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Abstract: Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby
the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly
effective, a relatively common complication named posterior capsular opacification (PCO) leads to
secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens
epithelial cells (LECs) that were not removed during the surgery, which results in interruption to
the passage of light. Despite technical improvements to the surgery, this complication has not been
eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO
development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous
for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased
and unbiased approaches, we identified small molecules that can block the lens phenotype of the
mutants. Our findings confirm the relevance of zebrafish plod3 mutants’ lens phenotype as a model
for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that
contribute to the development of this pathology. This understanding should help in the development
of strategies for PCO prevention.

Keywords: zebrafish; plod3; Lysyl hydroxylase 3; cataract; posterior capsular opacification; small
molecule screen; Erlotinib; 4-PBA

1. Introduction

Transparency of the ocular lens is critical for normal vision, and when compromised,
results in cataract, one of the leading causes of blindness for many millions of people
worldwide [1]. The only treatment for cataract is surgical removal of the impaired lens from
its capsule, a thick basement membrane that surrounds the lens, followed by insertion of a
synthetic lens into the remaining capsular bag [2]. The most common complication of this
widely used procedure is posterior capsular opacification (PCO) that leads to secondary
visual impairment [3]. PCO occurs when residual lens epithelial cells (LECs) that remain
firmly attached to the capsule migrate to the posterior capsule where they can form two
types of pathologies, fibrotic PCO and pearl PCO. In fibrotic PCO, LECs undergo an
epithelial–mesenchymal transition (EMT), forming plaques of fibroblastic/myofibroblastic
cells that cause lens capsule wrinkling, eventually distorting the passage of light along
the visual axis [3,4]. Pearl PCO, also referred to as regenerative or regeneratory PCO,
is very common and causes most vision loss post cataract surgery [5,6]. In pearl PCO,
residual LECs generate globular structures named Elschnig pearls, thought to be the result
of aberrant differentiation towards a lens fiber cell fate. These structures can significantly
interfere with vision if they accumulate on the visual axis [7]. Both types of lens epithelial
pathologies are also observed in another primary form of cataract, anterior subcapsular
cataract (ASC) [3,4]. To date, the main PCO preventative strategy has been to try to eliminate
all epithelial cells from the capsular bag; however, this has not proven effective with most
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methods, inducing other serious ocular problems [4,8,9]. An alternative approach is to
devise molecular strategies to stabilize the lens epithelial cells in order to maintain the
normal epithelial phenotype and prevent cataractous changes.

Most studies addressing molecular aspects of PCO development and prevention
are conducted using in vitro systems, including cell culture and tissue explants [10,11].
In vivo models for PCO include transgenic (Tg) mice, genetically engineered to overexpress
transforming growth factor β (TGFβ), specifically in the lens [12]. Recently, we have shown
that zebrafish embryos homozygous for loss of function mutations in plod3, which encodes
for the collagen-modifying enzyme lysyl-hydroxylase 3 (Lh3), fail to generate a normal
lens capsule. This failure is likely due to the inability to properly modify Collagen IV,
a major and critical component of basement membranes. Homozygous mutant larvae
develop round cellular masses of partially differentiated lens fiber cells from the lens
epithelium. The development of these masses resembles that of pearl PCO and ASC, and
can therefore serve as an in vivo model for spontaneous development of lens epithelium-
derived cataracts [13]. Importantly, human patients with reduced Lh3 function present
with childhood cataracts; however, these have not been characterized [14].

In all models described above, aberrant TGFβ signaling was shown to drive the
development of the lens epithelial pathologies [13,15–17]; however, because of its normal
role in the eye, inhibition of TGFβ signaling cannot readily be used for prevention of PCO
and therefore other therapeutic strategies must be identified.

In this study, we continued to use zebrafish plod3 mutant embryos in search of molec-
ular strategies to prevent the development of cell masses in mutant lenses, given their
similarities to pearl PCO. We took two approaches to look for compounds that can inhibit
development of cell masses from LECs: (1) a biased, knowledge-based approach based on
the cellular abnormalities we expect from the loss of Lh3 activity and from a group of cells
that exhibit increased growth; (2) an unbiased, discovery-based approach based on screen-
ing small molecule libraries. We found two small molecules that efficiently inhibit the lens
phenotype, namely 4-Phenylbutyric acid (4-PBA), an ER stress and HDAC inhibitor, and
Erlotinib, an epidermal growth factor receptor (EGFR) inhibitor. We further showed that
the mTOR inhibitor rapamycin is not an efficient inhibitor of the pearl PCO-like phenotype.
Our findings strengthen the link between the zebrafish lens phenotype and PCO in humans
and contribute knowledge regarding the molecular and cellular abnormalities that promote
the development of this lens epithelium-derived pathology. Hence, zebrafish plod3 mutants
can serve as an additional in vivo model in research and development of treatments for
prevention of PCO.

2. Materials and Methods
2.1. Fish Lines

plod3vu222 and plod3tv205 have been described [13,18]. plod3vu222 mutation is hypomor-
phic and was used for most experiments, as it better represents the situation in humans
with reduced Lh3 function, given that complete loss of Lh3 function is lethal. plod3tv205

embryos that are homozygous for a null mutation were used in the small molecule screen
as their more severe phenotype helped in scoring rescue during the screening process. Fish
were maintained under standard conditions as described in “The Zebrafish Book” [19].

2.2. Small Molecule Screen and Treatments

For the chemical screen, we used aliquots of two small molecule libraries that were
purchased from Karlsruhe Institute of Technology (KIT), Germany. The first, Enzo Screen-
Well FDA approved drug library V2 (BML-2843), contained almost 800 FDA-approved
drugs, and the second, Enzo Screen-Well ICCB Known Bioactives library (BML-2840),
contained 472 biologically active compounds.

One compound was added into each well after 1:300 dilution in a total of 300 µL
egg water (“Instant Ocean” salt, 0.3 g/L reverse-osmosis-treated H2O) containing 0.003%
N-phenylthiourea (PTU #P7629, Sigma-Aldrich, St. Louis, MO, USA). Four wells in each
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plate were treated with DMSO at a 1:300 dilution to serve as negative controls. Since
the concentration of almost all compounds in the libraries we used was 10 mM, the final
concentration of the compounds was typically 33.3 µM (except in very few cases where
the original concentration was 1 mM or 5 mM). Embryos were raised at 28.5 ◦C and the
solution of the compound was replaced with a fresh one after 24 and after 48 h. Larvae
were assessed for rescue of the lens phenotype at 3 and 4 days post-fertilization (dpf). The
researchers performing the screen were not informed about the identity of the compounds
at the time of the screen.

The following small molecules were also used: SB-431542 (sc-204265, Santa Cruz,
Dallas, TX, USA) at a final concentration of 100 µM in egg water with 0.003% PTU and
0.1% DMSO; 4-PBA (P21005, Sigma) at a final concentration of 50 µM in egg water with
0.003% PTU; Erlotinib (SML2156, Sigma) at a final concentration of 9.2 µM in egg water
with 0.003% PTU and 0.2% DMSO; rapamycin (sc-3504, Santa Cruz) at a final concentration
of 25 µM in egg water with 0.003% PTU and 0.1% DMSO.

In experiments for determining the time window in which a specific compound is
needed, each “time frame experiment” was conducted at least twice with a total of 50 or
more lenses evaluated in each experimental group.

2.3. Histology and Immunohistochemistry

Histology using plastic sections was performed by fixing larvae with 4% paraformalde-
hyde (PFA) overnight at 4 ◦C, subsequent washing with PBT, dehydration in EtOH series
and embedding in JB4 resin (Polysciences, Inc., Warrington, PA, USA) according to the man-
ufacturer’s instructions. We used LKB8800 Ultratome III microtome to cut 4 µm sections,
which were stained with methylene blue-azure II [20].

We performed immunohistochemistry on cryosections. Following larvae fixation with
4% PFA overnight at 4 ◦C, larvae were washed with PBT, gradually transferred to 100%
MeOH and kept at −20 ◦C. Subsequently, larvae were rehydrated with PBT and gradually
transferred to 20% sucrose in 0.1 M phosphate buffer pH 7.4, incubated overnight at 4 ◦C
and then embedded in 1.2% agarose + 5% sucrose in H2O. Agarose blocks were kept in 30%
sucrose overnight at 4 ◦C and then frozen using 2-methylbutane on liquid nitrogen. We
cut 16 µm sections, which were placed on Superfrost™ Plus microscope slides (Thermo
Scientific, Waltham, MA, USA) and dried overnight at room temperature. Slides were
washed with PBS, fixed with 4% PFA at 4 ◦C for 20 min, washed again with PBS, followed
by 1 h blocking in 20% PHT (20% goat serum, 0.5% Triton X-100 in PBS) or 10% goat serum
+2% BSA in PBT. Subsequently, sections were incubated with primary antibody overnight
at 4 ◦C in 1% PHT (1% serum, 0.5% Triton X-100 in PBS) or 10% goat serum +2% BSA in
PBT, then washed with 1% PHT or PBT for 30 min at room temperature. Incubation with
secondary antibody followed, for 0.5–1.5 h at room temperature or 37 ◦C, and then washing
with 1% PHT or PBT for 30 min and mounting in 50% glycerol or Fluoroshield Mounting
Medium with DAPI (ab104139, Abcam, Cambridge, UK).

All antibodies used in this study had been previously published and validated in
zebrafish. Primary antibodies used were: rabbit anti-phospho-Smad3 (1:200) (ab52903,
Abcam), rabbit anti-Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (1:200) (#9101, Cell
Signaling, Danvers, MA, USA), rabbit anti-Phospho-S6 Ribosomal Protein (Ser240/244)
(1:300) (Cell Signaling #2215), and monoclonal antibody 5E11 (1:200) (a kind gift from
Prof. Jim Fadool, Florida State University, USA). Secondary antibodies were from Jackson
ImmunoResearch: Alexa Fluor 647 AffiniPure donkey anti-rabbit IgG (H + L) (1:400), Cy3
AffiniPure donkey anti-rabbit IgG (H + L) (1:250), or Alexa Fluor 647 AffiniPure donkey
anti-mouse IgG (H + L) (1:250).

2.4. Imaging

Imaging was performed using a Zeiss LSM 700 confocal system and Axio Imager
M2 compound microscope, or with a Discovery.V8 stereoscope and AxioCam MRc digital
camera (Zeiss, Oberkochen, Germany). To avoid interference by pigmentation, embryos
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were raised in the presence of PTU from approximately 22 hpf. For live imaging, we
mounted embryos in 0.5% low-melting-point agarose (#50101, Lonza, Basel, Switzerland)
in 30% Danieau’s solution (1740 mM NaCl, 21 mM KCl, 12 mM MgSO4·7H2O, 18 mM
Ca(NO3)2, 150 mM HEPES buffer) and 0.01% tricaine.

2.5. Data Quantification and Statistical Analyses

To quantify changes in rough endoplasmic reticulum width, we used ImageJ 1.43u
software [21] and measured at least 25 sites in 3–4 different cells from two different embryos
for each cell type and genotype. Statistical analysis was performed using 1-tailed Student’s
t-test.

For quantification of the effect of small molecule treatments, we classified lens position
in experimental groups, relative to the position of the lens in age-matched normal larvae,
as either normal, outside or inside (closer to the retina) (Figure S1). We used χ2 statistics to
test for goodness of fit.

3. Results
3.1. Evidence for Rough Endoplasmic Reticulum Abnormalities in Lens Epithelium and
Presumptive Cornea of plod3 Mutants

Our model of lens epithelium-derived cataract in zebrafish larvae was based on a
mutation that causes loss of function in the collagen-modifying enzyme Lh3. Interference
with the activity of Lh3 was expected to result in accumulation of misfolded proteins, po-
tentially leading to abnormalities in the rough endoplasmic reticulum (RER) and resulting
in endoplasmic reticulum (ER) stress. Indeed, it has been suggested that mutant Plod3
mouse embryos develop ER stress [22]. ER stress could lead to many cellular responses,
including enhancing the effects of TGFβ signaling [23], the latter being a critical driver of
cellular mass formation in lenses of Lh3-deficient zebrafish embryos [13]. We therefore
looked for evidence of ER abnormalities in lenses of plod3 mutant zebrafish embryos. First,
we injected embryos at the one-cell stage with synthetic mRNA encoding for the ER-eGFP
fusion protein that localizes to RER [24], and examined the appearance of the fluorescent
signal at 2 dpf in cryosections from lenses. This time point was chosen as it is when lens
capsule formation has already begun and abnormalities in the anterior lens epithelium
become apparent [13,25]. The results showed a clear difference between normal and mutant
embryos, whereby in normal siblings EGFP fluorescence was more abundant and mostly
diffuse throughout the cytoplasm, whereas in mutants the signal was reduced and local-
ized to puncta within the cytoplasm of lens epithelial cells and presumptive corneal cells.
These puncta were particularly large in the superficial-most layer of the developing corneal
epithelium (Figure 1A,B; n = 9 and 8 eyes, respectively). Hence, already at a relatively low
resolution, the appearance of the ER was markedly different between normal and plod3
mutant lenses and presumptive cornea cells.

To better understand the change in RER appearance, we used transmission electron
microscopy (TEM) and closely examined the anterior lens epithelium (ALE) and adjacent
cells at 2 dpf. RER was much more abundant in presumptive corneal epithelial cells
compared to ALE cells, in both normal siblings and in mutants. Although not abundant,
some of the RER in the ALE of mutants appeared to have enlarged lumens compared to the
ALE of normal siblings (Figure 1C,D; n = 3 eyes from each genotype). In the adjacent cells
of the developing basal corneal epithelium where RER was very abundant, the lumens of
RER in mutants were often mildly enlarged (Figure 1F,G). To quantify potential differences,
we measured and compared the width of RER lumens in sections from normal and mutant
lenses. Consistent with their appearance, lumen widths in ALE cells were on average
slightly increased in mutants, although the difference was not significant (Figure 1E).
In contrast, lumen widths in the basal epithelium layer of the developing cornea were
significantly wider (Figure 1H). Enlarged RER lumens were likely due to accumulation
of misfolded proteins and suggested the presence or development of ER stress in plod3
mutant lens epithelium and neighboring tissues.
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Figure 1. Abnormal rough endoplasmic reticulum (RER) in plod3 mutants. (A,B) Single confocal sec-
tions from eyes of 2 dpf normal (A) and mutant (B) embryos expressing ER-eGFP. Arrowheads point
at the ALE. Asterisks mark the presumptive cornea. Scale bars are 20 µm. (C,D,F,G) Transmission
electron microscope images of ALE cells (C,D) and basal corneal epithelial cells (F,G) from 2 dpf
normal (C,F) and mutant (D,G) embryos. Arrowheads point at RER. Asterisks in (F,G) are located
by the basal cell membrane, next to the developing corneal stroma in (F), which is missing in (G).
M, mitochondrion; N, nucleus. Scale bars are 500 nm (C,D) or 1 µm (F,G). (E,H) Graphs depicting
measurements of RER width from mutant and normal cells in the ALE (E) or basal corneal epithelial
cells (H). Numbers on the Y axis are width in µm. Error bars are standard deviation. p values
are depicted.
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3.2. 4-PBA Rescues the Lens Phenotype of plod3vu222 Mutants

The evidence for the presence of RER abnormalities that are consistent with ER stress
prompted us to check whether inhibition of ER stress could block the formation of cellular
masses in lenses of plod3 mutants. Therefore, we treated zebrafish embryos from a cross
between heterozygous plod3vu222 parents with 4-Phenylbutyric acid (4-PBA), an FDA-
approved drug used to treat urea cycle disorders. 4-PBA is a chemical chaperon known to
alleviate ER stress [26] and also has a histone deacetylase (HDAC) inhibitor activity [27]. We
treated embryos from 26 hpf until 4 dpf and assessed their lens phenotype. This treatment
resulted in a significant rescue of the lens phenotype, as evidenced by localization of
the lenses in live larvae (Figure 2A,C,E). Histological sections confirmed that in correctly
localized lenses, the ALE remained a monolayer, without overt evidence of abnormalities
(Figure 2D). The shape of the lens was abnormal, with lateral bulges, suggesting that the
lens capsule was still defective (Figure 2D) (compare to a wild-type lens, Figure S2).
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Figure 2. 4-PBA inhibits development of lens cell masses in plod3 mutants: (A,C) Live 4 dpf plod3vu222 

mutant larvae, untreated (A) or treated with 4-PBA from 26 hpf (C). Arrows point at lenses. (B,D) 
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Figure 2. 4-PBA inhibits development of lens cell masses in plod3 mutants: (A,C) Live 4 dpf
plod3vu222 mutant larvae, untreated (A) or treated with 4-PBA from 26 hpf (C). Arrows point at lenses.
(B,D) Histological sections of eyes from 4 dpf plod3 mutant larvae, untreated (B) or treated with
4-PBA from 26 hpf (D). Arrow in (B) points at the abnormal cell mass and in (D) at the ALE that
remains a monolayer. (E) Statistical analysis of the rescue with 4-PBA. Outside, normal and inside
categories refer to the location of the lens relative to the normal location. N depicts the number of
eyes analyzed. (F) Time windows of treatment with 4-PBA are represented by bars. Green bars show
time windows with statistically significant rescue and red bar represents a time window in which no
statistically significant rescue was observed. Numbers on bars are p-values. L, lens. Scale bars are
100 µm (A) or 20 µm (B).

To better define the timing during which 4-PBA was required for inhibiting the de-
velopment of lens cell masses, we repeated the treatment over several time windows:
26–48 hpf, 26–72 hpf, 26–96 hpf and 48–96 hpf. In all treatments, larvae were evaluated
at 4 dpf (~96 hpf) by gross morphology. We found that when treatment was initiated at
26 hpf and continued until 48 hpf, or 72 hpf, or 96 hpf, there was a significant rescue of
lens localization (Figure 2F). In contrast, when treatment was initiated from 48 hpf until
96 hpf, there was no significant difference in lens localization between treated and untreated
mutants (Figure 2F). These results show that the critical time window for 4-PBA treatment
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is between 26 and 48 hpf, well before the formation of cell masses that begins only at 3 dpf.
Hence, 4-PBA likely affects cell mass formation indirectly.

3.3. A Small Molecule Screen for Compounds That Can Rescue the Lens Phenotype of Lh3
Deficiency

The ability of small molecules, such as SB-431542 (an inhibitor of TGFβ type I receptor
Alk5, [28]) and 4-PBA, to prevent the formation of cell masses in plod3 mutant lenses
prompted us to search for additional small molecules that can provide such rescue as
potential drugs for prevention of PCO. Towards this goal, we performed a chemical screen
using two small molecule libraries comprising over 1200 compounds (see Section 2).

plod3 homozygous mutant embryos were identified at approximately 24 hpf based
on a transient mild phenotype of abnormal ventral body curvature, and placed in 48-well
plates, 5 embryos per well, without chorions (Figure 3). At 26–28 hpf, one compound was
added into each well, except for four wells in each plate that received DMSO at the same
dilution and served as negative controls. Compound solution was replaced with a fresh
one daily, and larvae were assessed for rescue of the lens phenotype by gross morphology
at 3 and 4 dpf.
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Figure 3. Design of the small molecule screen: Top left panel shows normal (top) and plod3 mutant
embryos at approximately 24 hpf. Mutants can be identified by their transient ventral curvature
which is evident at this stage. Mutants were placed in 48-well plates, 5 per well, and compounds
from the small molecule libraries were added and replaced daily until 4 dpf. Several wells in each
plate were treated with DMSO as control.

The criteria for a potentially successful “hit” were clear improvement of the localization
and shape of lenses by gross morphology, and no apparent deterioration in the general
health and appearance of treated embryos. For compounds that were identified as potential
“hits”, we repeated the treatment twice to confirm the result. The screen yielded two
compounds that provided a convincing rescue. The first was SB-431542, which we had
previously shown could inhibit formation of the lens cellular masses [13]. The second
compound was Erlotinib, an inhibitor of epidermal growth factor receptor (EGFR) signaling.
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3.4. Suppression of plod3 Mutant Lens Phenotype by Erlotinib

Erlotinib binds the intracellular catalytic domain of EGFR tyrosine kinase and inhibits
EGFR phosphorylation. It is used in treatment of several types of cancer as it blocks
cell cycle progression by causing G1 arrest [29]. Following treatment with Erlotinib from
26 hpf until 4 dpf, development of cell masses in lenses of plod3 mutant larvae was efficiently
inhibited and lens localization was rescued (Figure 4A–E).
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Figure 4. Erlotinib inhibits cell mass formation and phosphorylation of ERK1/2 in the ALE of
plod3 mutants: (A–D) Histological sections from eyes of 4 dpf normal (A,B) or plod3 mutant (C,D)
larvae. Larvae in (A,C) were treated from 1 to 4 dpf with vehicle (DMSO), whereas larvae in (B,D)
were treated with Erlotinib. Scale bar is 20 µm. (E) Statistical analysis of the rescue of plod3 lens
phenotype by Erlotinib as determined by localization of the lens. Outside, normal and inside
represent localization of the lens relative to the retina as compared to the localization in normal larvae.
(F–I) Single confocal sections from eyes of 75–76 hpf normal (F) or plod3 (G–I) mutant larvae, labeled
with an antibody against pERK1/2 (red). Embryo in (H) was treated with DMSO and in (I) with
Erlotinib. Nuclei (Dapi) are blue. L, lens. Scale bars are 20 µm.

To better characterize EGFR activity in lenses of normal and mutant larvae, we used an-
tibodies against phosphorylated ERK1/2 (MAPK3 and MAPK1) to label eye tissue sections.
ERK1/2 are two of the main downstream proteins that are activated by phosphorylation in
response to EGFR signaling [30], and hence their phosphorylation serves as an indication
of EGFR activation. At 75 hpf, lens epithelium of normal larvae showed no staining for
phosphorylated ERK1/2 (pERK1/2) by immunohistochemistry (Figure 4F, n = 10). In con-
trast, plod3vu222 mutant lenses showed intense staining in the ALE, even though cell masses
were not apparent yet (Figure 4G, n = 13). To confirm that Erlotinib acted by inhibiting
EGFR signaling in the lens epithelium, we examined whether ERK1/2 phosphorylation
was affected by the treatment. Consistent with this notion, in mutants that were treated
with Erlotinib from 1 dpf, no pERK staining was present in the ALE (Figure 4I, n = 13),
whereas in the vehicle-treated mutants, pERK-positive cells were present in developing
masses (Figure 4H, n = 12). These results confirmed that the phosphorylation of ERK1/2 in
lenses of plod3-deficient larvae was dependent on EGFR signaling.

3.5. TGFβ Signaling Functions Upstream of EGFR Signaling in Cell Mass Formation

Inhibition of TGFβ- or EGFR-signaling prevented formation of cell masses and main-
tained the ALE as a monolayer, raising the possibility that these pathways interact in this
pathogenic process. To test this possibility, we first defined the time windows during which
the activity of these pathways was required.

We had previously shown that to achieve rescue by inhibiting TGFβ signaling, the
inhibition needs to be initiated by ~30 hpf [13]. To better define when TGFβ signaling
promotes cell mass formation, we inhibited this pathway using SB-431542 during several



Cells 2023, 12, 2540 9 of 16

time windows and assessed the phenotype by observing lens localization at 4 dpf. The
time windows of the treatments were 26 hpf–48 hpf, 26 hpf–72 hpf and 26 hpf–4 dpf. When
treatment was ended before 4 dpf, the solution in which embryos were raised was replaced
several times to wash out the inhibitor and the embryos were kept in egg water until 4 dpf.
Treatment during all these time windows resulted in statistically significant rescue, with
significance increasing in the more prolonged treatments (Figure 5A). These results suggest
that the critical timing for TGFβ signaling is between 30 hpf to 48 hpf, since beginning
treatment at 48 hpf failed to produce rescue of the lens phenotype [13]. Interestingly, we
could not detect ectopic pSmad3 signal at 48 hpf in the ALE suggesting that another arm
of the TGFβ pathway was activated at this developmental stage, i.e., the non-canonical
TGFβ pathway.
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Figure 5. TGFβ signaling is upstream of EGFR signaling in plod3 mutant lenses. (A,B) Timing
experiments of rescue by TGFβ- and EGFR-signaling inhibition, respectively. Green bars show time
windows with statistically significant rescue and red bars represent time windows in which no
statistically significant rescue was observed. Numbers on bars are p-values. (C,D) Confocal single-
plane sections from eyes of 76 hpf plod3vu222 mutants treated with vehicle (C) or with SB-431542 (D)
from ~26 hpf to 76 hpf and labeled for pERK1/2 (red) and nuclei (Dapi, blue). L, lens. Scale bar is 20 µm.

Next, we similarly determined the time window during which EGFR signaling is
required. The initial time windows of the treatments were 26 hpf–48 hpf, 26 hpf–72 hpf
and 26 hpf–4 dpf. We found that when Erlotinib was added from 26 hpf to 48 hpf or 72 hpf,
no significant rescue of lens localization was achieved. To further refine the time windows
in which Erlotinib acts, we added treatments from 48 or 72 hpf. Indeed, when Erlotinib
was added from 26 hpf, 48 hpf or 72 hpf to 96 hpf, a significant rescue of lens localization
was evident (Figure 5B). These results show that inhibition of EGFR signaling is required
from 3 dpf, just prior to cell mass formation. Consistent with this conclusion, at 48 hpf, no
pERK labeling was evident in the ALE of mutant or normal embryos.
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Given that TGFβ signaling was required at an earlier time window, we hypothesized
that it functioned upstream of EGFR signaling. To further test this hypothesis, we treated
plod3vu222 mutants with SB-431542 from ~30 hpf and examined pERK expression at 76 hpf.
Larvae that were treated with the TGFβ receptor inhibitor showed no staining for pERK
in the ALE (Figure 5C,D, n = 13 and 12, respectively), supporting the notion that TGFβ
signaling acts upstream of, and is needed for, EGFR pathway activation.

3.6. 4-PBA Inhibits Only Late TGFβ Signaling and Does Not Inhibit EGFR Signaling

Having defined the time windows during which TGFβ and EGFR signaling promoted
lens cell mass formation, we wished to find whether and how the activity of these pathways
was influenced by 4-PBA treatment. Therefore, we treated mutant embryos with 4-PBA
and examined the effect on TGFβ and EGFR signaling pathways by examining pSmad3
and pERK1/2 labeling, respectively.

First, we treated mutant embryos from 26 hpf to 4 dpf and labeled eye tissue sections
for pSmad3. We chose 4 dpf to assess the effect on TGFβ signaling since at this time point
pSmad3 was consistently and clearly upregulated. We found that 4-PBA treatment blocked
cell mass formation and no pSmad3-positive cells were present in the ALE (Figure 6A,B;
n = 8 and 15, respectively). Some pSmad3-positive cells were present in adjacent cells, such
as in the ciliary marginal zone (CMZ), as often observed in normal larvae (Figure 6B).
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Figure 6. Effects of 4-PBA treatment on TGFβ and EGFR signaling. (A–D) Confocal single-plane
sections from eyes of plod3vu222 mutants untreated (A,C) or treated with 4-PBA (B,D) from ~26 hpf. In
(A,B), treatment was until ~96 hpf and sections were labeled for pSmad3 (red) and nuclei (Dapi, blue).
In (C,D), treatment was until 76 hpf and sections were labeled for pERK1/2 (red) and nuclei (Dapi,
blue). Asterisk in (A) marks the area of the cell mass where pSmad3 labeling is evident. Arrowheads
in (B,D) point at the ALE. White line in (C) marks the periphery of the cell mass. L, lens. Scale bars
are 20 µm.
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Next, we treated embryos with 4-PBA from 26 hpf to 3 dpf and assayed for pERK1/2
labeling. Surprisingly, we found that pERK1/2 labeling was present even in treated larvae
in which cell mass formation was blocked (Figure 6D; n = 14, n in C = 11).

These results indicate that EGFR activity in the ALE is not sufficient for driving cell
mass formation and are consistent with a similar conclusion from previous work [31]. The
results also suggest that 4-PBA does not inhibit TGFβ signaling at 1 dpf, since that would
be expected to abolish EGFR activity as well.

3.7. Inhibition of mTOR Signaling Only Partially Limits Cell Mass Formation

Inhibition of EGFR signaling is aimed, at least in part, at blocking proliferation of LECs.
Another pathway that is known to promote cell proliferation and growth is the mechanistic
(formerly mammalian) target of rapamycin (mTOR) pathway. mTOR signaling can be
activated by multiple factors, including TGFβ and EGFR signaling [32]. We therefore asked
whether this pathway was upregulated in the ALE of plod3 mutants as cell masses were
forming. To test this possibility, we labeled tissue sections from eyes of 3 dpf normal and
plod3vu222 mutant larvae for the phosphorylated form of ribosomal protein S6 kinase (pS6K),
which is a commonly used readout for activation of mTOR signaling [33,34]. We found
that, whereas pS6K signal was missing from the ALE of normal larvae, it was strongly
upregulated in forming cell masses in the mutants (Figure 7B; n = 8, n in A = 8).
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Figure 7. mTOR signaling contributes to cell mass growth. (A,B) Confocal single-plane sections from
eyes of 3 dpf plod3vu222 larvae labeled for pS6K (green) and with 5E11 antibody that marks nuclei of
ALE cells as well as a subset of amacrine cells (purple). pS6K staining in the mutant is increased in
the developing mass and reduced in the ciliary marginal zones (marked by asterisks in (A)). White
rectangles mark the ALE region. Scale bar is 50 µm. (C,D) Histological sections from eyes of 4 dpf
plod3vu222 larvae treated from 26 hpf until ~96 hpf with vehicle (C) or rapamycin (D). White lines
mark the periphery of cellular masses. Scale bar is 20 µm. L, lens.
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mTOR signaling can be inhibited by rapamycin, which inhibits mTOR complex1
(mTORC1) activity [35], suggesting that treatment with rapamycin could block formation
of lens cell masses in plod3 mutants. We therefore treated embryos from 1 dpf until 4
dpf with different doses of rapamycin and evaluated the effect by gross morphology and
by histological sections. From the different doses that were tested (2.5, 25 and 50 µM),
treatment with 25 µM rapamycin led to partial inhibition of the lens phenotype, with
treated larvae developing smaller masses than untreated ones (Figure 7C,D; n > 15 for each
condition). However, the rescue achieved using this treatment was not as consistent as
with inhibition of TGFβ or EGFR signaling or by treatment with 4-PBA. Therefore, while
mTOR signaling likely contributes to the formation of cell masses, it is not essential for this
pathology to develop.

4. Discussion

In this work, we describe the identification of small molecules that can prevent forma-
tion of cellular masses from the ALE of plod3 mutant zebrafish larvae. Together with our
previous work [13], the findings further our knowledge of the mechanisms that underlie
the development of the cell masses and show additional similarities to the pathogenesis of
cataracts derived from lens epithelium in humans. A summary of the findings is shown in
Figure 8.
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Figure 8. A schematic of pathways involved in plod3 mutant lens phenotype and small molecules
that block phenotype development. Reduced function of Lh3 leads to ER abnormalities and possibly
additional abnormalities by 2 dpf. Application of 4-PBA by ~28 hpf blocks phenotype development,
likely by affecting these abnormalities. The TGFβ type I receptor inhibitor SB-431542 also blocks
phenotype development if applied by ~28 hpf, suggesting early upregulation of non-canonical TGFβ
signaling, as pSmad3 is not present before 3 dpf. Later on, around 72 hpf, increased EGFR signaling
contributes to phenotype development downstream of TGFβ signaling, and blocking it by Erlotinib
prevents phenotype development. Also around this time, as the cell mass develops, pSmad3-positive
cells become apparent but the upregulation of this canonical TGFβ signaling occurs at a time point
when blocking the pathway no longer prevents phenotype development. pSmad3 upregulation is
dependent on the earlier phase of TGFβ signaling, on EGFR signaling and is also inhibited by 4-PBA.
Timing of pathway and inhibitor activity as deduced from our experiments is depicted. The dashed
line after EGFR signaling represents the finding that EGFR activation alone does not appear to drive
cell mass formation.
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4.1. Inhibition of Cell Mass Formation by 4-PBA

In our previous study, we showed that the lens cellular masses in plod3-deficient
zebrafish larvae are derived from the ALE and proposed that their formation was driven
in a non-cell-autonomous fashion by the abnormal lens capsule [13]. Nevertheless, the re-
duced function of Lh3 is expected to have cell-autonomous effects; Lh3 is a multifunctional
enzyme with lysyl hydroxylase (LH), hydroxylysyl galactosyltransferase (GT) and galacto-
sylhydroxylysyl glucosyltransferase (GGT) activities that functions in post-translational
modifications of its substrates [36]. Hence, loss of Lh3 activity is expected to result in
abnormalities in its substrate proteins leading to their misfolding and subsequent accu-
mulation in the ER, thereby causing ER stress. Indeed, in Lh3 knockout mouse embryos,
there was dilation of the ER with retention of Collagen IV, as well as enlargement of Golgi
complexes and lysosomes [22,37]. Consistent with these reports, we also found altered
appearance of the ER in the ALE and the adjacent developing corneal epithelium, which
included mildly dilated ER. The expansion of the ER lumen in plod3 mutants likely results
from accumulation of misfolded proteins that were not properly modified by Lh3. This
finding provided the basis for testing 4-PBA’s ability to rescue the lens phenotype. Inter-
estingly, even though 4-PBA efficiently inhibited formation of lens cellular masses, our
preliminary transcriptome analyses did not detect changes that are typical of ER stress in
plod3 mutants at 2 dpf, e.g., upregulation of chop, bip and splicing of xbp1. Nevertheless,
we did detect increased transcription of chaperons and genes implicated in endoplasmic
reticulum-associated protein degradation (ERAD) (Taler, Zatari and Inbal, unpublished).
Both an increase in ER size and ERAD are known mechanisms through which cells cope
with accumulation of misfolded proteins [38,39]. Hence, it is possible that 4-PBA indeed
rescues the phenotype through its chaperon function by relieving potential stress caused
by protein accumulation. Alternatively, it is also possible that the rescue is mediated via its
function as an HDAC inhibitor. The exact mechanism needs further investigation.

Our timing experiments show that 4-PBA activity is required to inhibit cell mass
formation well before the phenotype becomes apparent. This result suggests that 4-PBA
does not directly influence the mechanisms that drive the growth of LECs. Moreover, since
the time window of 4-PBA activity parallels that of TGFβ, it raised the possibility that
inhibiting TGFβ activity was the mechanism by which 4-PBA treatment yielded the rescue.
However, this does not seem to be the case, as EGFR signaling, which is dependent on
TGFβ activity, was not inhibited by 4-PBA treatment. Therefore, it appears that another
mechanism promotes formation of cell masses in parallel to TGFβ and EGFR signaling.

The logic for testing 4-PBA as a candidate for prevention of LEC-derived cataract in
plod3-mutant lenses is clear. However, an involvement of the ER in the pathogenesis of lens
epithelium abnormalities could be unique to these mutants. It will be interesting to test
whether 4-PBA can inhibit formation of PCO in models that are not related to Lh3 function.

4.2. Inhibition of Cell Mass Formation by Blocking TGFβ and EGFR Signaling

We identified Erlotinib as an efficient inhibitor of lens cell mass formation in an
unbiased small molecule screen. This identification is in strong agreement with previous
studies that implicated EGFR signaling in PCO and identified EGFR-inhibiting drugs,
including Erlotinib, Gefitinib and Lapatinib as candidates for use in prevention of PCO
after cataract surgery [40–46]. Interestingly, a recent study suggested that only fibrotic PCO
is prevented by EGFR inhibitors [46]. We, however, found that the lens phenotype of plod3
mutants, which is more similar to pearl PCO, is efficiently prevented by Erlotinib. The
reason for the different findings is unclear but might be because different experimental
systems were used in the two studies.

Our analysis of pERK1/2 labeling suggested that EGFR activity was elevated just
before the formation of lens cell masses. The relevance of this finding to the development
of cell masses was confirmed by using Erlotinib during different time windows. Thus,
EGFR signaling likely plays a more direct role in formation of lens cell masses. TGFβ
signaling, on the other hand, is required for cell mass formation in plod3 mutants much
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earlier, between 1 and 2 dpf [13], suggesting that it acts indirectly in promoting ALE cell
masses. Furthermore, we showed that TGFβ signaling was required for the activation of
EGFR signaling. These findings are consistent with data from a recent study which found
that phosphorylation of EGFR occurred only 18 h after treatment of rat lens epithelial
explants with TGFβ, suggesting that activation of EGFR by TGFβ is a downstream indirect
signaling event [31].

TGFβ activity which drives cell mass formation appears to be from a non-canonical
arm of the pathway, as pSmad3 is not upregulated by 2 dpf. Interestingly, in addition to its
early role before 2 dpf, canonical TGFβ signaling is also upregulated in cellular masses at
3 dpf and onwards, as evidenced by positive pSmad3 labeling [13]. Whereas studies
have shown that both canonical and non-canonical TGFβ signaling drive PCO formation
(e.g., reviewed in [11,47]), in this study we found that the canonical activation of TGFβ
signaling in the developing cell masses is not required for their development, as blocking
it fails to rescue the phenotype. Rather, at 3 dpf, EGFR activity is required for cell mass
formation and is dependent on earlier TGFβ signaling. Interestingly, the canonical TGFβ
signaling at 3 dpf is dependent both on the earlier non-canonical signaling and on EGFR
signaling [13], but its function is currently unclear.

EGFR activity appears to be permissive and not instructive, as evidenced by 4-PBA
treatments that do not abolish pERK1/2 upregulation in the ALE but do inhibit cell mass
formation. These observations are consistent with work showing that upregulation of
EGFR signaling alone does not promote PCO [31].

Another point of interest is the apparent side effects of the different treatments.
Whereas inhibition of TGFβ signaling often resulted in abnormal-looking ALECs [13],
the histology of Erlotinib- and 4-PBA-treated larvae suggested that the ALECs of treated
larvae were much more similar to normal ones. These data further support the notion that
Erlotinib is a good candidate for the preventive treatment of PCO.

5. Conclusions

In conclusion, cell masses that develop in the lenses of zebrafish embryos and larvae
with plod3 loss of function show great similarity to pearl PCO. This similarity is demon-
strated both by histology and by the underlying molecular mechanisms that drive the
pathology formation, most prominently TGFβ and EGFR signaling. The non-canonical
TGFβ signaling pathway plays a critical early and indirect role in the development of
the pathology, whereas EGFR signaling plays a later, permissive role. Hence, in ad-
dition to providing information specifically relevant to the loss of Lh3 function, this
work supports the notion that plod3 zebrafish mutants can serve as an in vivo model
for testing pharmacological strategies for prevention of PCO, the common complication of
cataract surgeries.
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www.mdpi.com/article/10.3390/cells12212540/s1, Figure S1: Lens phenotypes in live plod3 mutant
4 dpf larvae; Figure S2: Section of a normal lens.
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