-in extension and a 1600 Hz sinusoidal stimulus with a peak-to-peak amplitude of
10 mV centered on the holding potential [33]. The voltage clamp recordings were performed
by placing the patch pipette in the terminal. The average series and membrane resistance
for the voltage-clamp calcium current recordings were 36.5 ± 3.5 mΩ and 4.6 0.5 G Ω,
respectively, and the average resting membrane capacitance was 2. 27 ± 0.04 pF for MA
and 2. 73 ± 0.05 pF.

2.4. Laser-Scanning Confocal Microscopy

All fluorescence imaging was performed with a 60 × silicon objective (NA, 1.3) on
an Olympus FV-3000 laser-scanning confocal microscopy system (Olympus, Shinjuku,
Tokyo, Japan) or an Olympus IX-83 inverted microscope controlled by Olympus FV31S-
SW software (Version 2.3.1.163) with a Galvano scanner. Acquisition parameters, such
as pinhole diameter, laser power, PMT gain, scan speed, optical zoom, offset, and step
size were kept constant between experiments. Sequential line scans were acquired at
3.02 ms/line and 10 µs/pixel with a scan size of 256 × 256 pixels. The time of image
acquisition was confirmed via transistor–transistor logic (TTL) pulses between the FluoView
software version 1.23.2.205 and the PatchMaster software version v2x90.4 used for patch-
clamping (HEKA), in parallel with the voltage-clamp data.

2.5. Immunohistochemistry (IHC)

Eyes were harvested and sliced to visualize differences in the neuronal and ribbon
structures of middle-aged and older-aged zebrafish retinas. The eyes were washed in
phosphate-buffered saline (PBS), serially cryoprotected in PBS solutions containing in-
creasing concentrations of sucrose (10%, 20%, and 30%), and embedded in optimal cutting
temperature (OCT) medium (Fisher Healthcare, Houston, TX, USA). After being placed in a
Tissue-Tek Cryomold (Fisher Scientific, Pittsburg, PA, USA), the eyes were snap-frozen and
stored at−80 ◦C until use. They were subsequently cut with a Leica CM1850 cryostat (Leica
Microsystems, Bannockburn, IL, USA) at −12–−15 ◦C into 15 µm sections, which were
placed on Superfrost™ Plus microscope slides (Fisher Scientific) and allowed to dry at 25 ◦C
for 2 h. A PAP pen liquid blocker (Electron Microscopy Sciences, Hatfield, PA, USA) was
applied at the edges of the slides to create a hydrophobic barrier and air-dried for 15 min.
The slides were washed thrice with PBS, permeabilized, blocked with Perm blocking solu-
tion (0.3% Triton-X-100 and 5% donkey serum in PBS), and incubated at 4 ◦C for 2 h in a
hydrated chamber. The slides were incubated at 4 ◦C overnight with primary antibodies
(Table 1) that had been diluted in a blocking solution. After washing with PBS, secondary
antibodies conjugated to the indicated fluorophores (Table 2) were diluted 1:500 and ap-
plied to the slides, which were incubated at 25 ◦C for 2 h. The slides were washed once
with PBS-Tween, thrice with PBS, and once with distilled water. Coverslips were attached
using Prolong Diamond Antifade Mountant (ThermoFisher Scientific, Waltham, MA). IHC
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images were obtained with the aforementioned confocal microscope using the 60 × silicon
objective with 1–7 × FluoView software (version 1.23.2.205) zoom and 0.45 mm z-step size.
The acquisition parameters (laser power, PMT gain, scan speed, optical zoom, offset, step
size, and pinhole diameter) were kept constant for each experimental dataset. Imaging and
analysis were performed on the central retina across the group.

Table 1. Primary antibodies used for IHC.

Antigen Antiserum Host Dilution Source
(Number) Marker for

PKC Monoclonal
anti-PKC Mouse 1:250 Santa Cruz

(sc-17769)
Rod-type

bipolar cells

Ribeye-A Polyclonal
anti-ribeye Rabbit 1:1000 Zenisek lab

(s4561-2)
Synaptic

ribbons (IPL)

Table 2. Secondary antibodies used for IHC.

Antibody Conjugation Source (Number)

Donkey anti-guinea pig Cy3 Jackson Immunoresearch, #706-165-148

Donkey anti-mouse Alexa Fluor 647 Southern Biotech, #6440-31

2.6. Data Analysis

Initial data analysis was performed in FluoView and PatchMaster, and the data were
subsequently exported to Igor Pro (Version 8.04), Excel (Version 16.76), ImageJ (imagej.nih.gov
accessed on 7 July 2023), and Imaris 9.9 (Version 9.9.0; Bitplane, Zurich, Switzerland)
software for further analysis.

2.6.1. Analysis of x-t Scans

To visualize the local calcium signals, the consistent acquisition parameters in ImageJ
software (version 2.14.0/1.54f) were used to create a region of interest (ROI) that encom-
passed the ribbon (8 pixels, 331 nm), as described previously for tracking synaptic vesicle
dynamics [32,34]. Individual ∆F images for the data sets described were normalized to
the minimum value of ∆F for that image before generating averaged images.

2.6.2. Analysis of Ribbon Synapses

The quantitative analysis of synaptic ribbons was performed in ImageJ and Imaris
software. Images were deconvolved, and the manual cell counter plugins in ImageJ or
automated spots module in Imaris software (Imaris 64, 9.9.0) were used to count the number
of ribbons. Synaptic ribbon measurements were made using the surface rendering module
of Imaris software to obtain multiple measurements from the same ribbon, and the longest
length was used for between-group comparisons.

2.6.3. Statistical Analyses

Statistical significance was assessed by using two-tailed, unpaired t tests with unequal
variance using Microsoft Excel (Version 16.70) and Igor Pro 8 software (Wavemetrics, Lake
Oswego, OR, USA). Variance in estimates of the population mean is reported as ± sem.
Statistical significance of differences in average amplitudes of calcium current, capacitance,
synaptic ribbon size and number, and calcium transients were assessed using unpaired,
two-tailed t-tests with unequal variance.

3. Results

The bipolar ribbon synapses can transmit both tonic release and phasic release in
response to sustained depolarization and play an important role in signaling changes in
light intensity and overall luminance [21–31,35]. In this study, we primarily focused on

imagej.nih.gov
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comparing the brief release properties, local calcium signals, and synaptic ribbons. Notably,
we limited our study to OA animals with no spinal curvature or cataract-like cloudy lenses.

Aging in humans, as well as in experimental animal models such as rats, mice, and
zebrafish, is frequently associated with the gradual deterioration of sensory systems,
including hearing and vision [4–6,13]. We hypothesized that aging might affect the phasic
release properties in the terminals of bipolar cells and their ribbon synapses. Therefore, we
measured the capacitance of OA and MA rod bipolar cell terminals to monitor exocytosis in
response to evoked calcium currents with a pulse duration of 10 ms, which is sufficient to
release the phasic component with little contribution from the tonic component (Figure 1).
Shown are representative images of calcium currents and capacitance measurements for
the MA (Figure 1A) and OA groups (Figure 1B). The average currents (Figure 1C) and
membrane capacitance (Figure 1D) showed no changes between OA and MA groups,
indicating that total release is maintained in response to 10 ms steps. Indeed, exocytosis
efficiency shows no changes between OA and MA, supporting our findings that total
release is maintained in response to 10 ms steps (Supplementary Figure S1).

The synaptic ribbons are specialized organelles found in multiple sensory cells, includ-
ing the inner hair cells (IHCs) that are involved in the detection and amplification of sound
waves in the auditory system. Strikingly, aging results in a drastic loss of IHC synaptic
ribbons [5,36]. In the visual system, synaptic ribbons comprised primarily of the ribeye
protein play a crucial role in maintaining proper vision [37–39]. To examine whether aging
had any effect on the number or morphology of ribbon synapses in bipolar cell terminals,
we visualized the ribbons by patch clamp physiology and confocal microscopy. To do so, we
performed the whole-cell patch clamping of bipolar cell terminals of MA and OA zebrafish
(Figure 2A,B, respectively) using a patch pipette containing 35 mm TAMRA-labeled ribeye
binding peptide (TAMRA-RBP) as described [40] and localized the synaptic ribbons by
simultaneous fluorescence confocal microscopy, as we described previously [33,34]. We
observed a rapid increase in RBP fluorescence and bright fluorescent spots that indicated
the location of the ribbon.

The ribbons detected in these experiments were quantified in a series of z-axis optical
sections through the entire terminal using ImageJ and Imaris software, as described in
Materials and Methods. The surface module of Imaris software was used to generate
representative three-dimensional (3D)-reconstructed models of bipolar cell terminals from
MA or OA zebrafish, in which the ribbons were labeled with TAMRA-RBP (Figure 2C,D).
The mean total number of ribbons (mean values ± SEM) in a bipolar cell synaptic terminal
from OA fish (15.1 ± 0.9; n = 19 cells in seven animals; Figure 2E) was significantly lower
(p < 0.001) than those in the synaptic terminals from MA fish (37.7 ± 0.7; n = 19 cells in
seven animals; Figure 2E).

Interestingly, we also observed a significant increase (p < 0.001) in the length of
the synaptic ribbon (0.57 ± 0.01 mm; n = 227 ribbons) in the bipolar cell terminals of
OA zebrafish, relative to those in the bipolar cell terminals of MA fish (0.42 mm ± 0.01;
n = 300 ribbons, as shown in Figure 2F). These findings suggest that the bipolar cell termi-
nals of OA fish may compensate for the decreased number of ribbons by increasing the
lengths of the individual ribbons, or they could be an aging factor.

To determine whether the changes in the number and size of synaptic ribbons observed
in single Mb1 bipolar cells from OA zebrafish alter the morphology of the retinal inner
plexiform layer (IPL), we double immunostained retinal cryosections from MA and OA
zebrafish with fluorescently labeled antibodies specific for ribeye a and for the rod bipolar
cell marker protein kinase C (PKCα), as described [41–43]. The patterns of PKCα staining
in the retinas of MA and OA zebrafish are shown in Figure 3A,B, respectively. We found
that a mouse monoclonal anti-PKCα antibody (A-3; sc-17769) labeled a subset of ON-
bipolar cells with large axon terminals (Figure 3A, top panel, white arrow) and a separate
subset with smaller axon terminals (Figure 3A, top panel, white arrowhead) that ramify
the more proximal and distal parts of the IPL, respectively. Based on previous studies,
these two subtypes likely comprise (1) the BON s6L or RRod type of ON-bipolar cells that
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morphologically resemble the mixed-input (b1 or Mb; (hereafter we call Mb1)) ON-bipolar
cells of other teleost fish [41] and (2) the BON s6 type that contact the cones (named cone-
ON) [41,44,45]. Unlike the hexagonal shape of the bipolar cell soma we found in 5 dpf
zebrafish larvae [43], we observed a subset of PKCα-labeled bipolar cells from MA and
OA zebrafish that exhibited the pear-shaped morphology described for adult Mb1 rod
bipolar cells [46]. As expected, these appear to connect to the larger terminals of the Mb1-
type bipolar cells (Figure 3A, top panel, labeled with white # symbols). Thus, these cells
appear to be associated with both the scotopic (dark-adapted) and photopic (light-adapted)
pathways that involve rods and cones, respectively.
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Figure 1. Retinal bipolar cells isolated from old-aged zebrafish exhibited no changes in their brief release 

properties relative to middle-aged fish. (A,B) Ca2+ current (I) recorded from the synaptic terminal of a 

bipolar neuron isolated from middle-aged (MA; panel (A)) and older-aged (OA; panel (B)) zebrafish in 

Figure 1. Retinal bipolar cells isolated from old-aged zebrafish exhibited no changes in their brief
release properties relative to middle-aged fish. (A,B) Ca2+ current (I) recorded from the synaptic
terminal of a bipolar neuron isolated from middle-aged (MA; panel (A)) and older-aged (OA; panel
(B)) zebrafish in response to a voltage-clamp pulse (V) from −60 mV to −15 mV for 10 ms. The
sinusoidal voltage stimulus used to monitor membrane capacitance (Cm) and series conductance
(Gs) is visible at the beginning and end of the voltage trace. Below the traces are the resulting values
of Cm for MA (filled circles) vs. OA (open circles) fish and of Gs for MA (filled diamonds) vs. OA
(open diamond) fish before and after the activation of the Ca2+ current. (C,D) Average calcium
current (C) and capacitance (D) in response to a voltage-clamp pulse (V) from −60 mV to −15 mV
for 10 ms that was obtained from bipolar neurons of MA (A) and OA (B) zebrafish. n = 20 MA, seven
animals: n = 12 OA bpcs; nine animals. Individual values of Ca2+ current capacitance measurements
are shown in Supplementary Figure S2.
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Figure 2. The retinal bipolar cells isolated from older-aged zebrafish exhibit changes in the numbers
and length of their synaptic ribbons. (A,B) Representative two-dimensional projections of the bipolar
cell synaptic terminals from middle-aged (MA; panel (A); n = 19 cells in seven animals) and older-
aged (OA; panel (B); n = 19 cells in seven animals) zebrafish in which the synaptic ribbons were
labeled by voltage clamping with a whole-cell pipette, whose internal solution contained fluorescent
TAMRA-RBP peptides and was visualized by confocal microscopy. Scale bar, 2 µm. (C,D) Imaris-
generated three-dimensional (3D)-reconstruction of zebrafish bipolar cells whose synaptic ribbons
were labeled with TAMRA-RBP (red) and visualized as described above. Scale bar, 5 µm. (E,F) The
average number of ribbons (C) and the ribbon lengths (D) contained by zebrafish bipolar neurons
isolated from MA (A) or older-aged (B) zebrafish as described in Section 2.
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Figure 3. The morphology of bipolar cell ribbon synapses in the retinal IPL was altered in older-aged
zebrafish. (A,B) Transverse retinal sections from middle-aged ((A), left panels; n = 2~4 sections in
four retinas from two fish) and old-aged ((B), right panels; n = 2~4 sections in four retinas from two
fish) zebrafish were double immunostained with fluorescently labeled antibodies specific for the
rod bipolar cell marker PKCα (cyan; top panels) or ribeye a (red; middle panels); also shown is the
overlay of PKCα and ribeye a labeling (merge; bottom). Maximal intensity projections are shown,
and the relative positions of the INL and IPL are indicated. Scale bar, 20 µm. PKCα, protein kinase
C alpha; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Larger
(arrow) and smaller (arrowhead) are indicated in PKCα ribbon terminal morphologies in MA and
OA. # Denotes the pear-shaped soma characteristics of Mb1 rod bipolar cells with larger terminals.

The quantitative analysis of the PKCα-expressing subset of ON-bipolar cells revealed
distinct changes in the Mb1 vs. cone-ON bipolar cells and OPL-IPL laminar structure as
described below. First, there appeared to be fewer Mb1 bipolar cells in the retina of OA
zebrafish than in those from MA fish (MA 1.32 ± 0.1 vs. OA 0.48 ± 0.1 in a 370 mm2 region
of interest; n = 2~4 sections in four retinas from two fish; p < 0.001). However, we observed
no changes in the number of cone-ON bipolar cells in the OA versus the MA retinas (MA
7.18 ± 0.4 vs. OA 6. 78 ± 0.3 in a 370 mm2 ROI; n = 2~4 sections in four retinas from two
fish). Next, the soma size of the Mb1 bipolar cells from OA zebrafish was significantly
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larger (p < 0.006) than the average length of the long axis of Mb1 bipolar cells from MA
fish (MA 9 ± 0.2 mm vs. OA, 12.3 ± 0.3 mm; n = 2 four retinas from two fish), while
we observed no differences in the size of cone-ON bipolar cells isolated from MA or OA
zebrafish (MA, 6.2 ± 0.2 mm vs. OA, 6.0 ± 0.2 mm; n = 2~4 sections in four retinas from
two fish).

Interestingly, the IPL that encompasses the axon length and terminal area of the
Mb1 and cone-ON bipolar cells was significantly thinner (p < 0.001) in OA zebrafish than
that in the MA fish (Mb1: MA, 60.5 ± 1.62 mm, OA, 44.5 ± 0.9 mm vs. Cone-ON: MA,
44.9 ± 1.3 mm, OA, 32.35 ± 1.5 mm, n = 2~4 sections in four retinas from two fish), as
shown in Figure 3A,B. The quantification of retinas stained with ribeye a-specific antibodies
revealed that the IPL ribbon clusters were significantly shorter (p < 0.007) in the OA
zebrafish than that in the MA fish (MA, 37.2 ± 2.4 mm vs. OA, 25.5 ± 0.7 mm; n = 2~4
sections in four retinas from two fish), as shown in Figure 3C,D. In contrast, we observed
no differences in the colocalization area of the ON bipolar cells stained for PKCα and ribeye
a in OA and MA fish (MA, 10.3 ± 1.9 mm vs. OA, 10.9 ± 1.1 mm; n = 2~4 sections in four
retinas from two fish). These findings suggest that the substantial changes observed in the
INL and IPL of OA zebrafish can be correlated with the Mb1 rod bipolar cells that govern
scotopic information.

Ca2+ influx in bipolar cells has been shown to occur preferentially in the ribbons [33,47,48].
Thus, to explore any functional implications associated with the observed changes in the
number and size of synaptic ribbons observed in single Mb1 bipolar cells, we conducted
patch-clamping experiments and compared local calcium signaling of a single ribbon as we
described previously (Materials and Methods) [33]. Briefly, bipolar-cell terminals were filled
via a whole-cell patch pipette with TAMRA—RBP to mark ribbons and the low-affinity
calcium indicator, Cal520LA, (AAT Bioquest Inc., Pleasanton, CA, USA) to monitor changes
in [Ca2+]i using rapid x-t line scans at ribbon locations from MA and OA Mb1 bipolar cells
(Figure 4A,B). The excitation laser was scanned along the line defined perpendicular to the
plasma membrane at a ribbon, extending from the extracellular space to the cytoplasmic
region beyond the ribbon at a rate of 3.1 ms per line.

Figure 4A,B shows individual examples of Cal520LA fluorescence intensity vs. time
(horizontal axis) and distance (vertical axis) at a ribbon location, together with RBP fluo-
rescence, to indicate the position of the ribbon along the scanned line obtained from MA
and OA Mb1 bipolar cell synaptic terminal. Data points in Figure 4C,D are the spatially
averaged intensity in each scan line across three 10 ms depolarizations (onset at arrow) at
ribbon locations. In MA Mb1, during the stimulus, fluorescence rose more rapidly and to
a higher level at the ribbon than that of OA, indicating that the number of calcium chan-
nels clustered at the ribbon in OA is likely to be altered. After depolarization terminated,
Cal520LA fluorescence at the ribbon quickly collapsed to the same basal level of Ca2+.
These results provide evidence for changes in the local domain of high Ca2+ driving rapid
vesicle fusion, specifically at the ribbon location in OA Mb1 rod bipolar cells.

Studies in retinal bipolar neurons have used exogenous calcium chelators such as
ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and 1,2-bis(o-
aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) to localize the Ca2+ signals to
near the Ca2+ entry [30,47–52]. Thus, to investigate the ribbon-associated calcium signals
in the Mb1 bipolar cells from MA and OA zebrafish, we increased the EGTA concentration
in the pipette solution to 2 mm or 10 mm or included 2 mm BAPTA and compared the
local calcium signals, as described for Figure 4. EGTA binds calcium slower but has a
higher affinity for Ca2+ than Cal520LA and, thus, is expected to compete poorly with the
fast-binding Ca2+ indicator initially as Ca enters the cell but is expected to outcompete
the indicator at equilibrium. Because of this, Cal520LA signals in the presence of excess
EGTA preferentially reflect signals near Ca2+ channels [33,47]. We found that, at both
concentrations of EGTA, OA fish showed lower calcium transients than MA fish (Figure 5A–
D). BAPTA, which is both a fast and high-affinity buffer, nearly eliminated the local calcium
transient in the MA bipolar cell terminal (Figure 5E) and OA bipolar cell terminal (Figure 5F).
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These findings suggest that aging is accompanied by changes in the local calcium transients
at individual bipolar synaptic ribbons, likely due to the mislocalization of calcium channels.
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Figure 4. The ribbon synapses in the Mb1 bipolar cells from older-aged zebrafish exhibited altered
Ca2+ responses after brief depolarization. (A,B) The x-t plots show the Cal520LA fluorescence
intensity (green staining in the right section of each plot) at a single ribbon location as a function
of time (horizontal axis); RBP-TAMRA fluorescence (red staining in the left section of each plot)
indicates the position of the ribbon along the scanned line, while the darker region at the top of each
plot is the extracellular space. White arrows indicate the timing of depolarization. (C,D) Spatially
averaged Cal520LA fluorescence as a function of time at Mb1 bipolar cell ribbon from middle-aged
(MA; panel (C)) or older-aged (OA; panel (D)) zebrafish. Shown is the average intensity (±SEM) in
each horizontal row of pixels for three separate 10 ms depolarizations with similar calcium currents
(41 ± 4 pA; n = 3 cells; three fish). Fluorescence intensity was normalized by the baseline fluorescence
before stimulation by averaging over all pixels (i.e., over space and time) and dividing by the baseline
fluorescence (Fmin). The red arrow indicates the onset of the 10 ms depolarizing stimulus.
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ribbon were altered in older-aged zebrafish. (A,B) Average Cal520-2LA fluorescence at ribbon
locations in response to 10 ms depolarization in Mb1 bipolar cells isolated from middle-aged (MA; left
panels; n = 3 ribbons from 3 cells and fish) and older-aged (OA; right panels; n = 3 ribbons from 3 cells
and fish) zebrafish with pipette solution containing 2 mm EGTA. Shown is the change in fluorescence
(∆F) from baseline before stimulation, divided by the baseline fluorescence (Fmin). (C,D) Same as in
(A,B), except that the pipette solution contained 10 mm EGTA. (E,F) Same as in A-B, except that the
pipette solution contained 2 mm BAPTA. Red arrows indicate the time of pulse stimulation.

4. Discussion

The visual decline often associated with aging impacts the morphology and overall
function of the retina, inner hair cells, horizontal cells, retinal ganglion cells, Müller glial
cells, and photoreceptors [5,53–55]. Some age-related morphological changes have also
been observed in rod bipolar cells using different animal models, as described below.
The zebrafish model is appropriate for aging studies because these animals share a 70%
genomic similarity with humans, and their short life span provides the unique ability to
study the progression of aging since they often display aging markers that are similar
to those observed in humans, including spinal curvature, cognitive decline, and visual
impairment. To the best of our knowledge, this is the first study to examine the changes in
the retinal bipolar cells of older-aged (OA) zebrafish.

We found that the number of synaptic ribbons in bipolar cells isolated from OA
zebrafish retina was reduced but that the ribbons that were present exhibited an increased
length, suggesting a compensatory mechanism for the decreased number of ribbons in the
bipolar cell terminals of OA, or they could be consequences of aging. We also detected a
significant reduction in the synaptic ribbon expressed in the IPL in the OA zebrafish retina,
as detected by staining with antibodies specific for the ribbon protein ribeye a. Antibodies
specific for protein kinases α (PKCα) and β (PKCβ) have been used to identify retinal
ON-bipolar cells in different species [56–64]. PKCα is broadly used as a marker for rod
bipolar cells in mammals and the corresponding mixed-type ON-bipolar cell (Mb1) in
teleost fish, including zebrafish [41,42,56–64]. The PKCα antibodies we used for our IHC
assay detected two populations of bipolar cells differentiated by the size of their axon
terminals (large and small) in the retinas of both MA and OA zebrafish that are likely to
correspond to the BON s6L ON-bipolar cell that is identical to the Mb1/RRod cell that
contacts only rods and the BON s6 ON-bipolar cell type that contacts cones, as described
previously [41,44,45]. The quantitative analysis of the IHC assay data showed a significant
loss of Mb1 but not of cone-ON bipolar cells. However, we found that the sizes of the soma
and terminals of Mb1, but not cone-ON bipolar cells, were larger in bipolar cells from OA
fish than those from MA fish, while the length of both Mb1 and cone-ON bipolar cells was
significantly reduced in the OA zebrafish retina. These data show substantial alterations
on PKCα labeled ON bipolar cells and IPL ribbon structures that are associated with the
older fish population. Of note, the resting capacitance for OA zebrafish is higher than MA
is consistent with our findings that the size of soma and terminals are larger in OA. We
believe that it reflects the fact that fish retinas grow throughout the life of the animal, and
the cells probably just get larger as part of this.

In humans, aging is related to an overall reduction in the thickness of individual
retinal layers, except for the foveal retinal nerve fiber layer (RNFL) and the inner and outer
segments of the photoreceptors, which significantly increase with age [65]. The thickness
of the mouse retina decreases by 15% with age but is compensated for by a corresponding
15% increase in the retinal area [6]. In the same study, the size and complexity of overall
arborization decreased with age, as did connections in the IPL across different synaptic
types [6]. Importantly, rod bipolar cell dendrites behaved differently with age, expanding
out of the OPL and into the ONL [6]. A different study of the mouse retina observed
that, while the rod bipolar cells of younger mice are restricted to the OPL, those of old
animals extend into the ONL [66]. On the contrary, in diurnal Chilean Degu (Octodon
degus), significant age-related degeneration was observed in rod bipolar cell dendrites,
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which became retracted, more flattened, and less branched with advanced age [10]. The
rod bipolar cells of older Chilean rodents are also reduced in density, with significantly
smaller terminals than in those of younger rodents [10].

As we described, our observations matched the previous mouse findings of retinal
layer thinning, with the IPL becoming significantly reduced in the aged zebrafish. Similar
to in the diurnal Chilean rodents, aged zebrafish rod bipolar cells were reduced in number
and exhibited significantly lesser branching than those from younger fish. However, unlike
the Chilean rodents, zebrafish showed an increase in the size of both the terminals and the
soma of rod bipolar cells. Our observations may present an indication that, while aging
contributes to the progressive degradation of rod bipolar cells and the integrity of retinal
layering, the individual cells manifest a significant degree of plasticity, which we interpret
as an attempt to compensate for the reduction in the overall size of the structure. We also
observed a similar pattern in the number and size of synaptic ribbons within the terminals of
rod bipolar cells. Aged zebrafish display fewer synaptic ribbons in the terminals of their rod
bipolar cells, which possess greater lengths than those of their middle-aged counterparts.
Synaptic ribbons are essential for synaptic transmission in sensory systems [37–39,67,68]
and are attached to the presynaptic plasma membrane close to voltage-gated calcium
channels, and they tether multiple synaptic vesicles [52,69–78]. In the aging human retina,
swollen and floating synaptic ribbons are accompanied by abnormal sphere-shaped ribbon
synapses in parafoveal cone terminals [54]. Studies on the mouse cochlea report that the
number of ribbons in inner hair cells was significantly reduced with aging but that the loss
of the synaptic structures was accompanied by a compensatory increase in the volume of
the remaining ribbons [5]. Similar to the observations made in other cell types, we observed
that the age-related loss of ribbon structures was accompanied by an increase in length. As
previously described, this balance suggests a possible compensatory mechanism that might
account for the conservation of normal retinal function despite these age-related alterations.

Our live imaging of local calcium signals at a single synaptic ribbon showed that the
amplitude of calcium signals was significantly lower in OA than in MA zebrafish. Despite
these local changes at a single ribbon, we found no overall changes in the evoked calcium
current and brief release properties measured as a function of capacitance. These findings
suggest the possible existence of as-yet unknown compensatory mechanisms that might
help compensate for the loss of ribbons in OA zebrafish. Of note, individual Mb1 bipolar
cells signal to multiple post-synaptic cells via synapses with different kinetics [28,30], and
circuit function may be altered despite the lack of change in total fast release. In mice, aging
results in the enlargement of presynaptic auditory ribbons, similar to those we reported
here, and such change is accompanied by increases in presynaptic calcium signaling related
to a stronger sustained exocytotic response [36]. In other studies, although the inner
hair cells of aging mice contain fewer but larger ribbon synapses, the size and kinetics
of exocytosis and vesicle replenishment are unaffected by age [5]. The lack of changes in
calcium currents in aged fish in response to brief pulses suggests that the number of calcium
channels in the terminals of the rod bipolar cells may remain relatively constant between
the age groups we examined. Likewise, the unchanged capacitance measurements and
exocytosis efficiency suggest that the number of vesicles that are fused during exocytosis is
also likely to remain consistent. We found that the exocytosis efficiency in MA zebrafish for
brief stimuli (0.98 ± 0.14) is lower compared to previous findings that reported hair ribbon
synapses in larval zebrafish in response to longer/sustained stimuli, approximately ~1.42.
These differences could be due to differences in the age of the fish, pipette solution, calcium
channel subunits, number of vesicles associated with synaptic ribbons, and strength of
stimuli. In light of the crucial role played by ribbons in synaptic transmission and our
observed decrease in the number of ribbon structures in the terminals of rod bipolar cells
and the local calcium transient, we expected to detect functional changes in the retinas
of the older-aged zebrafish. However, it is plausible that the lengthening of the existing
structures compensated for the reduced number of ribbons and led to an increase in the
number of synaptic vesicles tethered near the membrane on the remaining ribbon(s), which
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could explain the lack of changes in exocytosis we observed. Another possibility is that, in
the OA fish, synaptic vesicles may exhibit a higher affinity for calcium than those in the
MA fish, resulting in the pattern of responses to stimulation we detected in the MA fish.
This could indicate the existence of an adaptive mechanism in older fish, in which they
might, for example, require a lower amount of calcium to maintain regular functioning
than would a younger zebrafish.

Although we found that the global calcium currents in aged zebrafish remained
unchanged, we detected a significant decrease in the local calcium transients that we
hypothesized is associated with aging. Calcium dynamics are essential for vesicle release
and regulate distinct steps in the process. Thus, we measured calcium levels via a calcium
transient that reflects localized calcium levels near the proximal region of the ribbon and
analyzed the effect on calcium dynamics by adding EGTA or BAPTA to the cell during
patch clamping. These buffers are calcium chelators that compete with endogenous calcium
sensors, thereby reducing the free calcium concentration of the sensor [28,30,79]. EGTA
and BAPTA have similar binding affinities for calcium but different kinetics, with BAPTA
binding calcium approximately 40 times faster than EGTA [79]. While previous studies
defined the overall structural changes and functional responses of ribbon synapses in
aging [5,10,36,53,80,81], to the best of our knowledge, our study is the first to report
the effect of aging on local calcium dynamics. In the presence of EGTA, we observed a
significant reduction in local calcium transients in aged fish relative to middle-aged fish.
These findings suggest that the local calcium concentration is significantly lower in aged
fish. Given that the calcium current remains unaltered between the age groups we studied,
this observation supports the possibility that calcium channels might not be clustered at
the ribbon’s proximal region but instead could be distributed extrasynaptic. This more
even distribution of calcium channels could contribute to the continued function of the
ribbon synapses, even in the presence of locally altered calcium dynamics.

Given that we detected local changes in the rod bipolar cells of aging zebrafish, the
observed alterations in vision may be attributed to other factors that might differ between
middle-aged and older-aged retinas, for example, proteins or non-ribbon release mecha-
nisms. Extensive studies from various species, including goldfish, mice, and salamanders,
demonstrated that, while brief stimuli primarily trigger events close to the ribbons, sup-
plemental vesicle release also occurs at more distant regions, where both ribbon and non-
ribbon release sites are used [22,47,68,82–84]. Within the cells we tested, we hypothesized
that in older fish, the cells we examined may possess a greater ability to receive support
from non-ribbon release sites during brief stimulation than middle-aged fish. Although
sustained depolarization intensifies non-ribbon release due to calcium spreading through-
out the terminals, even brief stimulation could contribute to an additional non-ribbon
release [84], which lends support to our hypothesis. Another potential factor influencing
the observed local changes is the presence of different synaptotagmin (Syt) isoforms in
bipolar cells [85,86]. For example, Syt7 is selectively crucial for asynchronous and delayed
release triggered by calcium but not for calcium-dependent replenishment in retinal rod
bipolar cell synapses [85]. In aged fish rod bipolar cells, alterations in the expression levels
or activity of Syt7 could lead to changes in the timing or magnitude of asynchronous release,
which would help to explain the local changes in synaptic vesicle release that we observed.

Because zebrafish live approximately three years in the laboratory setting, the sub-
sequent limited availability of aged fish for experimentation constrained the types of
experiments and numbers of trials that could be performed. For example, we focused
on experiments with brief individual pulses (10 ms), which would address only the re-
lease of the proximal vesicle pools within the ribbon. Additionally, while the regenerative
abilities and constant growth of zebrafish [15] might render such studies less applicable
to humans, these regenerative abilities decrease with age [87]. If the observed changes
were significant in an animal with regenerative capability, the effects might be even more
pronounced with aging in a species that lacks such capacity, perhaps resulting in clearer
signs of visual impairment. Further, in zebrafish and goldfish, ribbons from bipolar cells
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and photoreceptors are known to disappear at night and reappear in the morning. This
diurnal synaptic plasticity of ribbons with circadian rhythm may become impaired with
age [88]. It will be interesting in the future to examine whether this putative impairment
may thus cause the effects of aging.

The reduction of IPL observed in our studies has also been reported during pathology.
For example, in Parkinson’s disease, the GCL-IPL complex of the macula demonstrated
thinning even in the earliest stages [89]. Of note, the loss of synaptic ribbons and changes in
the synaptic ribbons are likely to alter synaptic counterparts, as discussed previously in hair
cell ribbon synapses. For example, in goldfish, repetitive activation of Mb1 cells was shown
to rapidly augment the synaptic strength of a subgroup of amacrine cell synapses [90].
Further, in zebrafish hair cells, loss of synaptic ribbon terminal responsiveness following
AMPA exposure was demonstrated due to the loss of postsynaptic dysfunction [91]. Finally,
calcium dysregulation is a common factor altered in any age-related disease, particularly in
Alzheimer’s brains and retinas [92–94]. Thus, the altered calcium we see in normal aging
can likely alter vision.

To gain a more comprehensive understanding of the effects of aging on vision and to
define their mechanisms, future studies will explore the effects of different pulse durations
and more complex pulses on calcium dynamics. Finally, future studies that explore the
roles of synaptotagmins, other proteins, and non-ribbon mechanisms related to aging
processes will provide deeper insights into the complex calcium dynamics involved in
aging and vision.

5. Conclusions

We showed that zebrafish of advanced age acquired changes in their synaptic rib-
bon structure and local calcium dynamics, thereby providing valuable insight into the
morphological and functional alterations in the aging retina, specifically in rod bipolar
cells and their ribbon synapses. These findings suggest that, while normal aging may not
significantly impact the deterioration of vision, there may be more complex visual changes
occurring that contribute to the visual impairment observed in human adults. The subtle
changes we observed may have significant implications for disease models in which such
alterations may be amplified, potentially resulting in visual impairments. The present
study contributes to the growing knowledge of aging-associated changes in the visual
system and will facilitate further studies to explore the implications of calcium regulatory
mechanisms for age-related visual disorders.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells12192385/s1, Figure S1: Retinal bipolar cells isolated from old-aged
zebrafish exhibited no changes in their exocytosis efficiency relative to middle-aged fish. Exocytosis
efficiency, obtained from the ratio of capacitance jump to Ca2+ current charge with pipette solution
containing 0.2mM EGTA. N = 20 MA, seven animals: N = 12 OA bpcs; nine animals. Figure S2:
Retinal bipolar cells isolated from old-aged zebrafish exhibited no changes in their brief release
properties relative to middle-aged fish. A. Ca2+ current (I) recorded from the synaptic terminal
of a bipolar neuron isolated from middle-aged (MA, black-filled circle) and older-aged (OA, gray-
filled circle) zebrafish in response to a voltage-clamp pulse (V) from −60 mV to −15 mV for 10
ms. Note: Each point represents in-dividual calcium currents obtained from the same cell multiple
times or different cells. The average calcium current is represented in red circles. B. Capacitance
in response to a voltage-clamp pulse (V) from −60 mV to −15 mV for 10 ms that was obtained
from bipolar neurons of MA (A, black-filled circle) and OA (B, gray-filled circle) zebrafish. Note:
Each point represents individual capacitance measurements obtained from the same cell multi-
ple times or different cells. The average capacitance measurements are represented in red circles.
N = 20 MA, seven animals: N = 12 OA bpcs; nine animals.
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