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Abstract: Inflammatory bowel disease (IBD), a common term for Crohn’s disease and ulcerative colitis,
is a chronic, relapse-remitting condition of the gastrointestinal tract that is increasing worldwide.
Psychiatric comorbidities, including depression and anxiety, are more prevalent in IBD patients than
in healthy individuals. Evidence suggests that varying levels of neuroinflammation might underlie
these states in IBD patients. Within this context, microglia are the crucial non-neural cells in the brain
responsible for innate immune responses following inflammatory insults. Alterations in microglia’s
functions, such as secretory profile, phagocytic activity, and synaptic pruning, might play significant
roles in mediating psychiatric manifestations of IBD. In this review, we discuss the role played by
microglia in IBD-associated comorbidities.

Keywords: microglia; IBD; gut–brain axis; psychiatric disorders; neuroinflammation; gut microbiota;
innate immunity

1. Introduction

Inflammatory bowel disease (IBD), an umbrella term for Crohn’s disease (CD) and
ulcerative colitis (UC), is a chronic and relapsing condition with a complex etiology [1].
While the exact cause of IBD remains elusive, it is well established that CD and UC arise
from the intricate interplay of genetic, environmental, and microbial factors, accompanied
by immune system abnormalities [2,3]. The most frequent intestinal manifestations of IBD
include abdominal pain, diarrhea, rectal bleeding, and malnutrition. IBD is linked to a
range of extra-intestinal complications. Several reports confirm that psychiatric comor-
bidities are prevalent in IBD patients, with depression rates that are three times higher
compared to the general population [4–6]. Similarly, the rates of sleep disturbances, mood
disorders, and psychological distress are higher among IBD patients, even during periods
of remission [7]. Cognitive functions are also impaired in IBD patients [8]. Unfortunately,
these comorbidities significantly affect the quality of life in these patients and are often
poorly understood and controlled. Bipolar disorder and schizophrenia are also more
frequent in IBD patients compared to healthy control subjects [9,10]. Yet, anxiety and
depression remain the dominant psychiatric comorbidities in IBD patients. The prevalence
of depressive disorders in IBD patients varies from 21% to 25%, while anxiety disorders
are present in 19.1% to 35% of these patients [11]. Compared with the general population,
IBD patients are twice as likely to have an affective disorder [12]. A study by Panara et al.
showed that depression is independently associated with the female gender, the active form
of a disease, and a more aggressive disease course [13]. The severity of IBD has been found
to correlate with emotional factors and the personal perception of the disease, denoting
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IBD as a psychosomatic disorder [14]. The diagnosis of IBD itself significantly affects the
well-being of the individual, while the unpredictable and chronic nature of the disease
can result in additional challenges, such as social isolation, stigmatization, and feelings of
shame [15]. Furthermore, individuals with IBD may be more susceptible to the impacts of
stress [16]. Recognizing the psychological distress in the management of IBD is crucial, as it
not only influences the patient’s quality of life but is also linked to increased disease activity,
increased relapse frequency, and the greater utilization of healthcare services [17,18].

The gut–brain axis represents a bidirectional communication network that comprises
neural, hormonal, immunological, and microbial signals [19]. This well-established gut–
brain connection plays a crucial role in the pathogenesis of IBD. Signals from the gut allow
the brain to control the physiological and inflammatory status of the gut [20]. It has been
shown that P-selectin-mediated monocyte–cerebral endothelium adhesive interactions can
link peripheral organ inflammation with sickness behaviors [21]. It is well known that stress
exacerbates IBD, and it can independently reactivate experimental colitis [22,23]. In a pioneer
study, Ghia et al. reported that impaired vagal nerve (VN) function increases susceptibility
to IBD in a murine model of depression [24]. Furthermore, they demonstrated a crucial
role for macrophage in linking depression and its susceptibility to intestinal inflammation
via the VN, demonstrating that the macrophage Alpha7 nicotinic acetylcholine receptor
(α7 nAChR) is involved in the depression-induced reactivation of dormant colitis [25]. In
addition, the effects of gut inflammation on the brain’s innate immune responses have been
studied. In this context, it has been shown that central nervous system (CNS) excitability is
altered via the activation of microglia and the brain production of inflammatory cytokines
following gut inflammation [26].

Neuroinflammation is implicated in the pathophysiology of depression, along with
other psychiatric disorders [27]. Microglia, the brain’s innate immune cells, are crucially
involved in different neuroinflammatory processes [28]. More recent findings revealed
that microglia are functionally more complex than previously considered [29]. Indeed, in
response to inflammatory insults, microglia can transform into reactive states and adopt
different transcriptional and functional features [30–33]. These changes depend on the
nature of the inflammatory insult, brain region, sex, and age [34–36]. A rapidly growing
literature suggests that psychiatric disorders, particularly major depressive disorder (MDD),
can be associated with chronic low-level neuroinflammation and long-lasting priming and
the sensitization of microglia [37,38].

In this article, we discuss the pivotal role of microglia in IBD-associated psychiatric
disorders and deal with different important phenomena that can be affected by IBD, such as
the microbiota–gut–brain axis, microglial synaptic pruning, neurogenesis, and blood–brain
barrier (BBB) integrity. Furthermore, the alterations of microglia’s metabolic pathways
under inflammatory conditions are discussed. We also point out how microglia fine-tuning
may ultimately guide us in designing new therapeutics for the treatment of psychiatric
complications in IBD patients.

2. Gut Microbiota Abnormalities in IBD and Its Possible Connection to the Brain’s
Innate Immune Response

It is established that the gut–brain axis’s communication is bidirectional and that
the gut microbiome and its composition play a dynamic role in regulating the different
physiological functions of the CNS. This complex communication occurs through immune,
enteric, and neural pathways [39,40]. New cutting-edge technologies in RNA sequencing
and omics analyses point to an imbalance in the composition and function of the intestinal
microbiome in the pathogenesis of IBD, known as dysbiosis [41]. Dysbiosis in IBD includes
the diminished diversity of microbiota; an increase in pathogenic bacteria, mucolytic
bacteria, and sulfate-reducing bacteria; and a reduction in short-chain fatty acid (SCFA)-
producing bacteria. These changes disturb the host immune system and barrier integrity,
leading to chronic inflammation and abnormal immune responses [41,42] (Figure 1).
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Figure 1. Schematic overview of the neuroinflammatory changes observed in IBD, leading to behav-
ioral alterations. Intestinal inflammation in IBD induced by gut dysbiosis leads to impaired intestinal
barrier integrity, activation of immune cells, and consequential production of pro-inflammatory
cytokines. These inflammatory mediators enter the bloodstream and increase blood–brain bar-
rier (BBB) permeability by interrupting tight junction (TJ) physiology, thus facilitating the entry of
pro-inflammatory mediators into brain parenchyma and causing microglial activation. Activated
microglia further exacerbate the inflammatory response in the CNS followed by increased IL-1β, IL-6,
and TNF-α levels, as well as increasing iNOS and nitrite levels in brain tissue. Activated microglia
leads to impairments in neurogenesis, oxidative status, CNS excitability, and synaptic plasticity, thus
contributing to behavioral abnormalities. ↑—increased; ↓—decreased.

The gut microbiota plays a significant role in the microglia’s development and func-
tioning. The abrogation or reduction in microbiota in germ-free or antibiotic-treated mice
is associated with abnormalities in gene expression profiles and morphological proper-
ties, as well as an immature phenotype of microglia, leading to damaged innate immune
responses [43–45] and impaired fear extinction learning [46]. The genes that display dis-
tinct expression patterns in microglia are especially abundant in pathways associated
with the organization and formation of synapses. This suggests that targeted manipula-
tion of the microbiota could potentially modify the way microglia participate in synaptic
pruning and influence the remodeling of dendritic spines, since these alterations may
contribute to behavioral abnormalities [43,46]. The impact of the microbiome on microglia
displays temporal and sexual dimorphism [47]. Furthermore, microbiota-derived metabo-
lites, such as SCFA acetate, butyrate, and propionate; aryl hydrocarbon receptor (AhR)
ligands [48,49]; lipopolysaccharides (LPSs) [50]; and also the newly discovered quorum
sensing peptides [51], have been recently denoted as bacterium-derived molecules that are
able to modulate microglia. A part of the crosstalk between gut microbiota and the CNS is
mediated by the VN, and any alteration in the status of intestinal inflammation is conveyed
to the CNS through vagal afferents. This ultimately influences microglial activation and
the level of neuroinflammation [40,52]. Gut dysbiosis causes significant changes in the
peripheral myeloid cell population, impaired immune function, and microglial activation,
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affecting synaptic transmission and plasticity and behaviorally relevant network activities
in the hippocampus [53]. Dysbiosis-induced behavioral changes are also accompanied by
alterations in the brain-derived neurotrophic factor and its receptor, tropomyosin receptor
kinase B signaling, transient receptor potential vanilloid subtype 1 phosphorylation, and
neuronal activity in the hippocampus [54].

Salvo and colleagues demonstrated that dextran sulfate sodium (DSS)-induced colitis
at weaning causes microbiota–gut–brain axis deficits in adulthood [55]. While the acute
inflammatory response was resolved, cognitive deficits and anxiety-like behavior remained
in adult mice. These behavioral changes were accompanied by neuroinflammation, im-
paired neurogenesis, and the increased hippocampal expression of ionized calcium binding
adaptor molecule 1 (Iba-1), interleukin (IL)-1 beta, and inducible nitric oxide synthase
(iNOS), along with gut microbiota changes [55]. Other compelling research suggests that
the disruption of the microbiota–gut–brain axis in IBD might not always co-occur with
neuroinflammation and the activation of microglia. Vicentini et al. demonstrated increased
anxiety-like behavior, changes in gut microbiota, and increased central tumor necrosis
factor (TNF) expression. Upon transferring cecal contents from colitic mice into either
germ-free or antibiotics-treated mice, the recipient mice displayed comparable behavioral
alterations, but without any signs of colonic or neuroinflammation [56].

These studies suggest the importance of gut microbiota alterations in driving behav-
ioral abnormalities in colitis. It is yet unclear to what extent and in what manner a disrupted
microbiota can modify microglial function, consequently impacting the onset and progres-
sion of these changes. Gaining a deeper understanding of the enduring consequences
and pinpointing the specific bacteria and their metabolites will facilitate the discovery of
potential therapeutic targets.

3. Blood–Brain Barrier Integrity in IBD

IBD-associated peripheral inflammation can impact BBB permeability by interrupting
tight junction (TJ) physiology in brain endothelial cells [57]. Several investigations have
shown that circulating cytokines modulate the expression of TJ proteins in endothelial
cells [58–61], while pro-inflammatory and anti-inflammatory cytokines elicit differential
roles. For example, IL-1β has been shown to downregulate TJ proteins, such as claudin-5
(Cld-5) and zonula occludens (ZO)-1, via modulating astrocytic sonic hedgehog (SHH)
production [61]. Conversely, in vivo, IL-10 reduced inflammation severity, diminished
increased BBB permeability by inhibiting the apoptosis of brain microvascular endothelial
cells, and improved Cld-5 expression in these cells [62]. The cytokine-induced dysregulation
of BBB has been also reported in animal models of colitis. Increased IL-6 levels led to the
reduced expression of occludin and Cld-5 in the hippocampus and cortex of colitis-afflicted
mice [63]. A significant increase in BBB permeability, particularly in the circumventricular
organs within the brain parenchyma, was detected using the trinitrobenzene sulphonic
acid (TNBS) model of colitis [64].

The choroid plexus (ChP), a densely vascularized tissue that produces cerebrospinal
fluid (CSF) and does not possess a BBB, is a critical juncture where peripheral and central
immune responses intersect [65]. The gene expression patterns of pro-inflammatory cy-
tokines, immune cells, and factors involved in immune cell trafficking are dysregulated in
the ChP of depressed suicides [65]. Carloni et al. pointed out new mechanisms that underlie
gut–brain communication in IBD models [66]. Their findings indicated that intestinal in-
flammation drives gut vasculature barrier impairment and the recruitment of inflammatory
cells to the brain, alters brain permeability, and leads to an altered microglial phenotype,
resulting in short-term memory deficits and anxiety-like behavior. They demonstrated a
region-specific remodeling of BBB adapter TJ proteins, such as a decrease in the expression
of ZO-1 in the somatosensory cortical area and the paraventricular nucleus of the thalamus,
while no differences for Cld-5 were observed. Furthermore, they observed the closure of the
vascular barrier in the ChP as a defensive strategy against spreading the inflammation from
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the gut [66]. These results pointed out the role of gut–brain vascular axis dysregulation in
mental disorders observed in colitis.

It should be mentioned that BBB disruption following inflammation is very context-
dependent and is not a common phenomenon in animal models of depression [32]. The
chronic social stress disrupted the integrity of the BBB by reducing the expression of the Cld-
5, facilitated peripheral IL-6 passage across the BBB, and induced depressive-like behavior
in male mice [67]. Hence, it seems that peripheral inflammation following exposure to
stress or gut inflammation might affect BBB integrity. However, brain region, sex, type of
stressor, and inflammatory insult are important factors that influence BBB integrity. Namely,
Menard et al. reported BBB leakage only in the nucleus accumbens, an important part
of the ventral striatum, of chronically, socially stressed male mice but not in other brain
regions and stress models [67].

It is noteworthy that alongside circulating cytokines and chemokines, microglia acti-
vation might affect the permeability of BBB in IBD. Alterations in the intercommunication
between endothelial cells, neurons, and microglia, are associated with a wide range of
inflammation-related brain disorders, particularly where the integrity of the BBB is compro-
mised [68]. Increasing evidence indicates that activated microglia modulate the expression
of TJs. Conversely, the endothelium can modulate the activation of microglia [69]. Acti-
vated microglia produce enzymes that generate reactive oxygen species (ROS) that lead to
degeneration in oligodendrocytes and increase BBB permeability by reducing the expres-
sion of vascular endothelial cadherin, occludin, and Cld-5 in the microvascular endothelial
cells (ECs) [69]. Microglia have dual effects on BBB permeability induced by systemic
inflammation [70]. LPS-induced inflammation triggers the migration of microglia toward
blood vessels in the initial stage, protecting BBB integrity by increasing the expression of
Cld-5 and establishing direct connections with ECs. However, during prolonged inflamma-
tion, microglia transform into a CD68-expressing phagocytic phenotype, leading to BBB
impairment [70]. This mechanism might also underlie the IBD-associated BBB disruption.
Analyses of capillary-associated microglia (CAMs) unveiled that they are located around
blood vessels, and their interactions primarily involve the microglial somata [71]. These in-
teractions with capillaries are, in part, controlled by purinergic P2RY12 signaling. Microglia
elimination by pharmacological treatment resulted in an increase in capillary diameter and
cerebral blood flow and a decline in vasodilatative responses [71]. More investigations are
needed to pinpoint how gut inflammation can affect the function of CAMs, which leads to
vasculature dysfunction.

Microglia have prominent interactions with astrocytes, affecting their morphology
and phenotype following different types of neuroinflammatory insult [72]. This interplay
might have an important role in astrocyte abnormalities in depression studies. It has been
previously shown that in the anterior cingulate, the white matter of depressed suicide
astrocytes is hypertrophic [73]. Astrocytes play a vital role in maintaining BBB integrity.
Under normal conditions, they release substances such as SHH; retinoic acid (RA); trophic
factors, such as vascular endothelial growth factor (VEGF); and gliotransmitters like gluta-
mate (Glu) that support new blood vessel formation and enhance endothelial cell junction
tightness [74]. In response to inflammation, astrocytes increase SHH and RA secretion
to counteract inflammation-induced damage. However, substances like VEGF and Glu
may contribute to junctional damage, increasing BBB permeability. Elevated cytokine and
chemokine secretion further facilitates BBB leakage and leukocyte migration [74].

These findings imply that different mechanisms can impact BBB integrity following
gut inflammation and that microglia activation following IBD can affect the integrity of BBB
via its interaction with astrocytes (Figure 1). It is worth mentioning that our knowledge
is still not extensive regarding the effects of different experimental models of IBD on BBB
integrity, and more investigations should be granted to study the effect of gut inflammation
on BBB structure in different brain regions.
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4. IBD-Associated Neuroinflammation—The Role of the Brain’s Innate
Immune Response

Ample evidence now suggests that the cytokines produced during peripheral inflam-
mation trigger a secondary, mirror inflammatory cascade in the brain, typified by microglia
activation and the generation of proinflammatory cytokines, including TNFα, IL-1β, and
IL-6 [75–77]. Electrophysiological changes in the hippocampus, a limbic structure involved
in emotion regulation and cognitive function, have been reported in experimental IBD [78].
The notable dysregulation of the glutamatergic system due to alterations in the proper-
ties of postsynaptic α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
N-methyl-D-aspartate (NMDA) receptors in acute colitis has been observed [79]. Specif-
ically, the GluR2 subunit of AMPA receptors and the NR2B subunit of NMDA receptors
were both downregulated [79]. Interestingly, there is substantial evidence that alterations
in excitatory synapses may underlie depression [80]. Microglia-mediated inflammatory
responses within the hippocampus during intestinal inflammation resulted in the enhance-
ment of glutamatergic synaptic transmission and decreased synaptic plasticity, which may
contribute to the behavioral comorbidities observed in IBD patients [79]. Furthermore,
treatment with the microglia activation inhibitor minocycline, at doses that do not affect
colonic inflammation, effectively abolished both increased TNF-α levels and the altered
field potential and synaptic plasticity [79].

Both clinical and experimental investigations indicate that cytokines have the potential
to elevate CNS excitability, subsequently leading to increased susceptibility to seizures,
which has also been confirmed in murine colitis [81]. Intestinal inflammation altered the
susceptibility to pentylenetetrazole-induced seizure in rodents [82], while further explo-
ration unveiled a notable inflammatory reaction within the hippocampus, characterized by
the activation of microglia and elevated levels of TNF-α, which mediated an increase in
CNS excitability [26].

Sickness behaviors, including fatigue, mood alterations, and cognitive impairments,
are frequently present in systemic inflammatory disorders [83]. While microglia, as the
resident brain macrophages, are primarily implicated in this phenomenon, the connection
between inflammation in peripheral organs, the signaling of circulating cytokines, and
microglial activation remains inadequately understood. D’Mello et al. discovered that pe-
ripheral inflammation leads to an augmentation in monocyte-specific rolling and adhesion
along cerebral endothelial cells (CECs) [21]. Signaling involving peripheral TNF-α and
its receptor TNFR1, along with the adhesion molecule P-selectin, plays pivotal roles in
facilitating these adhesive interactions between monocytes and CECs. These interactions
were closely linked to the activation of microglia, decreased excitability in the CNS, and the
development of sickness behaviors [21]. Investigating immune cell trafficking in the DSS-
colitis model, Cluny et al. revealed that circulating monocytes, expressing α4β7 integrin,
play a role in recruiting neutrophils to the cerebral blood vessels, resulting in higher levels
of IL-1β and C–C motif chemokine ligand 2 in the brain of colitic mice, while the treatment
with anti-α4β7 significantly reduced them. Elevated IL-1β, in particular, was identified as
a mediator of anxiety-like behavior in this study [84].

The nitric oxide (NO) pathway is believed to play an important role in the neurobiol-
ogy of depression [85] and also in the pathogenesis of depressive-like behavior associated
with IBD [86]. Mice treated with TNBS displayed prolonged immobility duration in the
forced swimming test, a significant increase in hippocampal TNF-α levels, the expression
of iNOS, and nitrite content (Figure 1). The acute inhibition of NOS, with both specific
and non-specific NOS inhibitors, resulted in reduced immobility time and decreased lev-
els of TNF-α and nitrite content in hippocampal samples [86]. Dinitrobenzene sulfonic
acid (DNBS)-induced colitis led to a decline in spatial recognition memory in the Y-maze
task [87]. However, it did not influence the step-through latencies in the passive avoidance
test. Memory impairment induced by colitis was counteracted with MK-801 or meman-
tine, implying a role in disrupted NMDA receptor function as an underlying mechanism.
Additionally, aminoguanidine inhibited colitis-induced memory deficits, suggesting the
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involvement of iNOS activation and oxidative stress in this phenomenon [87]. Although
none of these investigations directly pinpointed the role of microglia in IBD-associated
depressive-like behavior or memory deficit, it is well established that microglia are one of
the major sources of TNF-α and NO following an inflammatory challenge [75,77]. More
recently, a pioneer study demonstrated that DSS-induced colitis impairs spatial and recogni-
tion memory; activates microglia; increases A1-like astrocyte numbers; disrupts glymphatic
clearance, worsening the accumulation of amyloid plaques; and causes neuronal loss in
the cortex and hippocampus [88]. These neurodegenerative effects were linked to the
increased expression of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)
inflammasome and the accumulation of gut-derived T lymphocytes along meningeal lym-
phatic vessels. Interestingly, the depletion of NLRP3 prevented cognitive impairment,
neuroinflammation, and neurological harm triggered by colitis [88].

The involvement of the innate immune response in psychiatric disorders has been ex-
tensively explored through experimental and clinical studies [89]. In this context, microglia
have emerged as a central focus of investigation [90]. Additionally, microglia are activated
in the reaction relative to acute and chronic psychological stress [91,92]. This responsive-
ness of microglia to psychological stress could contribute to the underlying mechanisms of
stress-related mental disorders, including major depression [93]. Importantly, stress has a
significant impact on disease progression and exacerbations in individuals with IBD [22,94].

DSS-induced colitis led to a decrease in the immunoreactivity of Iba-1 and CD68 in
certain regions of the limbic system, including the medial prefrontal cortex (mPFC) [95].
The most pronounced impact of colitis on microglia was observed in chitinase-like protein 3
expression, a microglial alternative activation marker. Conversely, the expression of another
anti-inflammatory marker, CD206, decreased, while arginase 1 remained unchanged. As a
result of colitis, elevated mRNA levels of CD86 and TNF-α were detected [95]. Peripheral
inflammation can lead to long-term changes in the anterior cingulate cortex (ACC), a region
of the brain known for its role in emotional regulation and cognitive processing, thereby
mediating the development of mood disorders in IBD patients [96]. Within this brain region,
the triggering receptors expressed on myeloid cells-1/2 (TREM-1/2), a family of cell-surface
receptors highly expressed on the microglia, have emerged as potential modulators of the
inflammatory and immune response. The overexpression of TREM-1 was observed in
the ACC during the colonic inflammation phase, along with microglial and glutamatergic
neuronal activation, while TREM-2 overexpression was noted in the remission phase and
correlated with depressive symptomatology. Genetic and pharmacological manipulation
downregulated TREM-2 expression and improved depression-like behavior [97].

Tally and colleagues demonstrated that mice treated with DSS exhibited weight loss,
colon inflammation, and a notable increase in inflammatory cytokines in serum and brain,
along with microglial activation [98]. The RNA sequencing of brains extracted from DSS-
treated mice unveiled differential gene expression linked to the regulation of inflammatory
responses, which returned to baseline levels after the discontinuation of DSS treatment [98].
It has also been demonstrated that colitis does not alter the number of microglial cells, but
it does result in a higher count of monocyte-derived macrophages in the brain samples
of animals with colitis [95]. These macrophages are either perivascular or enter the brain
through the bloodstream, indicating an augmented infiltration of immune cells into the
brain during colitis [95]. This suggests a potential link between increased immune cell
infiltration due to inflammation and subsequent behavioral effects.

The depletion of microglia is an effective model for studying the regulatory function
and activity of microglia. It is important to note that microglia depletion is not typically
studied in the context of IBD. Methods for inducing microglia depletion include genetic
inhibition [99] and also pharmacological inhibition using clodronate, a drug that mediates
apoptosis, and it is used in an encapsulated manner in liposomes [100]. Highly specific
inhibitors of colony-stimulating factor 1 receptor (CSF1R) are used to eliminate microglia,
such as Ki20227, which demonstrated that the microglia-mediated increase in neuronal
excitability was responsible for the psychomotor behavioral effects after local inflamma-
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tion [101]. Furthermore, PLX3397 [102] and PLX5622 [103], also specific inhibitors of CSF1R,
showed promising results for microglia depletion, affecting behavioral responses and
gut–microbiota composition.

At the cellular level, the activation of microglia, along with astrocytes, and infiltrating
blood-derived immune cells have been suggested as the potential initiators of neuroinflam-
mation associated with IBD (Figure 1). Besides the temporal aspects of neuroinflammation
in experimental colitis, it is also essential to consider a region-specific response within the
CNS. Neuroinflammation induces neuronal dysfunction through distinct mechanisms, con-
sequently contributing to behavioral abnormalities in IBD. While many of these potential
mechanisms have been elucidated in the animal models of IBD, a significant limitation
in most of these studies is the absence of a definitive causal link between concurrent
neuroinflammation and the manifestation of depressive and anxiety-like behavior.

5. Synaptic Pruning Deregulation in Behavioral Comorbidities in IBD

Microglia, once considered solely as immune cells activated during inflammation or
injury, are now recognized as key players in various aspects of normal brain functioning
throughout developmental and adult stages. Multiple lines of evidence now substantiate
the concept that microglia have a significant role in processes like neurogenesis and synaptic
pruning, even in the absence of any inflammatory or immune-related stimuli [104].

One of the most investigated topics in microglia biology is synaptic pruning, the
strategic elimination of synapses with reduced activity during the precise and critical
stages of neuronal development. Microglia’s physiological roles are indispensable for the
establishment and preservation of healthy neuronal circuits [105,106]. Different mecha-
nisms involved in this process have been suggested in recent years. The complement
protein C1q acts as a marker for synapses that need to be removed. Microglial cells engulf
presynaptic inputs in early postnatal days when the phagocytic activity of microglia is
high. The response is mediated by the complement receptor 3 (CR3) expressed by mi-
croglia [107,108]. Excessive microglial phagocytosis mediated by the complement system
in adulthood resulted in the engulfment of excitatory synapses and reduced connectivity
in the cortex, leading to behavioral abnormalities associated with stress [109]. Microglial
synapse elimination also occurs through the fractalkine receptor (CX3CR1) [110]. TREM2 is
essential for microglia to eliminate excessive synapses in the developing brain [111]. Adult
mice lacking TREM2 exerted lower microglia activation during early brain development,
sociability impairment, and altered brain connectivity [111]. Phosphatidylserine exposed to
on neurons functions as a neuronal signal that prompts microglial-mediated pruning [112].
Yet, the specific molecular elements within neurons that determine which synapses should
be removed remain unidentified.

Our knowledge about the possible effects of gut inflammation on microglia-mediated
synaptic elimination in different brain regions and time periods is still scarce. Several
studies have implicated that synaptic pruning might be impaired in different psychiatric
paradigms [106,113]. Sellgren and colleagues demonstrated the enhanced removal of
synapses in patient-derived neural cultures and isolated synaptosomes and observed
irregularities in both microglia-like cells and synaptic structures [114]. Astrocyte-microglia
IL-1R/C3/C3aR activation causes abnormal synaptic pruning and has an important role
in mediating depressive-like symptoms in mice exposed to unpredictable chronic mild
stress [115].

It is intriguing to note that the disruption of synaptic pruning could potentially serve
as a connection between imbalances in the gut microbiota observed in IBD and certain
neuropsychiatric conditions [44]. The enhancement of intestinal microbiota composition via
dietary changes, probiotics, or fecal microbiota transplantation might contribute to better
outcomes in neuropsychiatric disorders. This improvement could partially be attributed to
the regulation of synaptic pruning and neuronal connections [44].

Autophagy, a process of cytosolic component and organelle degradation, has recently
been discovered to regulate spine pruning in the mouse cortex, pointing out that autophagy
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might underlie the regulation of microglia-mediated synaptic pruning in IBD [116]. The
selective deletion of the atg7 gene, which is essential for autophagy, in microglia leads
to noticeable social behavioral impairments and repetitive behaviors—distinctive traits
of autism spectrum disorders. This genetic intervention has also resulted in an increase
in dendritic spines and synaptic markers, as well as changes in the connections between
different brain regions, indicating alterations in the synaptic refinement process [117].

Gender differences are well established in the prevalence and clinical manifestations
of IBD, along with depressive and anxiety disorders [118]. Sex hormones, such as estrogen,
have known immunomodulatory effects, and fluctuations in these hormones may affect the
immune response in both the gut and the CNS [119,120]. Considering the significant role of
estrogens in shaping neuronal circuitry during the sexual differentiation of the CNS [121], it
is important that future studies not only investigate the influence of estrogens on microglia-
mediated synaptic pruning but also explore how these hormones affect the trophic and
repair capabilities of microglia despite the well-documented neuroprotective effects of
estrogen [122]. To investigate sexual dimorphism in microglial responses under intestinal
inflammation, advanced techniques, such as single-cell RNA sequencing, proteomics, and
translating ribosome purification analyses, should be used for a more comprehensive
understanding of molecular mechanisms.

The complex and context-dependent roles of microglia in synaptic pruning involve
various signaling pathways that can be of significant importance in the context of behavioral
abnormalities observed in IBD. The role of autophagy in regulating synaptic pruning adds
another layer of complexity to the understanding of these processes. Further research is
needed to elucidate the connections between synaptic pruning abnormalities, microglial
dysfunction, and the development of psychiatric conditions in the IBD context.

6. Neurogenesis Deregulation in Behavioral Comorbidities in IBD

Zonis et al. showed that chronic intestinal inflammation suppresses hippocampal
neurogenesis [123]. Increased expressions of Iba1, a marker of activated microglia, IL-6,
TNF-α, and the cyclin-dependent kinase inhibitor p21 (p21) in the hippocampus were
detected in the acute phase of DSS-induced colitis, while the overexpression of p21 per-
sisted in the chronic phase. Additionally, indicators of stem cells and early progenitor cells,
such as nestin, brain lipid binding protein, and the neuronal marker doublecortin, were
decreased. Conversely, the expression of glial fibrillary acidic protein, a marker of astroglial
cells, was upregulated [123]. These findings imply that persistent intestinal inflammation
is detrimental to the growth and development of neuronal precursor cells and may alter
the properties and functioning of hippocampal circuits. In the acute phase of DSS colitis,
enhanced neurogenesis and disruptions in the cell cycle of hippocampal progenitor cells
were observed [124]. Chronic DSS colitis showed normal neurogenesis but impaired the
migration and integration of new neurons into the dentate gyrus circuitry. Acute colitis
increases the infiltration of peripheral macrophages and inflammatory myeloid cells into
the hippocampus, leading to the increased expression of pro-inflammatory microglia and
pro-inflammatory cytokines. In chronic colitis, higher proportions of tissue-repairing anti-
inflammatory microglia were observed, along with elevated levels of the anti-inflammatory
cytokine IL-10 [124]. Adult mice subjected to DSS during weaning displayed activated
microglia, decreased hippocampal neurogenesis, and behavioral deficits [55]. Additionally,
changes in neurogenesis were associated with the increased expression of pattern recog-
nition receptors and Th17-cytokine receptors, indicating an immune response. Activated
hippocampal microglia displayed morphological changes and increased the expression
of Iba-1, IL1β, and NOS2 (Figure 2). These findings shed light on the significant effects
of acute and chronic experimental colitis on adult hippocampal neurogenesis and innate
immune cell responses [55,124]. They highlight potential mechanisms that may underpin
cognitive and mood-related dysfunctions in IBD patients.
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Figure 2. Summary of the main pathogenic mechanisms and their impact on microglia with con-
sequential behavioral abnormalities from animal models of colitis. DSS—dextran sulfate sodium;
DNBS—dinitrobenzene sulfonic acid; TNBS—2,4,6-trinitrobenzene sulfonic acid; Iba-1—ionized cal-
cium binding adaptor molecule 1; IL-1β -interleukin-1 beta; IL-6 -interleukin-6; TNF-α—tumor necro-
sis factor alpha; iNOS—inducible nitric oxide synthase; NOS2—nitric oxide synthase 2; p21—cyclin-
dependent kinase inhibitor protein; KYN—kynurenine; KA—kynurenic acid; QUIN—quinolinic
acid; IDO1—indoleamine 2,3-dioxygenase 1; FAAH—fatty acid amide hydrolase; TREM-1-triggering
receptors expressed on myeloid cells-1; PRR—pattern recognition receptors. ↑—increased.

More cell-specific studies are needed to demonstrate the involvement of microglia in
IBD-associated neurogenesis dysregulation: for example, using double transgenic mice that
express microglia in one fluorophore and infiltrating macrophages in another one. Microglia
depletion could also be used to investigate the relationship between the brain’s innate
immune response and neurogenesis in IBD. It is also interesting to investigate the possible
effects of antidepressants on neurogenesis abnormalities in the animal models of IBD.

7. Tryptophan–Kynurenine Pathway in Microglia and Its Possible Association with
Behavioral Phenotypes in IBD

Recent research has revealed that various microglial phenotypes are linked to spe-
cific metabolic pathways, highlighting the crucial role of energy metabolism in shaping
microglial functions. The imbalances in the tryptophan–kynurenine pathway have a sig-
nificant contribution to the etiopathogenesis of mood disorders, which highlighted this
pathway as a promising druggable target in psychiatric disorders [125]. The kynurenine
pathway (KP), the primary route for tryptophan (TRP) metabolism, produces neuroactive
metabolites, such as kynurenine (KYN), kynurenic acid (KA), and quinolinic acid (QUIN).
The accumulation of these metabolites in the CNS is linked to neuropsychiatric diseases
with inflammatory components [126]. Astrocytes and microglia are the main cell types
within CNS that have the enzymatic machinery to metabolize TRP. The conversion of TRP
to KYN by indoleamine 2,3-dioxygenase 1 (IDO1) constitutes the initial step in the KP.
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Under homeostatic conditions, KYN is mainly metabolized to KA by astrocytes. Microglia,
on the other hand, regulate the KP by preferentially producing QUIN [126].

Post mortem findings on the role of TRP-KP in the pathogenesis of psychiatric disor-
ders have been highly controversial [127]. Both increased [128] and decreased expressions
of microglial QUIN [127,129] and reduced KP metabolism and cytokine expression [130]
have been reported in individuals with depression. Elevated levels of CSF QUIN [131,132],
reduced levels of CSF KA [132], and a higher ratio of QUIN/KA [131] were observed in
psychiatric patients with a history of suicide attempts.

The potential of KP as a biomarker of response to antidepressant treatment has also
been a subject of investigation, demonstrating that inflammatory biomarkers are associated
with lower responses to this treatment [133]. Targeting KP with a particular focus on the
principal rate-limiting enzymes, namely, IDO1, IDO2, tryptophan-2,3-dioxygenase (TDO),
and kynurenine 3-monooxygenase (KMO), represents potential therapeutic strategy [126,134],
although there is still a long way to develop cell-specific modulators of this pathway.

Recently, TRP-KP in glial cells has been introduced as a link between inflammation
and mood disorders. It has been shown that IDO-1 gene expression is upregulated in the
mPFC of mice with colitis [95]. Peripheral gut inflammation causes intestinal cells to release
inflammatory cytokines, such as IFN-γ, IL-6, and IL-1. The activation of IDO by these
inflammatory cytokines leads to an increased breakdown of TRP into KYN, which can cross
the BBB and further be metabolized into various compounds, including QUIN and KA
(Figure 2). In an inflammatory milieu, this augmented production of neurotoxic molecules,
such as QUIN, 3-hydroxykynurenine (3-HK), and 3-hydroxy anthranilic acid (3-HAA),
may potentially contribute to depressive symptoms by causing damage to hippocampal
neurons [135]. DSS-induced colitis caused elevated KYN levels in the cerebral cortex, which
were primarily a result of local synthesis mediated by the IDO-1, rather than transport from
the bloodstream [136]. While there was no significant change in the pro/anti-inflammatory
phenotypes transition of microglia cells in their response to colitis-induced KYN elevation,
a neurotoxic neurotoxin subtype of astrocytes was observed. In addition, the changes in
the variety and composition of the gut microbiota resulted in increased TRP metabolism in
serum and brain [136]. When subjected to various forms of stress, experimental animals
exhibit elevated ratios of KYN/TRP in both the brain and the intestines, along with an
upregulation of IDO expression [137]. These stress-induced alterations are associated with
changes in the composition and activity of the gut microbiota [138,139].

In the context of IBD-related inflammation impacting the TRP-KP in the CNS, signifi-
cant emphasis should include the activation and expression of crucial TRP-KP enzymes
like IDO, KMO, and KAT. A more in-depth examination of how TRP-KP intermediates are
involved in CNS oxidative and antioxidative stress is also needed. Understanding these
factors better can lead to the more precise management of inflammation and psychological
conditions in IBD patients.

8. The Impact of Gut Inflammation on Central Endocannabinoid Function and the
Development of Behavioral Comorbidities

The endocannabinoid system (ECS) plays an important role in modulating various
emotional behaviors, including anxiety, primarily within specific brain regions like the
amygdala, mPFC, and hippocampus [140,141]. The ECS comprises naturally occurring
molecules, N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol
(2-AG), and the enzymes responsible for their production and breakdown. The effects
of ECS are orchestrated by cannabinoid receptors CB1 and CB2 [142]. Various studies
have explored the link between peripheral inflammation, central eCB function, and the
development of behavioral comorbidities [142,143].

The ECS has a significant impact in regulating microglial activity since microglia
contain all components needed for a fully functional ECS and also produce enzymes that
hydrolyze and deactivate AEA and 2-AG. CB1 and CB2 are known to be expressed by
rodent microglia [144], while the presence of CB1 in human microglia is debatable [145].
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These findings suggest that cannabinoids offer a promising target for influencing microglia
function in pathological conditions. The CB2 receptor is not only essential for microglia
activation triggered by Toll-like receptor stimulation [146] but also for activating the anti-
inflammatory phenotype in microglia [147,148].

TNBS-induced colitis triggers anxiety and elevates circulating corticosterone, which
is followed by the increased hydrolytic activity of the enzyme fatty acid amide hydrolase
(FAAH), which breaks down the AEA in various corticolimbic brain regions [143]. Anxiety
induced by colitis was alleviated via the acute inhibition of FAAH in the CNS, suggesting
that the decrease in AEA played a role in the development of anxiety [143]. In the same col-
itis model, the inhibition of FAAH with URB597 increased the concentration of AEA in the
colon and reduced its damage, improved survival rates, and preserved BBB integrity [149].
While cognitive function remained unchanged, the study suggests that modulating the ECS
could be a potential therapeutic approach for IBDs and associated brain damage [149].

Notably, the human ECS has been implicated in depression pathology [150,151]. A
meta-analysis by Kong et al. unveiled a strong link between the CB2rs2501432 poly-
morphism and depressive disorders, whereas no such association was found for the
CB1rs1049353 polymorphism [152]. Furthermore, women with depression displayed
notably reduced levels of AEA and 2-AG in their peripheral serum [153], while the in-
creased expression of CB1 receptors was observed in the dorsolateral PFC of depressed
suicides [154].

The role of ECS has also been studied in different stress paradigms [155,156]. A non-
selective agonist of CB1 and CB2 receptors, WIN55,212-2, attenuated inflammation, anxiety,
and stress sensitization in a repeated social defeat model. Reduced IL-1β mRNA was
observed in the brain, but specifically in CD68+-activated microglia [155]. CB1 knockout
(Cnr1-/-) mice were considerably more vulnerable to chronic social defeat (CSD) stress
and mild CSD stress, exhibiting marked stress-related behaviors and increased microglial
activity [157].

In general, it appears that the ECS protects against neuroinflammation by inducing
anti-inflammatory profiles in microglia. Furthermore, diminishing the availability of eCB
in the limbic area of colitis mice might be responsible for the induction of pro-inflammatory
phenotype in microglia. However, studies with experimental models of IBD regarding ECS
in the brain are very sparse. A considerable number of experimental and clinical investiga-
tions are needed to provide a novel perspective for the pharmacological management of
psychiatric comorbidities in IBD via the modulation of endocannabinoid signaling.

9. Conclusions

Different lines of experimental evidence have indicated that chronic IBD can affect
microglia function phenotypes. However, more cell-specific investigations are needed
to address the mechanisms underlying microglia deregulation in IBD. This allows us to
understand how microglia mediates IBD-associated behavioral changes. Furthermore,
it is well established that spatial, temporal, and sexual heterogeneity exist in microglia
function in health and disease conditions [32,35,37]. Hence, these heterogeneities should be
considered when we study the effect of IBD-associated neuroinflammation and psychiatric
comorbidities. It is highly possible that different brain regions, such as the limbic area,
show different levels of microglia deregulation following gut inflammation.

The research area that focuses on targeting the activity of microglia in a time- and
region-specific manner represents a great challenge. Nanotechnology holds the potential to
address this challenge by facilitating the transport of large molecules through the BBB and
facilitating the delivery of drugs [158]. Nasal applications have been successful in deliver-
ing pharmacotherapeutics and siRNA to target microglia in several animal studies [159].
Therefore, this approach might have an important translational value in clinical settings.
Furthermore, microglia-specific genes can be targeted via the systemic administration of
viruses that can pass BBB [160]. However, this delivery system has been tested only in ani-
mal studies. In addition, more mechanistic investigations should be carried out to address
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the effect of IBD on blood–brain barrier integrity and how microglia receive inflammatory
signals from the periphery. Modulating microglia phenotypes by modifying inflammatory
pathways may have important translational implications in alleviating IBD-associated
neuroinflammation.
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