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Abstract: Organoids are microtissues that recapitulate the complex structural organization and
functions of tissues and organs. Nanoparticles have several specific properties that must be considered
when replacing animal models with in vitro studies, such as the formation of a protein corona,
accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different
cell types. An increase in the number of articles on toxicology research using organoid models is
related to an increase in publications on organoids in general but is not related to toxicology-based
publications. We demonstrate how the quantitative assessment of toxic changes in the structure
of organoids and the state of their cell collections provide more valuable results for toxicological
research and provide examples of research methods. The impact of the tested materials on organoids
and their differences are also discussed. In conclusion, we highlight the main challenges, the solution
of which will allow researchers to approach the replacement of in vivo research with in vitro research:
biobanking and standardization of the structural characterization of organoids, and the development
of effective screening imaging techniques for 3D organoid cell organization.
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1. Introduction

The original organoid definition includes the self-assembly of cells into structures
characterized by defined topology and functionality [1,2]. In 2014, it was supplemented
by Lancaster et al., who defined organoids as “a collection of organ-specific cell types that
develop from stem cells or organ progenitors and self-organize through cell sorting. . . ” [3]
and spatially restricted lineage commitment, as in vivo. This implies the presence of multi-
ple organ-specific cell types, the ability to recapitulate some specific functions of the organ,
and spatial grouping and organization similar to that of an organ. Currently, the main dis-
tinguishing features of organoids are their origin from stem cells through self-organization
and replication of the key structural and functional characteristics of their in vivo counter-
parts [4–8]. At the same time, there have been studies where an organoid’s self-organizing
structure was modified with the introduction of differentiated cells [9]. However, the main
distinguishing features of organoids, which are organo-typical structures and functions,
remain unchanged. Existing reviews of in vitro models for nanotoxicology do not cover
the aforementioned specificity of organoids [10]. Simultaneously, several successful 3D cell
models have recently been developed to test nanoparticles (NPs) [11]. Therefore, we aimed
to evaluate the potential of organoids for nanotoxicological studies. At the beginning of the
review, we present data on the growth of articles in which organoids were considered as
models for nanotoxicology. In the following, we provide examples of successful studies in
which organoids have been used as toxicological models. Based on these data, it is possible
to identify the main features of organoids that make them promising models for nanotox-
icology, such as 3D cell organization, the simultaneous presence of different cell types,
differences in cell sensitivity outside or inside an organoid, modeling of tissue barriers and
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various routes of entry into the body. Finally, we present several successful examples of
organoids as nanotoxicology models. Important aspects that require attention include the
production of organoids and evaluation of their various parameters. The unification and
scaling of these procedures are necessary to obtain a sufficient amount of data for both
statistical analysis and machine learning approaches. At the end of this review, we present
several suggestions for the successful application of organoids in nanotoxicology.

2. Dynamics of Scientometric Indicators of Works, including Studies of Toxicity
and Organoids

We analyzed articles related to the use of organoids in toxicological studies. The search
was carried out in the PubMed database for all fields using the keywords “organoid”,
“toxicity”, and “nanoparticles”. Thirteen articles were published between 2013 and 2020. It
is noteworthy that 22 articles were published over the next two years. We excluded articles
that were not related to organoids as multicellular structures and evaluated the remaining
articles. Owing to their scarcity, the search query was expanded. As shown in Table 1,
over the past five years, the growth of articles devoted to toxicological studies in which
organoids are used as a test model is commensurate with the growth of organoid-related
publications. Simultaneously, research on organoids is increasing its share in toxicity
studies. This suggests that replacing classical toxicological models with organoids will
expand as organoid creation techniques advance.

Table 1. Distribution of articles by search queries related to toxicology and organoids.

Year

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 *

Search
queries

“organoid”
“toxicity”

“nanoparticles”
1 1 1 0 1 1 3 5 11 11

“organoid”
“toxicity” 7 16 9 18 37 53 61 132 154 122

“organoid” 151 189 277 466 761 1033 1360 2141 2839 2113

“toxicity” 41,075 42,975 44,468 45,950 47,545 49,354 52,021 58,787 62,560 41,896

The share of toxicological
studies in the number of

articles devoted to
organoids

5% 8% 3% 4% 5% 5% 4% 6% 5% 6%

The share of organoids
studies in the number of

articles devoted to toxicity
studies

0.02% 0.04% 0.02% 0.04% 0.08% 0.11% 0.12% 0.22% 0.24% 0.29%

* As of September 2022.

3. Organoids in Toxicology Studies

Toxicological research generally has broader objectives than nanotoxicological research.
For example, preclinical studies require testing for toxicity, drug safety, and inflammatory
intestinal disease. This implies the reproduction of not only the histological structure
of the organ but also the corresponding changes in macrophage infiltration and altered
microcirculation [12].

Table 2 presents some studies performed in the last seven years, which show the
potential of organoids for toxicological studies as models of healthy organs.
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Table 2. Morphological studies of organoids in toxicological studies in 2015–2022.

Organoid Type Structures and Cell
Diversity of Organoids

Routes of
Administration of the

Toxic Substances

Visualization and Assessment
of Structures and Cell Types

Disadvantages of
the Model

Organoid
Formation
Protocol

Reference

Patient-derived
oral mucosa

Small proliferating epithelial cells were
located outside, and larger ones with

higher differentiation rates inside,
the organoid

Incubation for 120 h Immunohistochemistry (IHC)
and hematoxylin-eosin staining

The inverted direction of the
histological barrier. The

outer layers are proliferating
while the inner layers are

highly differentiated

[13] [13]

Human esophagus
Immortalized normal human esophageal

keratinocyte cell lines with a differentiation
gradient from periphery to center

Incubation for 24 h

High-resolution confocal
microscopy (CLSM) and

transmission electron
microscopy (TEM). An increase

in intracellular vacuolar
structures has been

qualitatively demonstrated

The inverted direction of the
histological barrier [14,15] [16]

Rat duodenum

Organoids had lobular morphology and
formed microvilli lined with intestinal cells,

mucus-secreting goblet cells, a small
population of enteroendocrine cells, and

Paneth cells

Incubation for 24 h

Phase-contrast microscopy was
used to quantify the percentage

of differentiated organoids
over time

Lack of macrophages [17] [18]

Mouse/human
intestines

Villus-like structures with stem cells, goblet
cells, and endocrine cells at the base of the
crypt. Cell apoptosis was observed at the

tips of the villi

Incubation for 24 h The percentage of surviving
organoids was measured Lack of macrophages [19–21] [22]

Mice intestines
Villus-like structures with stem and Paneth
cells at the base of the crypt. Cell apoptosis

was observed at the tips of the villi

Incubation for
several days

Measurement of organoid area
and number of buds

per organoid
Lack of macrophages [21] [23]

Human intestines Same as above Incubation for 4 days
Quantification of organoid
diameter. IHC staining of

different cell types
Lack of macrophages [21] [24]

Human liver
Organoids have intraluminal structures;

bile canaliculi and pericanalicular sheaths
were formed

Incubation for
several days

Gene expression analysis,
histology examination and

IHC staining
Lack of macrophages [25] [26]
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Table 2. Cont.

Organoid Type Structures and Cell
Diversity of Organoids

Routes of
Administration of the

Toxic Substances

Visualization and Assessment
of Structures and Cell Types

Disadvantages of
the Model

Organoid
Formation
Protocol

Reference

Human intestines

The epithelial layer contains enterocytes,
Paneth cells, enteroendocrine cells,

and goblet cells.
The epithelial layer is surrounded by

mesenchymal cells.

Incubation for several
days or injection into

the lumen

Visualization and marker
expression quantification in

epithelial and
mesenchymal cells

Deep crypt structures are
not seen [27,28] [29]

Human alveoli
Organoids had a structure similar to an

alveolar sac, with many alveoli and layers
of epithelial and mesenchymal cells

Incubation for
several days

The organoid diameter
was measured

Has the level of
fetal maturity [30] [30]

Human kidney

Organoids contained kidney tubules
subdivided into proximal segments and
distal portions, interstitial cells, regions

resembling primitive glomeruli with
podocytes, and proliferating cells

Incubation once for 24 or
48 h, or four times with a

one-day interval
IHC staining Organoids were composed

of immature nephrons [31] [32]

Human kidney
The morphology was close to that of

normal glomeruli. Extracellular matrix
(ECM) was visible within the structure.

Incubation for 48 h
No toxic effects were visualized.
The homogenate of organoids

was investigated

The tubules of the nephron
are missing [33] [33]

Human bladder 5–7 cell layers with multiple layers of
intermediate cells

Incubation in solution
for 60 min

The penetration of particles
labeled with a luminescent dye

through all layers of the
organoid is qualitatively shown

Non-homogenous
differentiation with three

discrete zones
[34] [35]

Human testis Leydig cells, Sertoli cells, spermatogonia,
and peritubular cells Incubation for 48 h Polymerase chain reaction (PCR)

and qualitative CLSM

The organization of cells
into structures is not

described, although the
histological images show the

peripheral distribution of
Sertoli and Leydig cells

[36] [36]
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Table 2. Cont.

Organoid Type Structures and Cell
Diversity of Organoids

Routes of
Administration of the

Toxic Substances

Visualization and Assessment
of Structures and Cell Types

Disadvantages of
the Model

Organoid
Formation
Protocol

Reference

Human brain Immature neurons and astrocytes
formed in layers Incubation for 6 h TEM and qualitative

IHC staining

Has the level of fetal
maturity. Neurons migrate

to the center of the organoid
[37] [38]

Human brain Same as above Incubation for 24 h
IHC staining for apoptosis and
cell proliferation. Assessment of
tau and β-amyloid expression.

Same as above [37] [39]

Human brain

Dopaminergic neuron spheroid with
incorporated astrocytes. Astrocytes were
organized radially around the organoid,

forming a glial corona

Incubation for 24 h
Quantitative fluorescence
staining with calcein and

propidium iodide (PI)

There are no data on the
spatial distribution of

subpopulations of Lund
human mesencephalic cells

in the organoid

[40] [40]

Human brain

Large neuroepithelial buds containing
fluid-filled cavities. A pool of neural

progenitor cells was located near
apical surface

Incubation for 10 days IHC staining Absence of macrogliocytes
and microgliocytes [41] [41]

Mouse retina
Continuous epithelial structures with clear

stratification, which contain all major
neural retina components

Incubation in solution
for 2 and 4 days IHC staining Absence of

hematoneural barrier [42] [43]

Human
endometrium

Lumen-bordering cell layers. Presence of
secretory cells and mucus secretion. Incubation for 72 h XTT assay, ion channel activity,

Ki67 expression assessment

Absence of endometrial
stromal cells, low

hormone responses
[44] [45]
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As shown in Table 2, the assessment of organoid structure and heterogeneity is some-
times not performed [33]. Research is often qualitative [13,16,38,39]. In some cases, only
the basic morphological characteristics of the organoid are described (the average diameter
or percentage of surviving or differentiated organoids and the proportion of dead cells in
the organoid), which may be related to both organoids and spheroids [18,22,24,30].

Several studies have characterized toxic effects in organoids quantitatively, relying on
the definition by Lancaster and Knoblich [3] and including a quantitative description of the
structures and states of different cell types. For example, different organoid cell types were
quantified in [29,36,40,41]. Some studies have considered the structural organization of
organoids [32,43]. The concentrations of the tested compounds are usually selected based
on their average concentrations in the blood plasma [13,38].

4. Routes of Tested Substances’ Administration into Organoids

Several methods can be used to introduce tested compounds into organoids (Table 2).
The main route is incubation in the solution (basolateral exposure) (Figure 1). The other
route is microinjection directly into the lumen of the organoid using thin-walled glass
capillaries (luminal exposure) [46]. These routes of administration have different effects on
organoids. For instance, in a study by Hanyu et al. [47], basolateral deoxynivalenol exposure
had a more significant impact on intestinal barrier function and stem cells in enteroids than
luminal exposure. Immunofluorescence staining of intestinal epithelial proteins, such as
E-cadherin, claudin, zonula occludens-1 (ZO-1), and occludin, showed that only basolateral
exposure disrupted intestinal epithelial integrity. Basolateral exposure, but not luminal
exposure, suppressed the Lgr5+ stem cell count and proliferative cell ratio [48,49]. Pradhan
et al. compared the luminal and interstitial (e.g., basolateral) exposure of enteroids to Shiga
toxin [29]. They found that only luminal exposure induced apoptosis. On the other hand,
in human intestinal organoids, both administration routes of toxin resulted in apoptosis
induction. This phenomenon may be explained by the absence of mesenchymal cells in
enteroids. Their necrosis can trigger the release of toxic compounds that cause epithelial
cell death. In addition, loss of Wnt production by mesenchymal cells can result in epithelial
cell death [29,50].
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Figure 1. Main routes of NP entry into organisms. Most NPs can enter the body through natural
barriers, such as the skin, mucous membranes, or vessel walls. At the same time, to study the
biodistribution of NPs, it is important to understand how nanoparticles pass through these barriers.
For example, NPs that enter the body through the skin can enter vessels by passing through the
basolateral membrane and then through the endothelial layer. If the NPs initially enter the vessel,
they can leave it via the luminal pathway, first passing the endothelial layer and then the basolateral
membrane in the opposite direction.

In addition to differences in cellular responses, there is another important aspect of
luminal administration. Luminal injections are much more complex than simple incuba-
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tions in a medium. Additionally, it is difficult to perform identical microinjections when all
organoids are different (even when produced according to the same protocol). This has led
to inconsistencies in the experimental data. Moreover, even microinjection leads to organoid
damage and disruption of internal space integrity. This can lead to leakage of a lumen
content and the test substance itself, which turns luminal exposure to basolateral [51].

Thus, when choosing from luminal or basolateral exposure, it is necessary to evaluate
both the technical difficulties and validity of this particular method of administration.
Alternatively, the organoid polarity reversal approach can be used. With this approach,
the sequence of histological barriers is changed, and incubation can be used to study both
luminal and basolateral exposures [51,52].

Another route of substance administration has been achieved using microfluidic
devices for drug delivery under flow conditions that mimic the pulmonary system [48]. In
such models, the investigation may focus on three-dimensional cell migration, topography
of metabolic activity, and cytotoxicity. Moreover, these models allow researchers to make
physiological-related predictions [49].

5. Potential Benefits of Using Organoids in Nanotoxicology
5.1. 3D Cell Organization

More than 90% of drugs fail in human clinical trials using preclinical models [53]. In
some cases, this is associated with incorrect in vivo models [54]. In this regard, patient-
derived organoids offer a valuable screening platform for preclinical testing [9]. Due to the
spatial organization of multiple organ-specific cell types, organoids have huge potential
as a test system for characterizing the permeability of histological barriers [55–60], deposi-
tion [61], drug metabolism [62–64], alteration of intercellular communications [65–69], and
intercellular environment reactions [70–74].

Nanotoxicological studies have shown that 3D cell organization can significantly alter
their sensitivity to NPs [75]. However, it cannot be argued that the three-dimensional
organization always increases or decreases toxic effects [76]. The increase or decrease
in toxic effects in 3D cultures depends on the modeled tissue [77]. For instance, Chia
et al. reported on the increased resistance of intestinal spheroids to ZnO NPs’ genotoxic
effect [78] while Juarez-Moreno et al. found the opposite effect regarding Ag NPs [75].

5.2. Cell Diversity of Organoids

Different cell lines vary considerably in their susceptibility to NP actions [79–81].
This depends on many factors, including intracellular reactive oxygen species (ROS) level,
autophagy activity, or sensitivity to specific elements [82]. However, for adequate signaling,
cells must be located close to each other in the same way as inside the body. Organoids
make it possible to model such cell connections. The presence of different cell populations
organized in 3D structures allows us to speak of compartmentalization in organoids. In
comparison with organoids, spheroids do not show any relevant tissue structure; in other
words, their structure presents low similarity to the original tissue [83]. Spheroids can be
defined as clumps of cells obtained from differentiated cells that aggregate and exhibit
some tissue-like structures [84]. Another advantage of organoids is that they support
stem cell and progenitor cell cultures and their cell–cell interactions, unlike traditional 2D
cultures [85].

5.3. Ability to Observe Complex Effects

Using organoids allows researchers to visualize and assess many processes that cannot
occur in homogeneous 2D cultures or spheroids. Monitoring of the following changes is of
great importance in nanotoxicological research because of organ-specific changes in NPs:

• Protein corona formation [86,87];
• The ability of NPs to accumulate in certain cell types [21,88,89];
• The ability of NPs to pass tissue barriers [90–92];
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• Different sensitivities to oxidative stress and other toxic effects caused by NPs have
been observed in cells of different organs and organ structures [93–95].

Based on these features, we highlighted five main advantages and disadvantages of
organoids for nanotoxicological research (Table 3).

Table 3. Advantages and difficulties of using organoids in nanotoxicological studies.

# Organoid Possibilities Organoid Feature Challenges Models that Lack
These Features

1
Reproducing intercellular

communication and
paracrine effects

Organoids are heterogeneous
(composed of several types

of cells, including stem cells)

Difficulty in
standardization

and quantification

2D cell cultures
and spheroids

2
Investigating the penetration

of NPs through
tissue barriers

Reproduction of the
structural organization

of organs

Difficulty in visualizing the
penetration process

2D and 3D cell cultures
and spheroids

3 Reproducing the reactions
of human tissues [7] Develops from stem cells

Requires the introduction
of additional cells into the
structure, which during

embryogenesis penetrate
the tissue by migration

Animal models

4 Reproducing
biochemical gradients Cell nutrition by diffusion

The size of the organoid is
limited; the direction of cell
differentiation is inverted

to the center of
the organoid

2D cell cultures

5

The ability to obtain many
quantitative data on different

cell types and the state of
organ structures

and functions

Structural complexity Lack of screening tools
for imaging

2D cell cultures
and spheroids

6. Current Progress in Organoid Use in Nanotoxicology

Studies on organoids as test systems for nanotoxicology are scarce, and are presented
in Table 4.
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Table 4. Morphological studies of organoids in nanotoxicological studies in 2014–2022.

Organoid Type Organoid Structures
and Cell Diversity NP Delivery Route NP Type NP Dose Visualization and Assessment

of Structures and Cell Types
Organoid Formation
Protocol Reference Ref

Human brain
Multi-layered, neurons

expressed cortical layer I, V,
and VI markers

Incubation for 24 h

Multi-walled carbon
nanotubes (MWCNTs),

diameter 5–15 nm,
length 0.5–2 µm

16 or 64 µg/mL

Organoids were dissociated into
individual cells, stained with a
NO probe, dihydroethidium

(DHE) superoxide probe, and
AO/DAPI to determine
cytotoxicity. All results

were quantified

[96] [97]

Human liver Primary hepatocytes, stellate
and Kupffer cells

Incubation for 1 to
2 days 20 nm MgO 100 µg/mL

Quantification of ROS and ATP
based on image analysis after

IHC staining
[98] [99]

Human colon No structural
characteristics provided Incubation for 24 h 10–20 nm SiO2

21 nm TiO2

0.8 mM
1.1 mM

Live/dead cell ratio was
determined after

fluorescent labeling
[100] [100]

Human pancreatic
cancer

No structural
characteristics provided

Incubation for 2
or 24 h

Magnetoliposomes
with SPION core and
phospholipid bilayer.

Size 11.1 ± 2.5 nm

225 µg [Fe]/mL

IHC staining, CellTiter Glo
Assay for cell viability

assessment, apoptotic marker
expression measurement

[101] [102]

Human gut

Cystic structure, consisting
of an epithelial cell layer that

envelops a hollow lumen.
Apical side was covered

with mucus

Incubation for 24 h

2 nm gold NPs
conjugated with
doxorubicin and
AlexaFluor 647

50 µg [Au]/mL
Confocal microscopy with

AlexaFluor 647, DAPI,
and Actin-488

[103] [103]

Human intestines
Highly convoluted epithelial

structures surrounded
by mesenchyme

Incubation for 1, 2,
and 14 days 50 nm polystyrene 10 and 100 µg/mL

IHC staining, assessment of
inflammatory response, TUNEL

assay, ROS generation,
endocytosis inhibition

[104] [104]

Human brain

No specific information
about inner structure was

provided. Neural progenitor
cells, neurons, and astrocytes

were presented

Incubation for 7 days PVP-coated 20 nm Ag
NPs 0.1 and 0.5 µg/mL

RNA sequencing, IHC staining,
TUNEL assay for assessment of

apoptosis rates, cytoskeleton
structure stability evaluation

STEMdiff Cerebral
Organoid Kit [105]
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Table 4. Cont.

Organoid Type Organoid Structures and
Cell Diversity NP Delivery Route NP Type NP Dose

Visualization and
Assessment of Structures and

Cell Types

Organoid Formation
Protocol Reference Ref

Mouse intestines No structural
characteristic provided

Animals were
subjected to NP

action, and organoids
were formed from

intestines of
these animals

10 nm CeO2/Mn3O4
nanocrystals 0.55 mg/kg

The number of organoid
crypts was qualitatively

determined via light
microscopy. Apoptotic cell

percent and ROS were
qualitatively determined by

IHC staining

- [106]

Mouse intestines

Villus-like structures with
stem cells and Paneth cells

mixed at the base of the
crypt. Cell apoptosis was

observed at the tips of
the villi

Same as above
~3 nm hydroxylated
graphene quantum

dots (QDs)
5 mg/kg

The organoid size was
determined using
light microscopy

[21] [107]

Mouse intestines

Crypt-like structures fed into
luminal domains where

apoptotic cells pinched off
into the lumen. Epithelial

cells formed a monolayer at
the organoid-gel interface

Incubation for 3 days >500 nm
Bi2Te3 nanowires

0, 50, 100, and
200 µg/mL

Quantitative measurements of
organoid surface area.

Cell viability
were quantitatively analyzed

based on a modified
colorimetric MTT assay

[108] [109]

Mouse kidney
Structures similar to the

proximal tubules of
the nephron

Incubations with
NMs for 48 h

Gold NPs, size
5.2 ± 1.3 nm

G5-OH PAMAM, size
2.6 ± 0.17 nm

56.6 µg/mL and
3.5 µg/mL

0.675 mg/mL and
0.05 mg/mL

A qualitative investigation of
IHC-stained sections with

biomarkers for kidney toxicity,
Kim-1, and TNFα

[110,111] [112]

Mouse and
human kidney

Glomerulus-like structures,
podocytes, and proximal
tubules had developed in

the kidney organoids

Incubations with
NMs for 24 h

QDs: CdTe, CdSe/ZnS,
InP/ZnS, GO, BP

0, 0.2, 1, 5, and
25 mg/mL

No quantitative assessment
has been carried out. Sections

stained with
hematoxylin-eosin and IHC
with antibodies against LTL,

NPHS1 or KIM-1 were
qualitatively assessed

[113] [113]
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In addition to the goals of nanotoxicological studies presented in Table 3, other areas
of application of NPs can be considered, for example, the study of NP-organoid struc-
tures [114]. In these studies, the organoid cavity was used as a drug delivery vesicle.

7. Importance of Nomenclature

As shown in Tables 2 and 4, organoids with different levels of structural differentiation
and a variety of cell types can be used in toxicological research. The similarity of the
organoid to the structures of the imitated organ determines the quality of the obtained
results. In this regard, it is essential to describe the intact state of the studied organoid
structures as well as to precisely follow the terminological nomenclature. For example, a
study on colonic organoids was conducted in 2020 [115]. As a technique for reproducing
organoids, the authors referred to the work of 2017 [116], which also used the term “colon
organoid”. This work, in turn, refers to another work devoted to the technique of reproduc-
ing organoids. This is a 2015 work in which, as it turns out, we are talking about “intestinal
epithelial spheroids” [117]. It should be noted that in the works of 2020 and 2017, along
with the term “colon organoid”, the term “3D organoid culture” is used, which blurs the
concept of an organoid. Additionally, in the original article in 2015, the term “organoid
culture” was used only once in the introduction concerning the results of 2011 research.

A study by Angireddy et al. [118] used a model of kidney organoids developed by
Hendriks et al. [119], demonstrating that this model could reproduce kidney spheroids.
The terms “3D organoid model” and “3D organoid culture” were used in a study by Zhang
et al. [120] in relation to the model reproducing hepatic spheroids [121].

In our opinion, these inaccuracies are associated not only with the desire to follow sci-
entific trends but also with the cytological approach to organoids. The focus of researchers’
attention is not the structural organ organization of the model but the three-dimensional
environment of cells. Currently, the differences between organoids and spheroids are gen-
erally accepted. Therefore, inaccuracies in the nomenclature can mislead readers regarding
the object on which the testing was performed, thereby reducing the importance of the
obtained results.

The solution to the problem demonstrated above could be the creation of “living
biobanks”, providing researchers with “true organoids”. Organoids originating from
patient-derived induced pluripotent stem cell (iPSCs) have immense potential for develop-
ment as accurate preclinical models for testing pharmacological or biological interventions.
Drugs that function successfully in human organoids have a higher chance of being safe in
clinical trials [9].

8. Suitability of Organoids for Biomedical Testing

It is suggested that all the organoid characteristics make these models less suitable
for high-throughput/high-content screening and can lead to complications in in vitro
assays [122]. In contrast, spheroids are more compliant with high-throughput/high-content
screening because they are characterized by easy-to-use protocols and scalable methods (co-
culture or monoculture) with high reproducibility [122]. In Table 5, we define the locations
of the organoids in the biomedical research system.

Table 5. Correspondence of models, toxic effects, and research mechanisms.

Organization Level Test Object Toxic Effects Nanotoxicity Mechanisms Methods

Cell 2D culture Cytotoxic effects Oxidative stress
Mutagenic effect

In silico modeling
Genetic methods

Cytological methods

Tissue Cell spheroid Cytotoxic effects Same as above Same as above
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Table 5. Cont.

Organization Level Test Object Toxic Effects Nanotoxicity Mechanisms Methods

Organ Organoid

Influence on the intercellular
substance. Permeability of

histohematogenous barriers.
Cytotoxic effects in disease
modeling. Stem cell toxicity

Same as above +
interaction with receptors,

deposit effects,
interaction with the

extracellular substance

Same as above +
morphological

methods

Interorgan
integrations Organ-on-chip

Modifications of nanomaterials
and formation of protein

corona in the body.
Pharmacokinetics parameters

Same as above +
toxic effects associated

with the formation of the
protein corona, effects

associated with a
combination of toxic
effects with diseases

Same as above +
physiological methods

Intersystem
interactions and

reactions of the body
Animal model

Chronic effects and effects on
offspring and higher

nervous activity

Same as above +
Chronic toxicity

Same as above +
behavioral tests

Social aspects Human Social groups’ lifestyle influence
Same as above +

social features of different
population groups

Same as above +
epidemiology and

sociology

9. Methods for Assessing Organoid Characteristics

In some toxicological studies, organoids are considered one of the methods for confirm-
ing the results of 2D cell culture-based studies. In such research, two series of experiments
are usually conducted on 2D cultures and organoids. Moreover, a set of cytological tech-
niques is transferred from 2D cultures to organoids [33]. For example, Grabinger et al.
compared the chemosensitivity of ex vivo-cultured intestinal organoids and immortalized
intestinal epithelial cells (IECs) and found that the IECs were 10–30 times less sensitive to
drugs than mini-guts, indicating that the latter can simulate the intestine more closely [123].

Technologies and experimental procedures developed in other model systems can
now be applied to human organoid systems, which will accelerate our understanding of
human biology and allow us to validate hypotheses and models generated from animal
model systems [7]. The potential of an organoid is not only associated with the 3D organi-
zation of cells. Therefore, it is necessary to consider the morphological and stereological
characteristics of organoid structures that reproduce human organ structures. The number
and distribution of NPs within the compartments of the organoid, the ratio, and the activity
of different cell populations are also key advantages of organoids over 2D cultures. In our
opinion, cytological studies should be supplemented with morphological methods to assess
nanotoxicity [124]. This was also evidenced by several toxicological studies conducted on
organoids, which successfully demonstrated the complete replacement of animal models
with organoids [29,32].

Currently, researchers have a wide range of methods to work with organoids, including
confocal microscopy, electron microscopy, light microscopy of classical, histochemical,
and IHC-stained sections [125], software for morphometric processing of the obtained
data [126,127], and methods for the quantitative assessment of the state of specific organoid
cells [128–131]. Owing to these methods, it is possible to assess structural changes in
organoids and replace animal models for organ nanotoxicology.

Two types of research, high-content and high-throughput, can be successfully imple-
mented through a comprehensive quantitative assessment of the functional, morphological,
cytological, and omic parameters of organoids (Figure 2). An excellent example of high-
content research is demonstrating the power of combining single-cell phenotypic analysis
with advanced light microscopy to reveal complex morphogenic processes under defined
culture conditions [8]. The researchers extensively used single-cell RNA sequencing to
comprehensively characterize cell populations and infer phenotypic trajectories of multiple
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cell types using RNA velocity. This high-dimensional tool predicts the cell state based
on the temporal derivative of individual cell gene expression. This unbiased analysis
identified specific gene markers of the myriad cell types present in gastruloids. The fluo-
rescent labeling of certain cells allows live imaging to capture specific cell populations as
they participate in morphogenesis [8]. An example of high-throughput research can be a
combination of methods, including assays based on metabolic activities, cell morphology
monitoring, and spheroid size measurement [77].
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Figure 2. The combination of high-throughput and high-content studies for organoids requires the
development and improvement of several methods, namely the automation of organoid produc-
tion, the standardization of production methods, and the development of standards for assessing
morphological changes in organoids.

10. Methods of Advanced Organoid Production

Owing to the variety of existing nanomaterials and the need to obtain large amounts
of toxicological data, the production of organoids must be simplified. Methods that would
allow high-throughput organoid fabrication and screening are required. These issues
can be addressed using dynamic flow systems such as microfluidics and organs-on-a-
chip. In addition to technical problems, there are also methodological problems described
above, such as the inadequate vascularization of organoids [132], an inverted order of cell
layers [133], or lack of immune system cells [134]. These problems can also be solved, in
whole or in part, by using flow conditions that are close to the real organism.

High-throughput spheroid production can be achieved with the help of bioreactors.
However, standard large bioreactors are unsuitable for this purpose. Organoid production
requires precise concentration control of the active substances, oxygen, shear stress, etc.
Qian et al. circumvented these limitations by creating a mixing system for a standard
12-well plate [135]. In fact, it is 12 separate mini-reactors, each capable of maintaining a
specific set of conditions. The authors demonstrated the creation of brain organoids with
different regional specificities. The disadvantages include imperfections in 3D printing
(used to print blades of stirrers), heterogeneity, and the lack of vascularization of the
resulting organoids.

The problem of organoid heterogeneity is quite essential since this greatly affects the
quality of the results. Xue et al. developed a bioreactor to unify the production of retinal
organoids [136]. The bioreactor was constructed on a PDMS chip basis with wells connected
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through a serpent-like channel. The authors performed simulations and showed that, with
such pumping of the medium, the formation of bubbles and other inhomogeneities was
significantly reduced. This leads to more uniform organoid growth than in the case of
mixing each well. Furthermore, this system showed similar results in terms of morphol-
ogy, maturation, and NADH levels in organoids compared to static conditions. Cai et al.
proposed a unique approach that uses acoustofluidics [137]. Compared with common
mechanical mixing, they were able to achieve uniform mixing during organoid growth.
This is known to be problematic because large organoids can interfere with the stirrer and
affect the mixing parameters. This was achieved by constantly monitoring the rotation rate
and adjusting it during organoid growth.

However, organoid formation requires several steps to advance their features. Homan
et al. showed that flow conditions lead to the vascularization of kidney organoids [138].
This is reflected in podocyte maturity, tubular structure, and gene expression. These
organoids are closer to real organisms. The area of the vascular network increased up to
five times, and the density of close contacts increased ten-fold. Simultaneously, a clear
dependence on the shear rate was observed in the range of 0.04–4.27 mL/min. Berger
et al. also reported a positive effect of medium flow on the maturation rate of midbrain
organoids [139]. The main effect was associated with a decrease in the size of the necrotic
core in the center of organoids compared with static cultivation, even with medium stirring.
Computer modeling and in vitro experiments have shown that the oxygen concentration
that leads to cell death is less than 0.04 mol/m3. Under flow conditions, 1.8% vs. 6.4% of
cells were found to be under this O2 concentration when cultured in 24-well plates. Jung
et al. also reported enhanced maturation of organoids under flow conditions [140]. This
was accompanied by an increase in the expression level of albumin and transferrin, as
well as the expression of hepatocyte-specific markers MRP2 and HNF4α. The process of
organoid maturation was also shorter and was only 5 days. Accelerated organoid formation
has also been demonstrated by Sekiya et al. (renal organoids) [141] and Tao et al. (human
islet organoids) [142]. In both cases, the approaches were similar. Tao et al. created a
porous membrane with a PDMS mask on top. Separate wells were created inside PDMS,
and each well supported the growth of a single islet organoid. They found that under
flow conditions, the level of E-cadherin expression, which is very important for pancreatic
cells, is almost eight times higher than that under static conditions. They also analyzed a
significant number of α- and β-cell maturation markers and found that flow conditions
positively affect the dynamics of organoid maturation. In addition, organoid functionality
(insulin secretion) was higher under flow conditions. Cho et al. also demonstrated a
positive effect of the medium flow on the quality of brain organoids [143]. Cerebrospinal
fluid (CSF) circulation plays an important role in neuronal structure formation. The authors
developed a simple microfluidic setup using a laboratory shaker to simulate a bidirectional
flow. They showed that cultivation under such conditions positively affects not only the
transport of glucose into organoids and their viability but also leads to less variability in
the expression of specific genes. This is important in the context of the reproducibility of
studies conducted on organoids.

As shown in Tables 2 and 4, a typical approach to study toxic effects on organoids
is simple incubation in a culture medium containing NPs. This approach does not reflect
the real pathways of exposure that occur in the body, particularly with the intravenous
administration of NPs. At first, it is associated with insufficient organoid vascularization.
In this case, NPs can enter the organoid only through the paracellular or transcellular
pathways. This issue can be addressed by enhancing vascularization using the approaches
described above. Second, fluid flow can affect the interaction of NPs with organoid surfaces.
The standard method of culturing organoids under static conditions using an extracellular
matrix reduces the penetration of substances into the organoids [144]. Calculations show
that the penetration of oxygen and nutrients into organoids limits their growth and leads
to death [145]. For the same reason, it can be expected that the distribution of NPs within
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an organoid will be limited. Thus, flow systems, such as microfluidics or bioreactors, are
required for both the cultivation and testing of NPs on organoids.

11. Conclusions and Future Directions

The further development of organoids to better match organs will complicate organoid
structure and increase the diversity of cell populations and intercellular interactions. This
will require methods for assessing toxic effects, similar to those created for animals but
adapted for a bioengineering approach. Using only cytological methods when analyzing
such complex structures will not bring researchers closer to replacing animal models. The
unification and systematization of existing morphological and cytological research methods,
biobanking, and the creation of new methods for reproducing organoids consisting of
several cell types will fully reveal the potential of existing models for nanotoxicological
studies and improve their quality. Today, many organs and tissues still lack adequate
organoid analogs. For example, organoids formed from different part of the female genital
tract (FGT) are currently under active development. Numerous reviews were recently
published on the topic [146–148]. However, no nanotoxicological studies were conducted
on FGT organoids obtained from normal tissues. Limited but promising data are available
only for cancer FGT organoids [146,149,150]. At the same time, there are diseases for which
organoids and nanomaterials are studied separately, for instance, Zika virus infection [151].
Since the Zika virus is the only one from its genus that can infect the body through sexual
transmission, FGT organoid models for nanotoxicology could be of particular interest.

Unfortunately, data on the similarities between the toxic effects in organoids and
in vivo models are scarce in the literature. At the same time, because organoids are con-
sidered a substitute for animal models, it is of considerable interest to draw parallels in
nanotoxicological studies in vivo and in vitro using organoids.

The formation of organs in vivo occurs under conditions of constant cell migra-
tion [152,153]. In this regard, the further development of organoids as an alternative
to in vivo studies requires adding extra elements to the organoids’ compositions.

• The combination of organoid culture with bioengineering approaches, such as organoid-
on-a-chip, microphysiological systems [11,154–156], and multi-tissue organ-on-a-
chip [98].

• Automated 3D bioprinting has the potential for scaling up the production of organoids
and tissue constructs. For post-organoid bioprinting, many hurdles need to be solved,
including the improvement of bioprinting resolution, shear stress-induced cell dam-
age due to high cell densities, the development of better bioinks for depositing cell
aggregates, and effective vascularization techniques. The goal is to combine microengi-
neering and organoid cultivation technologies to mimic a human working model to
imitate any disease or for comprehensive drug testing to avoid the burden of human
trials [9]. This prompted the development of other approaches. For example, the 3D
bioprinting concept uses organoid-forming stem cells as building blocks, which can be
deposited directly into extracellular matrices for spontaneous self-organization [157].
Another solution could be the magnetic levitational bioassembly of 3D tissue con-
structs [158].

• Gastruloids are 3D aggregates of embryonic stem cells cultured under defined con-
ditions that display axial organization and gene expression patterns mimicking the
earliest stages of organism development. Their use allows researchers to recreate
structures analogous to those of organs in many ways. This has been demonstrated in
the development of the heart and intestinal tube [8].

Another challenge faced by nanotoxicologists is the development of gels and media
for the cultivation of organoids that are equally inert to NPs of different compositions,
including the formation of protein crowns. For example, gold NPs exhibit significant
binding to the HA gel matrix, hindering their transport and uniform distribution within
the culture medium [112]. Some NP types, including gold, silver, copper, quantum dots,
and some derivatized silicas, react with thiol chemistry. The culture media contain many
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soluble serum proteins known to adsorb onto gold surfaces, producing a protein corona.
Aggregation could also result from divalent cation (e.g., calcium)-induced gold particles
and gold-HA gel aggregation [112].

The increase in article citations associated with a complete characterization of toxic
changes in organoid structures (Table 2) is consistent with the data in Table 1. Based on these
data, we demonstrate that an increase in the number of articles devoted to toxicological
studies in which organoids are used as a test model is commensurate with the increase
in organoid publications but not related to the total number of toxicity studies. Thus,
we assume that the quality of organoid characterization, in its classical definition, has a
significant impact on the quality of toxicological studies [3].

Summarizing the above data, we formulated questions to be solved by the nanotoxi-
cology of organoids.

Challenge 1. How can structural variability, cellular heterogeneity, and complexity of
organoids be assessed?

Challenge 2. How can the organoid production be robotized, automated, or scaled?
Challenge 3. How can organoid nanotoxicology assessments be quantified based on

self-reporting genes?
Challenge 4. How can we adapt these challenges to high-content and high-throughput

screening to successfully replace routine 2D cell cultures and animal models?
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Abbreviations

ECM extracellular matrix
PCR polymerase chain reaction
AO acridine orange
ATP adenosine triphosphate
CLSM confocal laser scanning microscopy
DAPI 4′,6-diamidino-2-phenylindole
DHE dihydroethidium
FGT female genital tract
HA hyaluronic acid
IHC immunohistochemistry
iPSCs induced pluripotent stem cell
KIM-1 kidney injury molecule-1
LTL lotus tetragonolobus lectin
MWCNTs multi-walled carbon nanotubes
NMs nanomaterials
NO nitric oxide
NPs nanoparticles
QDs quantum dots
PDMS polydimethylsiloxane
PI propidium iodide
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ROS reactive oxygen species
SPION superparamagnetic iron oxide nanoparticles
TNFα tumor necrosis factor-alpha
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