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Abstract: The purpose of this study was to develop a cell–cell interaction model that could predict a
tumor’s response to radiotherapy (RT) combined with CTLA-4 immune checkpoint inhibition (ICI)
in patients with hepatocellular carcinoma (HCC). The previously developed model was extended
by adding a new term representing tremelimumab, an inhibitor of CTLA-4. The distribution of
the new immune activation term was derived from the results of a clinical trial for tremelimumab
monotherapy (NCT01008358). The proposed model successfully reproduced longitudinal tumor
diameter changes in HCC patients treated with tremelimumab (complete response = 0%, partial
response = 17.6%, stable disease = 58.8%, and progressive disease = 23.6%). For the non-irradiated
tumor control group, adding ICI to RT increased the clinical benefit rate from 8% to 32%. The
simulation predicts that it is beneficial to start CTLA-4 blockade before RT in terms of treatment
sequences. We developed a mathematical model that can predict the response of patients to the
combined CTLA-4 blockade with radiation therapy. We anticipate that the developed model will
be helpful for designing clinical trials with the ultimate aim of maximizing the efficacy of ICI-RT
combination therapy.

Keywords: immune checkpoint inhibitor; tremelimumab; radiation therapy; mathematical modeling

1. Introduction

Radiation therapy (RT) is traditionally considered a local cancer treatment due to its
immune-suppressive characteristics. However, current evidence has demonstrated that
radiation also possesses immune-stimulatory characteristics [1,2]. Potential immunogenic
cell death via radiation triggered the investigation of radiation combined with immune
checkpoint inhibitors (ICIs) for metastatic cancer [3].

A significant concern in adding RT to ICI is the development of radiation-induced
immune-suppressive effects [4]. Despite the growing number of trials combining RT and
ICI, whether the RT regimen in combination with ICI is the appropriate choice remains
an open question, especially considering factors such as the timing of the radiation [5],
sequencing [6], and patient selection [7]. Numerous studies [8–12] have investigated the
integration of these treatments based on preclinical evidence demonstrating a synergistic
interaction between them. However, it remains unclear how to optimally integrate these
therapeutic modalities in the treatment of cancer patients. Beyond disease-specific factors,
there exist numerous unanswered questions regarding optimal sequencing of radiation
and ICI, as well as radiation dosing and target selection [13]. Therefore, it is essential to
develop optimal strategies to improve the effectiveness of a combined treatment.

Mathematical models have the potential to help find optimal administration protocols,
provide a deeper understanding of the dynamics, and aid in the design of clinical trials [14].
Various mathematical models were developed to simulate the interaction between cancer
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cells and the immune system. These models aim to predict the outcome of various can-
cer treatments, such as immunotherapy and radiation therapy. For example, one study
investigated the effect of the immunotherapy and radiation therapy dose schedule in terms
of immune response time characteristics through a mathematical model and included
cyclic cytokine-based immunotherapy treatment in a tumor growth model [15]. Similarly,
Sotolongo-Grau et al. proposed a dynamical system model for tumor–immune system
interaction together with a method to mimic radiation therapy. A large population of
virtual patients was simulated following an ideal radiation treatment. A characteristic
parameter, the immune system/tumor efficiency ratio (ISTER), was introduced, and its
dependence on treatment success and other features was studied [16]. Other studies have
presented a mathematical model for predicting Kaplan–Meier survival curves of combined
radiation and chemotherapy in patients with non-small cell lung disease (NSCLC) for use
in clinical trial design [17].

In this paper, using a mathematical model, we study the response of a solid tumor to a
combined RT and ICI treatment with various treatment regimens. We take hepatocellular
carcinoma (HCC) treated with radiation and tremelimumab as a specific example. The
first will describe the derivation of a mathematical parameter for CTLA-4 blockade with
tremelimumab. The second will describe the patient response to RT and ICI with different
treatment regimens, i.e., (1) patient selection and (2) the timing of radiation, in order to
achieve maximized tumor eradication for both local and metastatic cancers.

2. Materials and Methods

The mathematical model was developed using the Python programming language
(Python Software Foundation, Version 3.9, Wilmington, DE, USA).

2.1. Model Equations

The previously developed tumor–immune system interaction model was modified to
account for the effects of anti-CTLA-4 immune checkpoint inhibitors [18]. The model was
applied to predict patient responses after the combined radiation treatment with CTLA-4
immune checkpoint inhibitors.

Our model consists of four compartments—TI: irradiated tumor cells, I: dying tumor
cells, TNI: non-irradiated (metastatic) tumor cells, and L: circulating lymphocytes.

dT I
dt

= aT − ω1
TI

g + TI + TNI
L − δ∗(tR)

(
1 − e−αT DT−βT D2

T

)
TI (1)

dI
dt

= δ∗(tR)
(

1 − e−αT DT−βT D2
T

)
TI − rI (2)

dTNI
dt

= aTNI − ω1
TNI

g + TI + TNI
L (3)

dL
dt

= ω2(1 + δtrem)
TI + TNI

g + TI + TNI
L + ω3

I
g + I

L + s − f L − δ∗(tR)
(

1 − e−αLDL
)

L (4)

The new formalism has only one additional term (
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constant (λ), as in Equation (5). The decay constant is calculated as ln(2) divided by the
half-life of tremelimumab.

δtrem = δ0,trem·e−λt (5)
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For term (δ∗(tR)), which describes radiation cell death, instead of directly solving the
differential equation, radiation cell death is separately accounted for by the instantaneous
changes at distinct time points, as shown by the following:

Tn+1 = Tn·e−αT DT−βT D2
T (6)

In+1 = In + Tn·
(

1 − e−αT DT−βT D2
T

)
(7)

Ln+1 = Ln+1·e−αLDL (8)

Except for the new terms (
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trem and λ), other parameters were taken and fixed from the
previously developed RT-only model. Table 1 summarizes the resulting average parameters
of the population.

Table 1. Summary of the parameters. LQ: linear quadratic.

Parameter Function Value Refs.

a Tumor growth 0.01 d−1 [20]

αT/βT Tumor—LQ cell death 14.3 Gy [21]

f Lymphocyte decay rate 0.033 d−1 [22]

r Inactivated tumor cell decay rate 0.14 d−1 [23]

ω1 Tumor-directed lymphocyte efficiency 0.119 d−1 [16,24]

ω2
ω3

Tumor/inactivated tumor lymphocyte
recruitment constant

0.003 d−1

0.009 d−1 [16,24]

g Half-saturation constant 7.330 × 1010 [16,24]

s Lymphocyte regeneration 1.470 × 108d−1 [25]

αT Tumor—LQ cell death 0.139 Gy−1 [21]

αL Lymphocytes—LQ cell death 0.737 Gy−1 [26,27]

δtrem
Effectiveness of immune checkpoint inhibitor
(tremelimumab)

Normally distributed
(µ = 37 σ = 4) [28]

The irradiated tumor fraction (ITF) is defined as below:

ITF =
TI

TI + TNI
(9)

2.2. Patient Cohort

A total of 10,000 virtual patients were implemented into Python programming lan-
guage for the simulation of a mathematical model. The virtual patient population in this
study was assumed to have inoperable HCC. We assumed that each patient had a unique
tumor volume, lymphocyte count, and tumor radio-sensitivity. All of the patient population
was implemented as a normal distribution using the random syntax method of the Python
program. In other words, the patient population had a certain form of distribution in this
virtual clinical trial. The same distributions taken from previous studies were implemented
in this study. This study assumed the tumor density to be 109 times the number of tumor
cells per cubic cm. The averages and standard deviations of each distribution are described
in detail in Table 1.

2.3. Model Fitting

Currently, immunotherapeutic agents used clinically show therapeutic effects in only
a portion of cancer patients [29]. Therefore, the virtual patient population used in our
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study adjusted the distribution of the CTLA-4 blockade ICI response using the following
parameters. The distribution of an additional new term (
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trem) in this study is fitted to
describe the HCC patient responses to the tremelimumab—a complete response (CR): 0%,
partial response (PR): 17.6%, and stable disease (SD): 58.8%. These percentages are based
on the response evaluation criteria in solid tumors (RECIST) set of rules 1.1 [28]. To find the
distribution, we first calculate the RECIST 1.1 responses for 10,000 patients with a constant
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trem, we find a
distribution suitable for the CTLA-4 blockade ICI response mentioned above using the
convolution method. Detailed model fitting procedures are described in Figure 1.
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Figure 1. Schematic diagram of model fitting procedure. The yellow highlighted part is a procedure
different from the previous study. Abbreviations: RT = radiation therapy; ICI = immune checkpoint
inhibitor; RECIST = response evaluation criteria in solid tumors.

3. Results

A mathematical model was developed to predict a patient’s response to the combined
radiotherapy with immune checkpoint inhibitors. The model was calibrated based on the
responses reported in the CTLA-4 monotherapy clinical trial. We investigated the effects
of irradiated tumor burden and treatment sequences under the radiation and CTLA-4
blockade combination regimen.

3.1. Calibration

Figure 2 shows the RECIST 1.1 response depending on the fixed
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𝑑𝐿𝑑𝑡 = 𝜔  1 +  𝛿 𝑇 + 𝑇𝑔 + 𝑇 + 𝑇 𝐿 +  𝜔 𝐼𝑔 + 𝐼 𝐿 +   𝑠  − 𝑓𝐿− 𝛿∗ 𝑡 1 − 𝑒 𝐿 
(4)

The new formalism has only one additional term (𝛿trem) in Equation (4), describing 
the effects of CTLA-4 blockade. CTLA-4 blockade demonstrated a mild increase in the 
circulating lymphocytes, leading to enhanced T cell responses [19]. Thus, the new term 
(𝛿trem) increases the effects of ω2, which stimulate the lymphocytes to destroy cancer cells. 
The effect of the new term (𝛿trem) is assumed to decrease exponentially with the decay 

trem value and achieve
RECIST 1.1 responses in patients enrolled in the ICI-only trial (NCT01008358) (Figure 3).

3.2. Simulation

Figure 4 shows the relative change in tumor size for 100 virtual patients over time
after fitting the
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virtual patient with its corresponding RECIST1.1 response (colors).

Figure 5 shows the diameter changes in irradiated and non-irradiated tumors for
100 virtual patients. Radiation clearly plays a role in controlling irradiated tumors (waterfall
plots on the top in Figure 5). However, radiation led to worse control of the non-irradiated
tumors. The CTLA-4-based ICI monotherapy led to the most effective control of non-
irradiated tumors. Although adding radiation to ICI achieves better control over irradiated
tumors, no complete or partial responses are shown in the non-irradiated tumors.
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3.2.1. Irradiated Tumor Burden

Figure 6 shows results for different treatment regimens in a simulated population
of patients with HCC. The results show that the quantitative tumor size changes as a
function of the irradiated tumor fraction. The irradiated tumor fraction is applied from 0.1
to 120% to obtain the results. For the irradiated tumor, the irradiated tumor fraction is not
a significant factor in reducing the tumor size further. However, for combination regimens,
non-irradiated tumor growth increases as the irradiated tumor fraction also increases.

3.2.2. Treatment Sequence

We investigated the effects of the sequencing of the RT and ICI combination (Figure 7).
The tumor diameter changes were calculated for two simulated patient groups with 99%
and 1% irradiated tumor fractions. In both combination cases, the early initiation of CTLA-4
ICI treatment led to the better management of the non-irradiated tumor (plus value of
x-axis).
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evaluation criteria in solid tumors.
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trem, a figure was used to find the
distribution of tremelimumab suitable for the values for PR (17.6%), SD (58.8%), and PD (23.6%) [28].
(a) A heatmap showing the difference in relation to the reference according to the mean and stan-
dard deviation of tremelimumab. (b) Distribution of suitable-for-reference values and RECIST 1.1
responses. Abbreviations: PR = partial response; SD = stable disease; PD = progressive disease;
RECIST = response evaluation criteria in solid tumors.
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Figure 5. Tumor size changes for 100 virtual patients after one year of treatment (upper: irradiated
tumor, lower: non-irradiated tumor). Each bar represents a single patient. The RECIST response 1.1
is expressed as CR: green, PR: blue, SD: orange, and PD: dark red. Abbreviations: CR = complete
response; PR = partial response; SD = stable disease; PD = progressive disease; RECIST = response
evaluation criteria in solid tumors; RT = radiation therapy; ICI = immune checkpoint inhibitor.
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Figure 6. Diameter change in the irradiated tumor and non-irradiated tumor after 1 year accord-
ing to the irradiated tumor fraction ((a): irradiated tumor, (b): non-irradiated tumor). The green
line indicates CTLA-4 blockade ICI + RT; the blue line indicates RT only; the gold line indicates
CTLA-4 blockade ICI only; and the red line indicates none. Abbreviations: RT = radiation therapy;
ICI = immune checkpoint inhibitor.
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Figure 7. Predicted results of tumor diameter change with different modality combination sequences.
(a) Schematic to explain (b,c). Blue and green arrows indicate the start of treatment. On the time
axis, negative values (− sign with red arrow in (a)) indicate that RT started before the ICI, whereas
positive values (+ sign with red arrow in (a)) indicate that RT started after the ICI. (b) Response to
treatment sequence when the irradiated tumor fraction was 99%. (c) Response to treatment sequence
when the irradiated tumor fraction was 1%. Blue error bars indicate irradiated tumors and light blue
error bars indicate non-irradiated tumors. Abbreviations: RT = radiation therapy; ICI = immune
checkpoint inhibitor.
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4. Discussion

Cancer immunotherapy is now an established part of the therapeutic options for solid
tumors. More recently, radiation therapy has shown promising results in augmenting the
anti-tumor effects of immune checkpoint inhibition, thus leading to an increased number
of clinical trials [30–32]. Finding an optimal patient group is crucial not only to improve
the treatment responses but also to save limited resources. In principle, the mathematical
model is useful for modeling tumor growth under therapy [33]. The actionable model
can assist in designing clinical trials by providing thought experiments that investigate
potential treatment choices—a process known as an in silico clinical trial.

4.1. Treatment Modality

To confirm which treatment modalities would be effective for tumor control, changes
in the size of the irradiated and non-irradiated tumors were obtained for each treatment
modality (no treatment, ICI alone, RT alone, RT and ICI combination therapy), confirmed
in Figure 5. It can seem that performing CTLA-4 blockade ICI and RT together would
generally lead to a better prognosis than performing ICI solely. However, a slightly different
result can be confirmed for the non-irradiated tumor size change. When RT is performed
alone, the treatment method targets the local area, so it may be thought that there will be
little effect on non-irradiated tumors. However, when CTLA-4 blockade ICI and RT are
performed together, a worse prognosis can be confirmed than when ICI is performed solely
(see the second and fourth graphs at the bottom of Figure 5). This result is thought to be a
phenomenon caused by radiation damage to immune cells.

4.2. Irradiated Tumor Burden

In Figure 6, the tumor diameter change after 1 year for each treatment modality of
the irradiated tumors and non-irradiated tumors was confirmed for the irradiated tumor
fraction. The different irradiated tumor burdens lead to different amounts of tumor size
changes for each treatment modality. The irradiated tumor burden is not a significant factor
in controlling the irradiated tumor. This means that tumor control of the locoregional area
is sufficient with RT alone. However, in non-irradiated tumor cases (blue and green lines
in Figure 6), when adding CTLA-4-based ICI to RT, the model suggests that the smaller
irradiated tumor fraction is better for reducing the non-irradiated tumor.

4.3. Treatment Sequence

Figure 7 shows the effect of sequencing and timing on treatment efficacy. The treatment
application period of ICI and RT was confirmed at monthly intervals for up to 6 months.
As can be seen in Figure 7a, negative numbers indicate that RT was performed first, and
positive numbers indicate that ICI was performed first. We found that the responses are
maximized if CTLA4-based ICI is delivered earlier than RT. Our results show that opposing
behavior is demonstrated with PD-L1-based ICI [14]. This shows that even if it is not the
PD-L1 inhibitor, when another inhibitor is used, the sequencing or timing may be different
from when the CTLA-4 inhibitor is used. The model shows that early radiation-induced
lymphocyte damage is a significant factor when adding CTLA-4-based ICI to RT. Therefore,
we applied more indirect anti-tumor effects of CTLA-4-based ICI, reflected in w3 in the
lymphocyte dynamic equations. Thus, the maintenance of the lymphocyte count is more
important in inducing anti-tumor effects in CTLA-4-based ICI, compared to the increased
direct effect of PD-L1 (w1).

4.4. Further Study

In this study, we built a mathematical model and simulated the responses of patients
undergoing treatment with CTLA-4 immune checkpoint inhibitors and radiotherapy. There
were limitations in our study, such as the weakness of the mathematical model, the inability
to simulate various types of cancer, and the inability to simulate other inhibitors. We would
like to address the issues in a further study.
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5. Conclusions

We have developed a mathematical model that can predict patient responses when
combined CTLA-4 blockade ICI and RT are performed. Through this model, it is possible
to confirm which treatment modality would be effective to apply depending on whether
an irradiated tumor or non-irradiated tumor needs to be controlled. It was confirmed
that radiation therapy alone was sufficient for irradiated tumor control in a locoregional
area, while combination therapy was effective for the metastatic tumor regions without
irradiation. In addition, when performing ICI and RT together, it was confirmed that it was
better to apply ICI therapy first before RT, and based on the results of Figure 7, we confirmed
how much time should be left between treatment modalities in order for the treatment to
be more effective. The developed mathematical model can assist in the design of clinical
trials through thought experiments that investigate potential treatment choices—a process
known as an in silico clinical trial. Therefore, we believe that the developed model can be
used for patient selection and designing clinical trials in order to maximize the efficacy of
CTLA-4 blockade ICI-RT combination therapy.
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