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Abstract: Inflamed and infected tissues can display increased local sodium (Na+) levels, which can
have various effects on immune cells. In macrophages, high salt (HS) leads to a Na+/Ca2+-exchanger
1 (NCX1)-dependent increase in intracellular Na+ levels. This results in augmented osmoprotective
signaling and enhanced proinflammatory activation, such as enhanced expression of type 2 nitric
oxide synthase and antimicrobial function. In this study, the role of elevated intracellular Na+ levels
in macrophages was investigated. Therefore, the Na+/K+-ATPase (NKA) was pharmacologically
inhibited with two cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG), to raise intracellular
Na+ without increasing extracellular Na+ levels. Exposure to HS conditions and treatment with both
inhibitors resulted in intracellular Na+ accumulation and subsequent phosphorylation of p38/MAPK.
The CGs had different effects on intracellular Ca2+ and K+ compared to HS stimulation. Moreover, the
osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) was not upregulated
on RNA and protein levels upon OUA and DIG treatment. Accordingly, OUA and DIG did not boost
nitric oxide (NO) production and showed heterogeneous effects toward eliminating intracellular
bacteria. While HS environments cause hypertonic stress and ionic perturbations, cardiac glycosides
only induce the latter. Cotreatment of macrophages with OUA and non-ionic osmolyte mannitol
(MAN) partially mimicked the HS-boosted antimicrobial macrophage activity. These findings suggest
that intracellular Na+ accumulation and hypertonic stress are required but not sufficient to mimic
boosted macrophage function induced by increased extracellular sodium availability.

Keywords: macrophages; Na+/K+-ATPase; cardiac glycosides; sodium; intracellular sodium; osmotic
stress; hypertonicity

1. Introduction

In addition to the renal medulla, local Na+ accumulation can be present in infected [1]
and inflamed tissues [2–5] and can be triggered by high-salt diets [6,7]. In these mi-
croenvironments, the resulting sodium concentration can reach more than 40 mM above
physiological plasma and cell culture conditions (reviewed in: [8]). These elevated Na+

levels influence resident and infiltrating immune cells (reviewed in: [8–14]). Depending
on the immune cell type and subset, increased Na+ availability results in different activa-
tion programs and subsequent effector functions. For instance, T cells polarize towards
an inflammatory Th17 phenotype under HS conditions [4,15–17], and regulatory T cells
display a more autoimmune-like phenotype [18]. In neutrophils, short-term exposure
to high Na+ levels can disturb the phagocyte oxidase-dependent antibacterial activity of
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neutrophils [19], while long-term exposure to high salt environments triggers reactive
oxygen species production and proinflammatory cytokine release [20].

In macrophages, HS environments enhance proinflammatory macrophage polarization
and improve their microbicidal activity (reviewed in: [8,10]). This increased macrophage
activity is mediated by increased activation of osmoprotective signaling cascades, including
phosphorylation of mitogen-activated protein kinase p38 (p38/MAPK) and enhanced
expression of the transcription factors nuclear factor of activated T cells 5 (NFAT5) and
hypoxia-inducible factor 1α (HIF1A). We recently showed that the Na+/Ca2+ exchanger
1 (NCX1) facilitates Na+ entry into macrophages and that NCX1-dependent Na+ entry is
critical for mediating boosted macrophage activity and function [21–24].

The Na+/K+-ATPase (NKA) transports three Na+ ions from the intracellular to the
extracellular space in exchange for two K+ ions [25,26]. The energy needed for this active
transport against the concentration gradient of these electrolytes is provided by the hy-
drolysis of adenosine triphosphate (ATP) (reviewed in: [27]). NKA activity is known to
play a key role in maintaining low intracellular Na+ levels and in critically contributing to
the cellular membrane potential (reviewed in: [27]) [25,26]. Since NKA activity is critical
for intracellular Na+ balance, we were interested in the effect of NKA modulation on
macrophages’ activity and function. For that purpose, we resorted to pharmacological
inhibition of the NKA activity with cardiac glycosides, which have been used for decades
in cardiology for the treatment of arrhythmias and heart failure [28,29].

We tested whether pharmacological blockage of the NKA could mimic the responses
produced by HS environments. We focused on the effects of NKA inhibition by two of the
most prominent cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG). We tested
if elevated intracellular Na+ levels caused by CG treatment under normal salt conditions
could mimic the activation and function of macrophages brought about by exposure to
increased extracellular Na+ concentrations.

2. Materials and Methods
2.1. Reagents and Antibodies

Inhibition of the NKA was performed with ouabain from Tocris (#1076) or digoxin
from Sigma Aldrich (Taufkirchen, Germany) (#D6003). Macrophages were stimulated with
lipopolysaccharide (LPS) from E. coli O111:B4 (Sigma Aldrich, #2630001M4008V). NaCl
from Merck was used for HS conditions. Mannitol from Serag Wiessner (20% Mannit-
solution) was used. E. coli HB101 [30] was kept on Mueller Hinton agar II plates, and
bacterial overnight cultures were cultivated in LB media. For Western blotting, the pri-
mary antibodies rabbit anti-p38/MAPK (#8690S) and rabbit anti-phospho-p38/MAPK
(#4511S) from Cell Signaling, rabbit anti-ACTIN (Sigma Aldrich, #A2066), rabbit anti-
NFAT5 (Thermo Scientific, Darmstadt, Germany, #PA1-023), as well as swine anti-rabbit
HRP conjugated of DAKO (#P0399) as a secondary antibody were used. Gentamicin sulfate
was purchased from Sigma (#G1264).

2.2. Generation and Cultivation of Macrophages and Cell Lines

Bone marrow from C57BL/6 wildtype mice was used to generate bone marrow-
derived macrophages (BMDMs). Animal care and use followed the regulations of the
German Animal Welfare Act. Mice were housed at Zentrale Tierlaboratorien (ZTL) der
Universität Regensburg and kept under conditions approved by Umweltamt der Stadt Re-
gensburg [21]. After isolation, bone marrow cells were cultivated in Teflon bags containing
L929 fibroblast supernatant, which is rich in M-CSF, as described earlier [31]. Within seven
to nine days, bone marrow progenitors were differentiated into BMDMs [31]. Afterward,
BMDMs were harvested and used for in vitro experiments. After seeding into cell culture
plates, macrophages were incubated for at least one hour before further treatment.

All experiments with BMDMs were performed in complete medium (CM; RPMI
medium (Gibco, Darmstadt, Germany, #618700044) containing 10% fetal calf serum (FCS;
Sigma Aldrich; #F7524), 50 µM 2-Mercaptoethanol (Gibco, #31350010), 10 mM HEPES



Cells 2023, 12, 2816 3 of 16

(Gibco, #15630-056), and 1000 U/mL Penicillin/10 mg/mL Streptomycin (Pan Biotech,
Aidenbach, Germany, #P06-07100)).

RAW264.7 cells (RAWs) are a macrophage-like immortalized cell line [32,33]. They
were cultured in cell culture flasks with DMEM medium (Gibco, #41966-029) containing
10% FCS. RAWs were harvested and seeded one day before every experiment. Cells were
seeded into cell culture plates at half of the desired cell number, as they were dividing
during the overnight incubation (37 ◦C, 5% CO2). All experiments with RAWs were
performed in CM medium.

2.3. Macrophage Stimulation and Infection Assay

In this study, the impact of CGs was investigated on either LPS-stimulated or E. coli-
infected macrophages. The different experimental setups are given in Figure S1.

In the stimulation experiments, BMDMs and RAWs were stimulated with 1 ng/mL
or 10 ng/mL LPS, respectively. Then, 40 mM NaCl (=high salt, HS), 80 mM mannitol
(MAN), ouabain (OUA, 100 µM, unless otherwise specified), or digoxin (DIG, 50 µM,
unless otherwise specified) was added as indicated.

Infection experiments were performed with BMDMs essentially as described previ-
ously [1,34]. Briefly, macrophages were seeded in 24-well plates (350,000 per well) and
incubated for 1 h at 37 ◦C, 5% CO2, allowing for their attachment. Then, cells were infected
with E. coli at a multiplicity of 100 (MOI 100), centrifuged to synchronize the infection,
and subsequently treated with HS, ouabain (100 µM), digoxin (50 µM), or mannitol as
indicated. At 1 h post-infection, the macrophages were washed twice with PBS, gentamicin
(100 µg/mL) was added to eliminate extracellular bacteria, and cells were treated with
HS, mannitol, and cardiac glycosides and incubated for another hour. Afterward, cells
were washed with PBS and lysed with 0.1% Triton/0.05% Tween-20 in PBS, and then serial
dilutions were plated on Mueller Hinton agar plates. On the next day, colony-forming units
(CFUs) were counted and normalized to the mean of the respective control group.

2.4. E. coli Growth Curves

Bacterial growth curves were analyzed to determine the potential influence of different
stimulations and compounds on the growth properties of E. coli HB101. Liquid E. coli
overnight cultures were adjusted to an OD600 value of 0.1. Bacterial growth was monitored
by measuring OD600 values over time in the absence or presence of cardiac glycosides at
37 ◦C and an atmosphere of 5% CO2.

2.5. Quantification of Nitrite Concentration and Lactate Dehydrogenase Activity

Griess assays of the cell supernatants were performed 24 h after stimulation to de-
termine the nitrite (NO2

−) concentrations. Nitrite levels were measured as described
previously [1,34].

Cell cytotoxicity was determined by measuring lactate dehydrogenase (LDH) activity
with a cell cytotoxicity kit (Roche; #11644793001) as described earlier [21]. LDH activity was
determined in cell supernatants and lysates according to the manufacturer’s instructions.
The ratio of supernatant to pellet was calculated as a measure of cellular viability. Cells
treated with 0.1% Triton X-100 30 min before lysis were used as a positive control for
cell death.

2.6. Immunoblotting

Western blotting was performed to determine the expression of phospho-p38/MAP
kinase (p-p38/MAPK) and NFAT5. RAWs were seeded into 6-well plates with a con-
centration of 1 × 106 cells/mL one day before the experiment and incubated overnight
(37 ◦C, 5% CO2). The next day, the cells were stimulated with LPS (10 ng/mL) and simul-
taneously treated as indicated. After specific time points (p-p38/MAPK: 45 min; NFAT5:
24 h), the cells were lysed in either RIPA buffer (25 mM sodium deoxycholate, 1% SDS,
0.4% EDTA, 10 mM NaF, 1% NP 40 in H2Odd) containing complete protease inhibitors
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(Roche, Taufkirchen, Germany, #1183617001) and PhosSTOPTM (Roche, #04906837001) to
determine pp38/MAPK abundance, or in 8 M urea containing complete protease inhibitors
(Roche, #1183617001) for NFAT5 analysis. Immunoblotting was performed as described
earlier [1,34]. Briefly, cell lysates were homogenized, then protein concentrations were
determined with the DC™ protein assay (BioRad, Kabelsketal, Germany), and proteins
were separated on a 12% (pp38/MAPK) or 8% (NFAT5) TRIS-glycine polyacrylamide gel.
Then, the proteins were transferred to a PVDF membrane (Merck, Molsheim, France, IPFL
00010). Signals were detected on a Chemo Star imager (Intas) using Luminata Forte HRP
substrate (Millipore, Molsheim, France, #WBLUF0500).

2.7. Measurement of Intracellular Na+ and K+ Levels with Atomic Absorption Spectrometry (AAS)

Intracellular Na+ and K+ levels in cell lysates were measured with a flame atomic
absorption spectrometer (iCE3500 AA system, Thermo Scientific) essentially as described
earlier [35]. For that purpose, cells were seeded into 12-well plates (1 × 106 cells/well),
stimulated with LPS (BMDMs: 1 ng/mL; RAWs: 10 ng/mL), and treated as indicated. After
indicated time points, cells were washed three times with an iso-osmolal sucrose solution
(Ctrl, OUA, DIG: 290 mOsmol/mL; HS: 350 mOsmol/mL) and lysed with Na+-free cell
lysis buffer III (0.1% Triton X-100 in H2Odd). The AAS was calibrated with a series of
commercial Na+ or K+ AAS standard solutions (Carl Roth, Na+: #2337.2; 0.075–0.5 mg/L;
potassium: #2327.2; 0.1–1.0 mg/L) before the measurements. The correlation coefficients for
the linear calibration curve were >0.995. Ion concentrations of the samples were determined
and normalized to the mean of the respective control group.

2.8. Rubidium Incorporation Measurements with Atomic Absorption Spectrometry

In order to assess the inhibition of the NKA with the cardiac glycosides, rubidium
(Rb+) incorporation assays were performed following a protocol published by Gill et al. [36].
Rb+ can be used as a non-radioactive K+ tracer. For these assays, the RAWs and BMDMs
were seeded into 12-well plates (1 × 106 cells/well) and incubated for 1 h at 37 ◦C, 5% CO2,
allowing their attachment. Then, the medium was replaced by Rb+ uptake buffer (15 mM
HEPES, 140 mM NaCl, 5.4 mM RbCl, 1 mM MgCl2, 0.8 mM NaH2PO4, 2 mM CaCl2,
pH 7.4). Macrophages were stimulated with LPS (BMDMs: 1 ng/mL; RAWs: 10 ng/mL)
and simultaneously treated with the CGs as indicated. After indicated time points, the
cells were washed three times with an iso-osmolal sucrose solution (Ctrl, OUA, DIG:
290 mOsmol/mL) and lysed with lysis buffer III (0.1% Triton X-100 in H2Odd). The AAS
was calibrated with a series of Rb+ standard solutions (Carl Roth, #2456.1; 0.063–16 mg/L)
before the measurements. The correlation coefficients for the linear calibration curve were
routinely >0.995. Ion concentrations of the samples were determined and normalized to
the mean of the respective control group.

2.9. Determination of Intracellular Ca2+-Levels with Epifluorescence Microscopy

Calcium (Ca2+) levels were measured by epifluorescence microscopy using the Ca2+-
sensitive dye Fura-2 (Thermo Scientific, #F1221) as described earlier [21]. BMDMs were
seeded on FluoroDish plates (2 × 106 cells/dish) and stained with Fura-2 in Tyrode solution
(140 mM NaCl, 4 mM KCl, 1 mM MgCl2, 5 mM HEPES, 1 mM CaCl2, and 10 mM glucose)
containing 0.04% Pluronic (Sigma, #P2443). Fura-2-loaded cells were analyzed via live
cell imaging using epifluorescence microscopy (Motic model 410E). After 10 s of baseline
detection, the cells were stimulated with LPS (1 ng/mL) and simultaneously treated
as indicated. Fura-2-excitation was detected every 30 s for 7 min. After subtraction
of the background signals, the relative [Ca2+]i levels were determined by ratiometric
quantification and normalized to baseline signals before treatment.

2.10. IL-1ß Quantification via Enzyme-Linked Immunosorbent Assay

IL-1β secretion was determined by an enzyme-linked immunosorbent assay (ELISA).
Therefore, 0.8 × 106 BMDMs/mL were seeded into 12-well plates and incubated overnight
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(37 ◦C, 5% CO2). On the following day, macrophages were primed with high concentrations
of LPS (1 µg/mL) for 4 h (37 ◦C, 5% CO2). After 4 h, the BMDMs were treated as indicated
and incubated for 2 h (37 ◦C, 5% CO2) before supernatants were collected. IL-1β levels
in the supernatants were measured with the mouse IL-1 beta/IL-1F2 DuoSet ELISA kit
(R&D Systems, Wiesbaden, Germany, #Dy401) according to the manufacturer’s instructions.
Signals were developed with the BD OptEIA™ TMB substrates. The reaction was stopped
with 50 µL 1 M HCl, and the absorption was measured at 450 nm with a microplate reader.

2.11. RNA Isolation, Reverse Transcription, Real-Time PCR, and Relative Quantification

RNA isolation and subsequent qRT-PCR were performed as described earlier [34].
Briefly, RNA was isolated with RNA Solv Reagenz® (VWR, #R6830-01), isopropanol, and
70% ethanol. The isolated RNA was transcribed into cDNA by reverse transcription
with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosciences, Darmstadt,
Germany, #4368813). For the qRT-PCR, the TaqMan® probes for Hprt (Mm00446968_m1)
and Nfat5 (Mm00467257_m1) from Thermo Scientific were used. For relative quantification,
a ∆∆CT-ratio between the gene of interest (Nfat5) and the endogenous control gene (Hprt)
was calculated. Ratios were normalized to control conditions.

2.12. Statistical Analyses

For graph design and statistical analyses of generated data sets, the GraphPad Prism
was used (v 8.0). First, the normal distribution was analyzed in all datasets with a
Kolmogorov–Smirnov normality test. Datasets with equal distribution in every group
were analyzed with an unpaired t-test comparing the two groups. When needed, Welch’s
correction was performed. When more than two groups were analyzed, an ordinary
one-way ANOVA with Bonferroni’s post hoc test was performed. If at least one group was
unequally distributed, a Mann-Whitney test was used for the comparison of two groups.
For multiple comparisons, a Kruskal-Wallis test with Dunn’s multiple comparisons test was
performed. As AAS detects minimal ion concentrations, we used the ROUT outlier test with
an excluding criterion of 1% to identify outliers, as described earlier [37]. Densitometric
evaluation of immunoblotting data was analyzed with a paired t-test. Finally, a two-way
ANOVA with Geisser–Greenhouse correction was used for time-dependent measurements
like intracellular Ca2+ levels and bacterial growth curves. The mean of all data groups and
the standard error of the mean (s.e.m.) are shown in the graphical presentations. Within all
tests, p values < 0.05 were considered statistically significant.

3. Results

High Na+ environments trigger increases in intracellular Na+ and boost the inflamma-
tory and antimicrobial activity of macrophages [1,21,34,38]. NKA activity plays a key role
in the maintenance of intracellular ion balance since it catalyzes the efflux of three Na+ ions
from the intracellular space in exchange for two K+ ions to the intracellular space [25,26,39]
(reviewed in: [27]). Here, we investigated whether the pharmacological blockage of the
NKA results in a similar increase in intracellular Na+ and a similar boost of a proinflam-
matory phenotype of macrophages. Therefore, BMDMs and RAWs (hatched graphs) were
treated with two cardiac glycosides, OUA and DIG, to investigate if effects induced by high
salt treatment (HS; +40 mM) could be mimicked.

3.1. CGs Induce Intracellular Na+ Accumulation Similar to HS Conditions

NKA catalyzes the efflux of three Na+ from the cytosol in exchange for two K+ into
the intracellular space [39]. In the first step, therefore, concentrations were determined for
the two NKA inhibitors at which there is an intracellular Na+ (Figure S2) increase and a
simultaneous drop in intracellular K+ levels (Figure S3) in BMDM and RAWs (hatched
graphs). The 50 µM DIG and 100 µM OUA fulfilled these requirements. (Figures S2 and S3).
An Rb+-uptake assay was performed to corroborate these findings with the chosen inhibitor
concentrations. In this assay, extracellular K+ is substituted by Rb+, which can be separated
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from K+ in the chemical analysis. Exposure of macrophages to the selected CG concentra-
tions decreased the Rb+-uptake, confirming the successful NKA inhibition (Figure S4).

Next, we treated the BMDMs (Figure 1a,b) and RAWs (Figure 1c,d) with LPS and
simultaneously with previously determined CG concentrations (Figures S2 and S3) or HS.
In both cell types, inhibition of the NKA with OUA (Figure 1a,c) and DIG (Figure 1b,d)
resulted in a similar Na+ accumulation in the intracellular space as under HS conditions.

Figure 1. Pharmacological Na+/K+-ATPase inhibition results in elevated intracellular Na+ levels but
a loss of K+ and subsequent IL-1ß release. (a,b) BMDMs were stimulated with LPS and (a) ouabain
(OUA), (b) digoxin (DIG), or NaCl (HS). [Na+]i levels normalized to control conditions (Ctrl) were
determined (means ± s.e.m; n = 14–16; ordinary one-way ANOVA with Bonferroni’s multiple
comparisons tests; * p < 0.05). (c,d) As in (a,b), but RAWs (hatched graphs) were used (means ± s.e.m;
n = 23–28; ordinary one-way ANOVA with Bonferroni’s post hoc test and Kruskal–Wallis test with
Dunn’s multiple comparisons test; * p < 0.05). (e,f) As in (a,b), but [K+]i levels normalized to Ctrl
were determined (means ± s.e.m; n = 16; ordinary one-way ANOVA with Bonferroni’s multiple
comparisons tests; * p < 0.05). (g,h) As in (c,d), but [K+]i levels normalized to Ctrl were determined
(means ± s.e.m; n = 20–24; ordinary one-way ANOVA with Bonferroni’s multiple comparisons
test and Kruskal–Wallis test with Dunn’s multiple comparisons test; * p < 0.05). (i,j) BMDMs were
primed with 1 µg/mL LPS and treated with (i) OUA, (j) DIG, or HS. IL-1β levels in supernatants
were determined (means ± s.e.m; n = 12; Kruskal–Wallis test with Dunn’s multiple comparisons test;
* p < 0.05).

3.2. Loss of Potassium and Increase in IL-1β Production upon CG but Not HS Treatment

Using the inhibitory concentrations, we determined intracellular K+ levels in macroph-
ages treated with OUA or DIG and compared them to K+ concentrations of HS-exposed
cells. Again, the BMDMs and RAWs were stimulated with LPS and simultaneously treated
with CGs or HS. Here, we observed the first differences between the CG and HS treatment.
In contrast to HS conditions, the OUA and DIG treatments led to a loss of intracellular K+

in the BMDMs (Figure 1e,f) and RAWs (Figure 1g,h).
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Loss of intracellular K+ is an inflammasome activation signal [40–43]. The assembly of
NOD-like receptor-pyrin-containing proteins 3 (NLPR3) and other associated proteins such
as apoptosis-associated speck-like proteins (ASC) to a hetero-oligomeric complex activates
caspase 1 (reviewed in: [44]). Upon this activation, pro-IL-1β is cleaved by proteolysis, and
proinflammatory IL-1β is secreted (reviewed in: [45]). In line with the loss of potassium after
cardiac glycoside treatment, the BMDMs released significantly higher amounts of IL-1β
(Figure 1i,j). In contrast, macrophages exposed to HS conditions accumulated intracellular
K+ and did not produce higher levels of IL-1β (Figure 1i,j).

3.3. Cardiac Glycosides Do Not Influence Intracellular Calcium Levels

Upon HS exposure, intracellular Ca2+ and Na+ levels are tightly intertwined [21,46].
Moreover, Ca2+ can play an important role in the activation and signaling of macroph-
ages [47]. With epifluorescence microscopy, intracellular Ca2+ levels were measured after
stimulation with LPS and treatment with OUA, DIG, or HS. In line with earlier findings [21],
HS exposure diminished intracellular Ca2+ levels. They were lower from 120 s after
stimulation. (Figure 2a). In contrast, this finding was not recorded after exposure of cells
with CGs (Figure 2b,c). OUA treatment slightly reduced intracellular Ca2+ levels but
returned to control levels afterward, whereas the DIG treatment showed a transient early
Ca2+ peak after 60 s.

Figure 2. Cardiac glycosides do not diminish intracellular Ca2+ levels. (a–c) Fura-2-loaded BMDMs
were stimulated with LPS and simultaneously treated with (a) HS, (b) OUA, or (c) DIG for 7 min, and
the relative [Ca2+]i levels were recorded. Data were normalized to baseline signals before treatment
(means ± s.e.m; n = 8–10; two-way ANOVA with Geisser–Greenhouse correction; * p < 0.05).

3.4. Cardiac Glycosides Induce p-p38/MAPK Signaling, Whereas NFAT5 Expression
Remains Unchanged

After the electrolyte measurements, we investigated CGs’ impact on osmotic stress
response pathways. Upon HS exposure, macrophages phosphorylate p38/MAPK as an
osmotic stress response [1,48]. RAWs were stimulated with LPS together with OUA,
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DIG, or HS for 45 min. OUA (Figure 3a) and DIG (Figure 3b) treatments resulted in the
phosphorylation of p38/MAPK on protein levels, similar to HS conditions (Figure 3c).

Figure 3. Cardiac glycosides induce phosphorylation of p38/MAPK, whereas NFAT5 expression
remains unchanged. (a–c) LPS-stimulated RAWs were treated with (a) OUA, (b) DIG, or (c) HS.
p38/MAPK phosphorylation was determined (n = 3). Representative blots for each condition are
shown. (d,e) E. coli-infected BMDMs were treated with (d) OUA, (e) DIG, or HS. After 2 h, relative
Nfat5 RNA expression (to Ctrl) was determined (means ± s.e.m; n = 12; Kruskal–Wallis test with
Dunn’s multiple comparisons test; * p < 0.05). (f,g) As in (d,e), RAWs were used (means ± s.e.m;
n = 8–16; ordinary one-way ANOVA with Bonferroni’s multiple comparisons test; * p < 0.05).
(h,i) RAWs were stimulated with LPS, and (h) OUA, (i) DIG, or HS. NFAT5 protein levels were
detected after 24 h (n = 3). Representative blots are displayed.

Then, we analyzed the expression of the osmoprotective transcription factor NFAT5
because it is a downstream target of p-p38/MAPK and has a central role in sodium-boosted,
proinflammatory macrophage function [1,34]. During infection with E. coli, macrophages
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did not induce Nfat5 RNA expression upon cardiac glycoside treatment (Figure 3d–g). At
protein levels after 24 h of LPS stimulation, HS conditions resulted in a significant induction
of NFAT5. OUA and DIG, however, did not induce NFAT5 expression reliably (Figure 3h,i).
Despite the intracellular Na+ accumulation, macrophages did not upregulate Nfat5 RNA or
NFAT5 protein expression after OUA and DIG treatment.

3.5. Heterogeneous Effects of CGs and HS towards NO Production and the Elimination of
Intracellular E. coli

NFAT5 regulates the transcription of different genes, for example, the type 2 nitric
oxide synthase (Nos2) [1,49,50] (reviewed in: [51]). This enzyme catalyzes the production of
NO from the amino acid L-arginine. Especially in macrophages, NO production is a central
effector function in eliminating invading pathogens (reviewed in: [52,53]).

In line with the unchanged NFAT5 expression upon CG exposure, Nos2-dependent
NO production was not induced in BMDMs (Figure 4a,b) and RAWs (Figure 4c,d). Nitrite
levels were even lower after DIG exposure in BMDMs (Figure 4b). In contrast, HS treatment
boosted NO production in both cell types after 24 h of LPS stimulation (Figure 4a–d), in
line with earlier findings [1,49,50]. Furthermore, neither HS nor OUA or DIG treatment
had cytotoxic effects on the BMDMs (Figure S5a,b) and RAWs (Figure S5c,d).

Figure 4. Divergent effects of CGs and HS on NO production and the elimination of intracellular
E. coli. (a,b) LPS-stimulated BMDMs were treated with (a) OUA, (b) DIG, or HS. After 24 h, nitrite
levels were determined in supernatants (means ± s.e.m; n = 30; Kruskal–Wallis test with Dunn’s
multiple comparisons test; * p < 0.05). (c,d) As in (a,b), RAWs were used (means ± s.e.m; n = 20;
Kruskal–Wallis test with Dunn’s multiple comparisons test; * p < 0.05). (e) BMDMs were infected
with E. coli and treated with OUA, DIG, or HS. Intracellular bacterial load (normalized to Ctrl) was
determined (means ± s.e.m; n = 25–55; Kruskal–Wallis test with Dunn’s multiple comparisons test;
* p < 0.05).

In addition, macrophages can phagocytose and directly eliminate bacteria and other
pathogens. Macrophages recognize bacterial invaders by receptors, internalize them, and
digest them in (auto)lysosomal compartments [54]. We infected BMDMs with E. coli and
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determined intracellular bacterial numbers after two hours. OUA treatment had no sig-
nificant impact on the bacterial load, whereas DIG treatment favored the clearance of
E. coli (Figure 4e). Therefore, cardiac glycoside treatment had heterogeneous effects on
the elimination of intracellular bacteria. In line with previously published data [19,34,35],
macrophages exposed to HS conditions displayed an increased antibacterial activity, result-
ing in a lower bacterial load (Figure 4e). Treatment with OUA, DIG, or HS did not impair
the growth of E. coli (Figure S5e,f).

3.6. Intracellular Na+ Accumulation and Hypertonic Stress Increase NFAT5 Expression and
Antibacterial Activity

Based on these findings, we concluded that intracellular Na+ accumulation alone is
not sufficient to mimic the previously described sodium-boosted antimicrobial macrophage
function. In contrast to cardiac glycosides, HS conditions, however, induce hypertonic
stress in addition to increases in intracellular Na+ levels. This is why we sought to increase
tonicity together with CG treatment to mimic HS conditions better. We, therefore, treated
macrophages with the non-ionic osmolyte mannitol (MAN; 80 mM; iso-osmolar to HS
conditions) in combination with OUA. MAN is known to induce hypertonic stress in
macrophages [55,56] without inducing intracellular Na+ accumulation (Figure S5g) [34].

Since enhanced NFAT5 expression is a key feature of HS-boosted proinflammatory
macrophage activity, we analyzed the impact of the combination treatment of MAN and
OUA on NFAT5 expression. Cotreatment of MAN and OUA led to a significant increase in
Nfat5 mRNA expression, similar to HS conditions (Figure 5a), without inducing cytotoxicity
(Figure S5h).

Figure 5. Combination of mannitol and ouabain boosts NFAT5 expression and the antibacterial
activity of macrophages. (a) LPS-stimulated RAWs were treated with HS, MAN, OUA, or a com-
bination of MAN and OUA. After 4 h, relative Nfat5 mRNA expression (normalized to Ctrl) was
determined (means ± s.e.m; n = 16; Kruskal–Wallis test with Dunn’s multiple comparisons test;
* p < 0.05). (b) BMDMs were infected with E. coli and treated with HS, MAN, OUA, or a combination
of MAN and OUA. Intracellular bacterial load (normalized to Ctrl) was determined (means ± s.e.m;
n = 20; ordinary one-way ANOVA with Bonferroni’s multiple comparisons test; * p < 0.05).

We have shown earlier that HS-enhanced antibacterial activity critically requires
NFAT5 expression for HS-boosted antibacterial activity [34]. Since MAN, together with
OUA, increased NFAT5 levels, we sought to analyze the impact on macrophages’ bacterici-
dal activity. We observed an improved antibacterial activity of macrophages when treated
with the combination of MAN and OUA, while no effect was observed with MAN or OUA
alone (Figure 5b). However, high Na+ environments induce a stronger antibacterial boost
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(Figure 5b). Thus, MAN and OUA were partially able to resemble the HS-boosted antibac-
terial phenotype of macrophages. Overall, we conclude that increases in intracellular Na+

levels are not sufficient to mimic HS-boosted antimicrobial activity but require, in addition,
other signals, such as hypertonic stress.

4. Discussion

The role of elevated intracellular Na+ levels on immune cell function has been studied
extensively over the last few years (reviewed in: [8–14]). HS environments modulate
immune cell activity and function [1,18,19,34,35]. Increases in extracellular Na+ can trigger
increases in intracellular Na+ levels [18,21,35], which are linked to altered immunobiology
of macrophages and T cells. Here, we investigated if raising intracellular Na+ by NKA
inhibition is sufficient to mimic the HS-boosted proinflammatory activity of macrophages.
All our experiments were performed either in the RAW 264.7 macrophage cell line or in
primary bone marrow-derived macrophages. As both types of macrophages display the
same HS-triggered proinflammatory and boosted antimicrobial phenotype [1,34], we used
them interchangeably in this study.

The role of the NKA as an ion-independent signal transducer has been establish-
ed [57,58]. With its signaling function, the NKA is involved in various physiological
and pathophysiological processes like regulation of blood pressure, natriuretic control in
the kidney, and heart function (reviewed in: [27]). Moreover, NKA inhibition by cardiac
glycosides influences the activation and function of immune cells (reviewed in: [59]). For
instance, cardiac glycosides are capable of influencing the function of immune cells in
a dose-dependent manner. While high levels of DIG have been shown to inhibit TH17
differentiation via RORγT [60], DIG at lower concentrations has been described to be
an agonist for RORγT [61]. In our study, we applied OUA and DIG in the micromolar
range to impair the ionic transport activity of the NKA. We sought to induce intracellular
Na+ accumulation rather than addressing potential ion transport-independent signaling
functions of the NKA.

In line with earlier findings [21,35], we observed increased intracellular Na+ levels in
macrophages under HS conditions. Inhibition of the NKA with OUA and DIG displayed a
similar effect. While elevated intracellular Na+ levels were accompanied by an intracellular
K+ increase upon HS exposure, pharmacological blockage of the NKA caused an expected
intracellular K+ loss. As described elsewhere [43,62], this was followed by inflammasome
activation and increased IL-1β production. In line with elevated intracellular K+ concen-
trations, IL-1β levels remained low under HS conditions. In contrast, Ip and Medzhitov
showed ROS-dependent inflammasome activation under hyperosmotic conditions [63].
However, they applied higher Na+ concentrations (+100 mM) in comparison to our HS con-
dition (+40 mM), and their inflammasome activation was triggered in an NKA-independent
way [63].

In cardiomyocytes [29], CGs have been shown to induce intracellular Na+ accumula-
tion, thereby attenuating NCX1-driven Ca2+ export [64–66]. Apart from a small Ca2+ peak
early after DIG treatment, both CGs had no short-term impact on the intracellular Ca2+

levels in macrophages. This could be due to the different resting membrane potentials of
cardiomyocytes and macrophages, which could subsequently have a different impact on
the thermodynamics of the NCX activity. Macrophages have a resting membrane potential
between −20 and −40 mV [21,67–69], while cardiomyocytes’ resting membrane potential
is around −90 mV [70]. NCX mode of action depends on the membrane potential [21,22].
In addition, cardiomyocytes have commonly expressed Ca2+-transporters and intracellular
Ca2+-stores that are activated upon OUA treatment [71]. Moreover, they also have other
specific ion channels [72]. This clearly distinguishes their Ca2+-signaling from that of other
cells, such as macrophages.

In macrophages, HS environments enhanced p38/MAPK phosphorylation, subse-
quent expression of the osmoprotective transcription factor NFAT5, and NO relea-
se [1,34,48,73–75] (reviewed in: [8,10]). Treatment with both CGs led to a comparable
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induction of p-p38/MAPK but did not affect NFAT5 on RNA or protein levels. Addi-
tionally, cells treated with cardiac glycosides did not upregulate NO production. On the
contrary, DIG-treated macrophages even displayed an impaired NO release. This indicates
that CG-induced p38/MAPK activation does not trigger subsequent NFAT5-dependent
activation, which is critical for osmoprotective HS-triggered macrophage responses.

The effect of CGs on p38/MAPK phosphorylation has been shown to be cell-type-
dependent. OUA treatment has been described to inhibit p38/MAPK activation in thy-
mocytes [76] and neutrophils [77] but to induce p38/MAPK phosphorylation in human
monocytes [78]. Since HS conditions trigger p38/MAPK activation and increased Na+

levels in T cells [15,18] and macrophages [1,21], it is possible that CG treatment-induced
p38/MAPK activation is not due to enhanced intracellular Na+-levels but triggered by
other CG-induced signaling events.

High Na+ environments lead to intracellular Na+ accumulation and also cause a hyper-
tonic environment, affecting cellular physiology. Treatment with the two cardiac glycosides
OUA and DIG only induces the first. Hence, we hypothesized that Na+ accumulation alone
is not sufficient to mimic the observed HS phenotype in macrophages. We adjusted our
experimental setup accordingly. We sought to mimic HS conditions better by a combination
treatment of OUA and MAN, a non-ionic osmolyte. MAN has been shown to be a potent
inducer of hypertonic stress [55,56,79]. Indeed, we were able to induce Nfat5 mRNA expres-
sion similar to HS conditions when treating macrophages with the combination of MAN
and OUA. The combination of both also improved the killing capacity of macrophages
significantly. However, we could not completely mimic the condition induced by high salt.
Among other hitherto unidentified factors requiring further investigation, intracellular
Na+ availability and enhanced tonicity play a crucial role in the induction of HS-enhanced
macrophage activity.

5. Conclusions

HS environments trigger an NCX1-dependent entry of Na+, which subsequently boosts
the proinflammatory activation of macrophages by p38/MAPK signaling and downstream
NFAT5 expression [1,34]. In this report, we asked whether intracellular Na+ accumulation
is sufficient to cause this proinflammatory macrophage phenotype. Therefore, we blocked
the NKA pharmacologically to increase intracellular Na+ levels similar to those under
HS conditions. We detected a similar intracellular Na+ build-up with the two cardiac
glycosides, OUA and DIG. We observed similarities between macrophages exposed to HS
environments or CGs. However, we were only partially able to mimic the proinflammatory
HS phenotype in macrophages by NKA inhibition. The addition of MAN together with
OUA to induce hypertonic stress and Na+ accumulation in parallel resembled HS conditions
better. The combination treatment increased Nfat5 mRNA in a manner similar to HS levels
and improved antimicrobial defense performance compared to controls. We conclude that
intracellular Na+ availability and hypertonic stress together contribute to the induction of
HS-enhanced macrophage activity.

6. Limitations of the Study

In our study, we show that the inhibition of NKA with the two CGs OUA and DIG
induces intracellular Na+ accumulation in macrophages that resemble the HS environment.
However, pharmacological inhibitors can cause side effects that also affect macrophage
behavior. Therefore, complementary data with macrophages lacking NKA would help to
investigate the role of NKA in Na+ sensing and control of macrophages further. However,
the deletion of NKA is subject to further caveats. The introduction of an NKA knock-
out could alter macrophage viability, as NKA is known to be responsible for regulating
membrane potential. Moreover, several isoforms of NKA are differentially expressed in
different cell types. Presumably, transgenic macrophage cell lines or mouse models that
allow inducible deletion of the specific NKA isoforms expressed by the cells would have to
be used for this purpose.



Cells 2023, 12, 2816 13 of 16

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12242816/s1, Figure S1: Sketches of all the experimental setups
applied. Figure S2: Intracellular Na+ levels after treatment with different concentrations of cardiac
glycosides. Figure S3: Intracellular K+ levels after treatment with different concentrations of cardiac
glycosides. Figure S4: Rb+ uptake assay confirms NKA-inhibition with cardiac glycosides. Figure S5:
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