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Abstract: Effective intercellular communication is essential for cellular and tissue balance mainte-
nance and response to challenges. Cellular communication methods involve direct cell contact or
the release of biological molecules to cover short and long distances. However, a recent discovery
in this communication network is the involvement of extracellular vesicles that host biological con-
tents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular
vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Car-
diovascular diseases are significant contributors to global morbidity and mortality, encompassing
conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart
failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing
normal cardiac function and structure. However, under pathological conditions, extracellular vesicles
composition changes, contributing to the development of cardiovascular diseases. Investigating the
loading of molecular cargo in these extracellular vesicles is essential for understanding their role
in disease development. This review consolidates the latest insights into the role of extracellular
vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications
of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of
cardiovascular medicine.

Keywords: intercellular communication; extracellular vesicles; cardiovascular diseases; biomarkers;
prognosis; diagnosis

1. Introduction

Intercellular communication is an essential activity for the maintenance of cellular
and tissue homeostasis as well as responding to pathological processes. For this purpose,
cells have different mechanisms depending on the distance of cell-to-cell communication
requirements. Short cellular cross talk is mediated by direct cell-to-cell contact or secretion
of soluble factors, whereas long range communication is driven through ligand–receptor
interactions such as cytokine and/or hormone release [1,2]. However, in recent decades
a novel mechanism of communication has emerged, where extracellular vesicles (EVs)
are implicated [2]. EVs are constitutively produced by most of the cell types and consist
in a lipidic bilayer membrane that encloses biological contents derived from the original
cell, i.e., proteins, nucleic acids and lipids that can alter the biology of the distant cell [3,4].
The interest in EV biology has grown exponentially and many different types of EVs have
been classified depending on their size, biogenesis and their biophysical properties [5,6]
(Figure 1). There are two primary types of EVs, exosomes and ectosomes, whose classifica-
tion is determined by their formation process. The genesis of these vesicles is contingent
upon the assembly of local microdomains within endocytic membranes for exosomes
and the plasma membrane for ectosomes, the latter subclassified into microvesicles and
apoptotic bodies [7,8].
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Exosomes are small EVs ranging from 30 to 100 nm. They are formed by inward bud-
ding of the early endosome membrane which subsequently matures into multivesicular 
bodies (MVBs) [9–12]. MVBs are involved in protein sorting, recycling, storage, transport 
and exosome release into the extracellular space [11,13–16]. Exosomes were originally con-
sidered as a cellular mechanism to eliminate cell debris; however, since few years ago, 
they are considered as principal mediators of cell-to-cell communication, cell and tissue 
maintenance and disease progression [17]. Moreover, exosomes can act as antigen-pre-
senting vesicles participating in the stimulation of immune response [18,19]. Microvesicles 
(MVs) are EVs with a range from 200 nm to 1 µm which are directly shed as an outward 
budding of the plasma membrane [10–13,20,21]. Similarly to exosomes, MVs are involved 
in cell-to-cell communication between healthy and diseased cells [22,23]. Finally, apop-
totic bodies are released into the extracellular space as blebs of cells undergoing apoptosis, 
and they have been reported as the bigger EVs, with a size range from 1 to 4 µm [13,24]. 
These apoptotic bodies are formed when the cytoskeleton is separated from the cellular 
plasma membrane due to increased hydrostatic pressure after the cell contracts [25]. The 
composition of the apoptotic bodies are organelles, chromatin and glycosylated proteins, 
in contrast to exosomes and MVs [13,26,27] (Figure 1). 

 
Figure 1. Schematic representation of the biological process of the genesis of extracellular vesicles, 
including the major classification due their size, content and functional impact. 

As mentioned previously, most cell types release EVs of different sizes, composition 
and subcellular origin, and moreover, these EVs can be found in different body fluids such 
as plasma, saliva and urine [28–30]. Therefore, due to their presence in liquid biopsies, 
EVs are considered as potential disease biomarkers. Understanding the mechanisms by 

Figure 1. Schematic representation of the biological process of the genesis of extracellular vesicles,
including the major classification due their size, content and functional impact.

Exosomes are small EVs ranging from 30 to 100 nm. They are formed by inward
budding of the early endosome membrane which subsequently matures into multivesicular
bodies (MVBs) [9–12]. MVBs are involved in protein sorting, recycling, storage, transport
and exosome release into the extracellular space [11,13–16]. Exosomes were originally con-
sidered as a cellular mechanism to eliminate cell debris; however, since few years ago, they
are considered as principal mediators of cell-to-cell communication, cell and tissue main-
tenance and disease progression [17]. Moreover, exosomes can act as antigen-presenting
vesicles participating in the stimulation of immune response [18,19]. Microvesicles (MVs)
are EVs with a range from 200 nm to 1 µm which are directly shed as an outward budding of
the plasma membrane [10–13,20,21]. Similarly to exosomes, MVs are involved in cell-to-cell
communication between healthy and diseased cells [22,23]. Finally, apoptotic bodies are
released into the extracellular space as blebs of cells undergoing apoptosis, and they have
been reported as the bigger EVs, with a size range from 1 to 4 µm [13,24]. These apoptotic
bodies are formed when the cytoskeleton is separated from the cellular plasma membrane
due to increased hydrostatic pressure after the cell contracts [25]. The composition of
the apoptotic bodies are organelles, chromatin and glycosylated proteins, in contrast to
exosomes and MVs [13,26,27] (Figure 1).

As mentioned previously, most cell types release EVs of different sizes, composition
and subcellular origin, and moreover, these EVs can be found in different body fluids such
as plasma, saliva and urine [28–30]. Therefore, due to their presence in liquid biopsies, EVs
are considered as potential disease biomarkers. Understanding the mechanisms by which
molecular cargos are loaded into the EVs will provide the key to completely understanding the
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role of EVs in cellular communication during disease development and progression [31–34]
(Figure 1).

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality
around the world [35]. CVDs cover a wide range of pathological conditions where the
most common types are ischemic heart disease, structural cardiomyopathies, electrical
heart diseases and finally heart failure (HF) [36]. There have been major steps forward in
diagnosis and prognosis of CVDs that have improved patients’ survival and their quality
of life, but there is still much work to do for CVD prevention and palliation, given the
continued high mortality rate [37]. Several studies have recently indicated that small
EVs can be released by cardiovascular cells, such as cardiomyocytes (CM), endothelial
cells (EC), cardiac fibroblasts (CF), platelets, smooth muscle cells (SMCs), leucocytes,
monocytes and macrophages [38]. These small EVs play important biological roles in the
maintenance of normal cardiac structure and function, whereas small EVs are able to change
their composition under pathological conditions, thus contributing to the development of
CVDs [39–41].

In this review, we summarize the current state-of-the-art small EVs in the prognosis and
diagnosis of CVDs, as well as the possible applications of small EVs in personalized therapies.

2. Small EVs in the Pathological Process of the Myocardial Infarction

Myocardial infarction (MI) is one of the most common CVDs, representing the main
leading cause of death in the world [42]. Pathologically, MI is defined as the death of
CMs due to a prolonged lack of oxygen in a specific area of the myocardium, initiating
an apoptotic process leading to necrosis of the cardiac muscle and subsequently to other
cardiac diseases such as arrhythmias or HF [43–46] (Figure 2A). The main etiology of MI is
associated with the rupture of the atherosclerotic plate [47], although other causes, such
as coronary artery embolism or coronary vasospasm have been also described [48]. After
MI and the consequent death of CMs, autophagy and inflammatory processes begin as a
strategy to remove the damaged tissue, allowing the replacement of the necrotic area with
fibrotic tissue [46,49–54]. Furthermore, mechanisms of revascularization are also activated
despite the low regenerative capacity of the heart after cardiac injury [55,56]. Currently,
several studies show that exosomes play an important role in post-MI processes and
participate in cellular communication regulating cardiac remodeling after MI [57–59]. For
this reason, many authors focus their attention on the main mechanisms that regulate the
production and content of these exosomes using transcriptomic and proteomic approaches,
highlighting their detection as biomarkers after MI and thus their plausible therapeutic
use [60–62]. The following paragraphs summarize the most important features of these
exosomes in the MI context.

2.1. Small Extracellular Vesicle Transcriptomic Analyses in Myocardial Infarction

The discovery of new functions of exosomes has allowed the use of these small EVs as
a potential tool to identify molecules that can be used as biomarkers after MI [63]. Currently,
the main diagnostic biomarker for MI is cardiac troponin (T/I) [64], even though other more
sensitive biomarkers have emerged, for example, non-coding RNAs, which allow for an
earlier diagnosis [65,66]. Within non-coding RNAs, an increasing number of transcriptomic
studies identified miRNAs in exosomes after MI [67–69]. Some analyses of circulating
exosomes in the serum of MI patients have revealed a large number of miRNAs that are
deregulated. For example, miR-203, miR-4516, or miR-183, which regulate the activity
of several protein kinases in CMs, are upregulated, confirming their identification as MI
biomarkers [67,70]. Another transcriptomic study identifies the deregulation of miRNA
levels in exosomes on a large scale, identifying around 500 upregulated and downregulated
miRNAs in MI exosomes, highlighting miR-6718 and miR-4329 [68]. Guo et al. (2021)
reveal that, in addition to differential expression in exosomal miRNAs identifying up
to 18 miRNAs as biomarkers, exosomes differ in size, being smaller in MI patients [69]
(Table 1).
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Figure 2. Schematic representation of the most representative small EV therapy in the treatment of
different of myocardial infarction (A), heart failure (B), atrial fibrillation (C), hypertrophic cardiomy-
opathy (D), dilated cardiomyopathy (E) and diabetic cardiomyopathy (F). (miRNA red, protein green,
lncRNA blue, circRNA yellow).

Some miRNAs have been widely studied due to their essential role in post-MI inflamma-
tory, fibrotic and angiogenic processes, i.e., miR-126 or miR-155, which are upregulated in exo-
somes of MI patients, and miR-21 or miR-146a-5p, which are downregulated [71–73]. Specifi-
cally, miR-146a-5p is associated with inflammation after MI by regulating M1 macrophage
polarization through the regulation of TNF Receptor-Associated Factor 6 (TRAF6) [74]. Re-
garding angiogenesis, another transcriptomic analysis of exosomes derived from MI patients
revealed up to 40 differentially expressed miRNAs, highlighting the downregulation of miR-
143. In vitro assays demonstrated that this downregulation promotes angiogenesis through
the insulin-like growth factor 1 receptor and nitric oxide (IGF-IR/NO) signaling pathway [75].
In contrast, in vitro assays in CMs after ischemia/reperfusion (I/R) describe exosomes with
high levels of miR-143 and miR-222, both enhancing angiogenesis and cardiac remodeling [76].
In addition, in vitro and in vivo assays in necrotic dendritic cells revealed the presence of
eight upregulated miRNAs related to the regulation of angiogenesis, in which miR-494 is
the most significant due its role in promoting revascularization after injury [77]. A similar
result was demonstrated by Duan et al. (2022), where the analysis of exosomes extracted from
the peripheral serum of patients with MI identified high levels of miR-126-3p, which pro-
motes angiogenesis through regulation of the miR-126-3p/TSC1/mTORC1/HIF-1α signaling
pathway [78] (Table 1).

The protective role of some exosomal miRNAs was also confirmed in ferroptosis
after MI. Low levels of miR-26b-5p were described in exosomes derived from MI patients,
which can reduce ferroptosis by positively regulating Solute Carrier Family 7 Member 11
(SLC7A11) [79]. Finally, other studies also associate miRNA transport in exosomes derived
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from MI patients with subsequent apoptosis [80]. Sun et al. (2022) revealed 52 differentially
expressed miRNAs by transcriptomic analysis, highlighting the upregulation of miR-133a-
3p, miR-151a-5p, miR-199b-5p, miR-374b-5p, miR-503-5p, and miR-708-5p. Concretely, they
focused on miR-503-5p because of its ability to promote apoptosis through the regulation
of Peroxisome Proliferator-activated Receptor Gamma Coactivator-1β (Ppargc-1β) and
Sirtuin 3 (SIRT3) in CMs [80] (Table 1).

Although miRNAs are the most frequent non-coding RNAs studied in exosomes
as MI biomarkers, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are
also analyzed. For lncRNAs, sequencing profiles allowed us to identify 518 differentially
expressed in post-MI exosomes, highlighting ENST00000556899.1 and ENST00000575985.1,
which are upregulated, thus supporting their involvement in the regulation of post-MI
processes [81]. More specifically, other lncRNAs like TUG1 or HCG15 have also been
detected as being upregulated in MI exosomes, and in vitro and in vivo assays show that
these lncRNAs are implicated in the inhibition of angiogenesis and cell viability through the
regulation of HIF-1α/VEGF-α and NF-κβ/p65, respectively [82,83]. Despite being smaller
in number, circular RNAs have been reported to have a significant advantage over linear
RNAs because they exhibit better stability and can therefore be identified as biomarkers of
MI for a longer period of time [84]. For this reason, some transcriptomic studies focused
on the analysis of circRNAs in MI exosomes, highlighting, for example, the upregulation
of circ_0020887 and circ_0009590 in the exosomes patients with ST segment elevation on
electrocardiogram [85]. Another circRNA that also increases its expression in exosomes
after MI is circITGB1. Within in vivo assays using a mouse model, these exosomes activate
dendritic cells and exacerbate cardiac damage and inflammation through the miR-342-
3p/NFAM1 pathway [86]. In vitro assays have also been reported in CMs subjected to
hypoxia where high levels of circ_HIPK3 and circ_SLC8A1 are detected [87,88]. These
circ_HIPK3-loaded exosomes target cardiac microvascular endothelial cells (CMVECs),
protecting them from oxidative stress through the regulation of the miR-29a/VEGFA and
miR-33a-5p/IRS1 pathways [89,90]. On the other hand, high levels of exosomal circSLC8A1
promote the inflammatory process and oxidative stress in other CMs, leading to their
apoptosis through the regulation of the miR-214-5p/TEAD1 axis [88] (Table 1).

Table 1. Summary of ncRNAs associated with myocardial infarction (↑ upregulated and ↓ downregulated).

Assay DE ncRNAs Main ncRNAs Sample Ref.
miRNAs

Liu et al. (2023) ↑ miR-4516
↑ miR-203 miR-4516, miR-203 Plasma

(MI patient) [67]

Zhao et al. (2019) 85 miRNAs
miR-183, miR-92,

miR-4709, miR-550,
miR-223

Plasma
(MI patient) [70]

Chen et al. (2021) ↑ 544 miRNAs
↓ 518 miRNAs miR-6718, miR-4329 Serum

(MI patient) [68]

Guo et al. (2021) ↑ 138 miRNAs
↓ 208 miRNAs

miR-143-3p,
miR-23b-5p,

miR-106b-5p,
miR-33a-5p

Plasma
(MI patient) [69]

Ling et al. (2020) ↑ miR-126
↓ miR-21

miR-126
miR-21

Serum
(MI patient) [71]

Geng et al. (2020) ↑ 20 miRNAs
↓ 20 miRNAs miR-143 Serum

(MI patient) [75]

Ribeiro-Rodrigues et al. (2017) ↑ 3 miRNAs
↓ 4 miRNAs miR-143, miR-222 H9c2

primary CMs [76]

Liu et al. (2020) ↑ 8 miRNAs miR-494-3p MI mouse model [77]

Sun et al. (2022) ↑ 12 miRNAs
↓ 11 miRNAs miR-503 Peripheral blood

MI mouse model [80]
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Table 1. Cont.

Assay DE ncRNAs Main ncRNAs Sample Ref.
LncRNAs

Zheng et al. (2020) ↑ 245 lncRNAs
↓ 273 lncRNAs

ENST00000556899.1
ENST00000575985.1

Plasma
(MI patient) [81]

Dang et al. (2023) ↑ TUG1 TUG1
Plasma

(MI patient)
MI mouse model

[82]

Lin et al. (2021) ↑ 29 lncRNAs
↓ 36 lncRNAs HCG15 Serum

(MI patient) [83]

circRNAs

Wang et al. (2023) 428 circRNAs circ_0020887,
circ_0009590

Plasma
(MI patient) [85]

Zhu et al. (2022) ↑ 10 circRNAs
↓ 10 circRNAs

circ_ITGB1,
circ_SLC7A1,

circ_ATG5,
circ_POLR1A

Plasma
(MI patient) [86]

2.2. Small Extracellular Vesicle Proteomic Analyses in Myocardial Infarction

Just as many transcriptomic studies have identified essential biomarkers for MI; there
are also proteomic analyses that reveal the presence of distinct proteins in post-MI exo-
somes that can be used as biomarkers for MI diagnosis [91]. Xie et al. (2022) analyzed
the protein profile within the exosomes of post-MI patients, identifying 72 differentially
expressed proteins. Notably, three proteins exhibited elevated levels: Plasminogen (PLG),
Complement Component C8 Beta (C8B) and Thrombin (F2) [91]. Furthermore, additional
research emphasizes the presence of proteins within these exosomes that are involved
in the inflammatory process and cardiac remodeling, such as Phosphatase and Tensin
Homolog (PTEN) or Matrix Metalloproteinase-9 (MMP-9) [71,92]. In the post-fibrotic
process after MI, some proteins present in exosomes have also been described, such as
the transcriptional cofactor Limb Bud And Heart Development Protein Homolog (LBH).
These exosomes produced by damaged CMs are taken up by CFs and activate Crystallin
Alpha B (CRYAB), promoting further proliferation of CFs and their differentiation into
myofibroblasts [59]. Post-MI exosomes have also been reported to carry proteins that
promote cardiac repair and remodeling after damage, for example, Clusterin or Profilin 2
(PFN2) [93,94]. The levels of PFN2 are elevated in exosomes produced by ECs following
MI. In both in vitro and in vivo assays, these exosomes demonstrate an increase in angio-
genesis and cardiac improvement after damage through regulation of the PI3K/PNF2/ERK
axis [94].

Finally, other studies highlight the importance of exosomes as biomarkers for MI
diagnosis. This research conducted a proteomic study by comparing plasma from con-
trol and MI patients and analyzing the protein profile in post-MI exosomes. These re-
sults revealed 11 proteins that were deregulated in the exosomes compared to control
plasma. However, three of these proteins, Chymotrypsin C (CTRC), Proto-oncogene
Tyrosine-protein Kinase SRC (SRC), and C-C Motif Chemokine Ligand 17 (CCL17), did
not exhibit downregulation when comparing their levels in serum between MI and con-
trol patients. Therefore, this analysis justified the need to also analyze post-MI exo-
somes to obtain additional diagnostic information that are not available only from plasma
samples [95].

2.3. Mechanistic Insights into Small Extracellular Vesicle Related with Myocardial Infarction

As discussed in previous paragraphs, exosomes are involved in the regulation of
the activation/inhibition of the main processes that occur after MI, such as inflammation,
fibrosis, angiogenesis or apoptosis, as well as allowing communication between cells to
coordinate these processes [57–59]. After MI, M1 macrophages are activated and increase
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the production of exosomes (M1-exos) with miR-155, which deliver this miRNA to CFs,
thereby enhancing the inflammatory and fibrotic process [96]. M1-exos with high levels
of miR-155 are also implicated in the inhibition of angiogenesis since these M1-exos can
also be transferred to ECs and reduce angiogenesis via Sirt1/AMPKα2 and RAC1/PAK2
signaling after MI [97]. Macrophages are not the only cells that can release exosomes carry-
ing miRNAs involved in post-MI process regulation. In vivo assays in a mouse MI model
show that after MI, T CD4+ cells are activated and promote the synthesis of exosomes
in which miR-142-3p is upregulated and promotes myofibroblast differentiation in ECs
via miR-142-3p/APC/Wnt signaling [98]. Exosomes are involved in paracrine regulatory
processes, as damaged CMs release exosomes after MI that will act on neighboring cells
such as other CMs or ECs. This exosomal function is confirmed by the study of Gou et al.
(2016), which showed that infarcted CMs generate exosomes that exhibit highly expressed
miR-19a-3p, which are delivered to ECs and inhibit angiogenesis regulating Hypoxia-
inducible factor 1-alpha (HIF-1α) [99]. Furthermore, post-MI CMs can generate exosomes
after cardiac damage carrying miR-328-3p, which increase the apoptotic process through
upregulation of Caspase 3 (Casp3) [100]. CFs also receive these exosomes produced by the
CMs after MI, increasing their proliferation and the myofibroblast differentiation due to the
high levels of miRNAs such us miR-208 or miR-92a [101–103]. Cell-to-cell communication
via exosomes also takes place in the opposite direction, i.e., ECs can generate exosomes
carrying miR-503 and promote CM apoptosis after MI [80]. Another example of miRNA
that can be transferred between CMs after MI is miR-30a, whose levels are upregulated in
exosomes extracted from the serum of MI patients. In vitro assays show that after hypoxia,
these exosomes regulate the autophagy process between hypoxic CMs by upregulating
genes such as Beclin-1 (BECN1), Autophagy Related 12 (Atg12), or Microtubule Asso-
ciated Protein 1 Light Chain 3 Alpha (LC3I/II) [104]. Exosomes, carrying low levels of
miR-342-3p as a consequence of MI, contribute to the regulation of both autophagy and
apoptosis. Both in vitro and in vivo assays reveal that miR-342-3p regulates apoptosis and
autophagy through the SRY-Box Transcription Factor 6 (SOX6) and Transcription Factor
EB (TFEB), respectively [105]. A similar process, ferroptosis, also plays a relevant role
in exosome regulation in post-MI processes. After MI, ferroptotic CMs release exosomes
with low levels of miR-106b-3p, which promotes the activation of the Wnt pathway and
increases the polarization of M1 macrophages, enhancing the inflammatory process after
damage [106].

Other authors focused on the differential expression of proteins involved in the bio-
genesis, uptake or polarization of exosomes generated after MI. One example is the high
level of CD44 in MI, which is involved in the synthesis of exosomes after MI through
the positive regulation of Fibroblast Growth Factor Receptor 2 (FGFR2), as well as the
subsequent uptake of these exosomes by ECs [107]. Regarding the ability of exosomes
to migrate and the factors that trigger their polarization to the region of interest, it has
been reported that dendritic cells increase the expression of C-C Motif Chemokine Recep-
tor 7 (CCR7) after damage, and they generate exosomes containing both CCR7 and its
ligands. These exosomes can target the spleen to activate CD4+ T cells, which produce anti-
inflammatory cytokines that promote cardiac remodeling [108,109]. In addition, an external
inflammatory stimulus, such as a decrease in the anti-inflammatory cytokine IL-10, can
modify the protein content of exosomes. One protein that modifies its levels in exosomes is
Integrin Linked Kinase (ILK), whose high levels promote the activation of NF-κβ, enhanc-
ing the inflammatory response and decreasing angiogenesis in the cells that receive these
exosomes [110,111].

2.4. Therapeutic Approaches

Although many studies describe the potential use of exosomes as biomarkers for
the diagnosis of MI, several studies additionally analyzed the use of exosomes as tools
to transport specific molecules that promote cardiac repair after MI, thus becoming a
widely used strategy in recent years [112–115]. The most frequent strategy is based on
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the use of exosomes derived from different mesenchymal stem cells (MSCs) that carry a
specific molecule (RNA or protein) involved in the processes of inflammation, fibrosis or
angiogenesis, among others [116–118].

Currently, there are numerous studies that use exosomes derived from different cell
types to transport a specific non-coding RNA to the damaged area after MI (Table 2). One
of the most widely used miRNAs as a therapeutic tool due to its role in inflammation and
fibrosis is miR-21. Several studies extract exosomes derived from different cell types such as
MSCs, cardiac telocytes (CTs), or even serum from control individuals loaded with miR-21,
using these exosomes as a treatment for MI in both in vitro and in vivo assays [119–121].
Administration of these miR-21-loaded exosomes shows an improvement in cardiac func-
tion after MI due to the positive regulation of the angiogenic process and the inhibition of
CM apoptosis and fibrosis through the regulation of PTEN and p53/Cdip1/Casp3 signaling
pathways, among others [119,121–123] (Figure 2A). MSC-derived exosomes, both under
control and hypoxic conditions and carrying high levels of miR-125b, have also been used
as a therapy against CM apoptosis after MI [124,125]. One of the most commonly used
types of MSCs to obtain exosomes, administered as a treatment for MI, are those derived
from human umbilical cord mesenchymal stem cells (HUCMSCs) [126,127]. These cells
have been used to obtain exosomes that act as a vehicle to transport miRNAs such as miR-
23, miR-133 or miR-223 to the infarcted area, which promote cardiac repair by activating
angiogenesis and reducing inflammation, ferroptosis or fibrosis [128–130] (Figure 2). Other
studies use this strategy to produce exosomes derived from cardiosphere-derived cells
(CDCs) or MSCs which carry miR-181, regulating macrophage polarization and reducing
inflammation when they are administered after MI [131,132]. There is also evidence that the
therapeutic use of MSC-derived exosomes carrying specific proteins such as Itchy E3 Ubiq-
uitin Protein Ligase (ITCH), Fibronectin Type III Domain Containing 5 (FNDC5) or Stromal
Cell-Derived Factor 1 (SDF1) promote cardiac repair after their administration [133–135]
(Figure 2A) (Table 2).

Another treatment strategy post MI involves the modification of gene expression in
the cells from which exosomes are subsequently extracted. This modification leads to
changes in the content of these exosomes, offering a targeted approach for therapeutic
interventions [136–138]. Several studies report that the overexpression of genes such as
Hypoxia Inducible Factor 1 Subunit Alpha (HIF1-α) in MSCs results in a modification of
the content of these exosomes, making them able to ameliorate cardiac damage after MI
by promoting angiogenesis and reducing fibrosis, apoptosis or inflammation [139,140].
Overexpression of GATA-Binding Protein 4 (GATA4) in the cells from which exosomes are
extracted has also been widely used to modify the exosome content for use as a treatment
after MI [141–143]. He et al. (2018) revealed that overexpression of GATA4 in bone marrow
mesenchymal stem cells (BMSCs) results in the production of exosomes that enhance
myocyte precursor differentiation and reduce apoptosis after MI. This effect is due to a
shift in the protein pattern carried by these exosomes, in which eight proteins associated
with differentiation and six related to apoptosis have been identified with differential
expression [141]. Finally, the reparative capacity of neonatal serum-derived exosomes
has also been reported, identifying up to 28 ligands that can promote angiogenesis when
these exosomes are administered after MI [144] (Table 2). Therefore, the understanding of
molecular and structural aspects of exosomes has paved the development of a promising
tool for MI treatment.
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Table 2. Summary of ncRNAs for therapeutically approaches in myocardial infarction (↑ upregulated
and ↓ downregulated).

miRNAs
Source of
Exosomes

In Vitro
Essay

In Vivo
Model miRNA Signaling Biological Effects Refs.

MSCs
BMSCs

H9c2
HUVECs MI (LAD) miR-210

AIFM3/PI3K/AKT
AIFM3/p53

Ephrin, Casp8

↑ CMs viability
↓ Fibrosis, apoptosis [145–148]

ADSCs - MI (LAD) miR-205 -
↑ Angiogenesis
↓ CM apoptosis,
cardiac fibrosis

[149]

MSCs
BMSCs NMCMs MI (LAD) miR-125-5p

miR-125b-5p
p53/BAK1
p53/Bnip3

↑ Cardiac function
↓ CM apoptosis,

autophagy
[124,125]

CTs
MSCs

plasma
BMSCs

CMECs H9c2
HUVECs
MRCMs

MI (LAD)
miR-21-5p

miR-21
miR-21a-5p

p53/Cdip1/Casp3
BTG2

PDCD4
PTEN

↑ Angiogenesis, CM
proliferation
↓ Apoptosis,

fibrosis

[119,120,122]

MSCs CMs MI (LAD) miR-25-3p FASL/PTEN
EZH2/H3K27me3 ↓ Apoptosis [150]

EPDCs H9c2
CMs MI (LAD)

miR-27a
miR-100
miR-30a
miR-30c

- ↑ Proliferation [151]

MSCs ECs
H9c2 - miR-153-3p

Angpt1/Vegf/
Vegfr2/PI3k/Akt/

eNOs

↑ Angiogenesis
↓ Apoptosis [152]

ADSCs HMVEC MI (LAD) miR-31 FIH1/HIF-1α ↑ Angiogenesis [153]

CDCs
HUCMSCs

Macrophages
PBMCs MI (LAD) miR-181b

miR-181a
PKCδ

c-Fos

↑ Macrophague
polarization, cardiac

protection
↓ Inflammation

[131,132]

BMSCs H9c2 MI (LAD) miR-143-3p CHK2/Beclin2 ↓ Apoptosis,
autophagy [154]

ADSCs H9c2 MI (LAD) miR-93-5p Atg7/TLR4 ↑ Cardiac protection
↓ Inflammation [155]

Serum
ADSCs

HUVECs
H9c2 MI (LAD) miR-126-3p

miR-126
TSC1/mTORC1/

HIF-1α

↑ Angiogenesis
↓ Inflammation,

fibrosis
[78,156]

BMSCs H9c2 MI (LAD) miR-338 MAP3K2/JNK ↑ Cardiac function
↓ Apoptosis [157]

MSCs HUVECs MI (LAD) miR-132 RASA1 ↑ Angiogenesis [126]

BMSCs - MI miR-29b-3p ADAMTS16 ↑ Angiogenesis
↓ Fibrosis [158]

ADSCs CMs MI (LAD) miR-671 TGFBR2/Smad2
↓ Fibrosis,

inflammation,
apoptosis

[159]

BMSCs
HUCMSCs
HUVECs

H9c2 MI (LAD) miR-24
miR-24-3p

Plcb3/NF-κβ
CCR2

↑ M2 macrophague
polarization

↓ CM apoptosis
[160,161]

M2
macrophage - MI (LAD) miR-1271-5p SOX6 ↓ Apoptosis [162]

BMSCs H9c2 MI (LAD) miR-30e LOX1/NF-κβ-
p65/Casp9

↓ Apoptosis,
fibrosis [163]
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Table 2. Cont.

miRNAs
Source of
Exosomes

In Vitro
Essay

In Vivo
Model miRNA Signaling Biological Effects Refs.

EPCs CFs MI (LCA) miR-1246
miR-1290

EFL5/CD31/
VEGFR2/α-SMA

SP1/CD31/VEGFR2/
α-SMA

↑ Angiogenesis
↓ Fibrosis [164]

HUCMSCs CMs
HUVECs MI (LAD) miR-214-3p PTEN/AKT ↑ Angiogenesis

↓ Apoptosis [165]

ADSCs
CMs

H9c2
M1

macrophages
MI (LAD) miR-146-a

EGR1/TLR4/
NF-κβ
TRAF6

↓ Apoptosis,
inflammation,

fibrosis
[74,166]

BMSCs
HUCMSCs

MSCs

HL-1
H9c2

NRCMs
MI (LAD) miR-19a/b

miR-19

SOX6/AKT
JNK3/Casp3
PTEN/AKT

↓ Fibrosis,
CM apoptosis [167,168]

MSCs - MI (LAD) miR-590-3p Hoxp,
Homer1,Cdk1,Cdk8

↑ CM
proliferation [169]

MSCs CMECs MI (LAD) miR-543 Col4a1 ↑ Proliferation,
angiogenesis [170]

CPCs HUVECs MI (LAD) miR-322 NOX2 ↑ Angiogenesis [171]
BMSCs - MI (LAD) miR-301 - ↓ Autophagy [172]

BMSCs CMs MI (LAD) miR-183-5p FOXO1 ↓ Apoptosis,
oxidative stress [173]

BMSCs
HUCMSCs

NRCMs
HUVECs MI (LAD) miR-133

miR-133a-3p
Sanil1
AKT

↑ Angiogenesis
↓ Inflammation,

fibrosis, apoptosis
[130,174]

Plasma H9c2 MI (LAD) miR-342-3p SOX6
TFEB

↓ Apoptosis,
autophagy [105]

EPCs - MI (LCA) miR-218-5p
miR-363-3p p53/JMY ↓ Fibrosis [175]

BMSCs H9c2 MI (LAD) miR-455-3p MEKK1/MEKK4/
JNK ↓ Apoptosis [176]

BMSCs
MSCs

NMVM
HUVECs

RAW264.7

MI (LCA,
LAD)

miR-182-5p
miR-182

TLR4/NF-κβ
GSDMD

↑ M1 → M2
polarization

↓ Inflammation,
pyroptosis

[177–179]

Plasma HUVECs
HEK293Ts

Carotid artery
injury miR-193a-5p ACVR1 ↓ Oxidative stress [180]

BMSCs
cCFU-Fs

H9c2
HUVECs MI (LAD) miR-221-3p PTEN/AKT

↑ Angiogenesis
↓ Fibrosis,
apotosis

[142,181]

HUCMSCs
hiPSC-Ecs

Ac16
hiPSC-CMs MI (LAD) miR-100-5p FOXO3/NLRP3

PP-1β/SERCA-2a

↑ Ca+2 homeostasis
↓ Inflammation,

pyroptosis
[182,183]

BMSCs CMs MI (LAD) miR-22 Mecp2 ↓ Apoptosis,
fibrosis [184]

BMSCs NRCFs MI (LAD) miR-212-5p NLRC5/VEGF/TGF-
β/SMAD ↓ Fibrosis [185]

HUCMSCs - MI (LAD) miR-200b-3p BCL2L11/NLRP1 ↓ Apoptosis,
inflammation [186]

HUCMSCs HUVECs MI (LAD) miR-423-5P EFNA3
↑ Angiogenesis,

migration
↓ Fibrosis

[187]
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Table 2. Cont.

miRNAs
Source of
Exosomes

In Vitro
Essay

In Vivo
Model miRNA Signaling Biological Effects Refs.

HUCMSCs HUVECs
H9c2 MI (LCA) miR-223 p53/S100A9 ↑ Angiogenesis

↓ Fibrosis [128]

M2
macrophage HL-1 MI (LAD) miR-378a-3p

ELAV1/NLRP3/
Caspase1/
GSDMD

↓ Pyroptosis [188]

MSCs NMCMs MI (LAD) miR-150-5p TXNIP ↓ Apoptosis [189]

Plasma H9c2
HEK293T MI (LAD) miR-130a-3p ATG16L1 ↓ Inflammation,

autophagy [190]

ADSCs NMCMs MI (LCA) miR-224-5p TXNIP ↓ Apoptosis,
necrosis [191]

iPSC derived
CMs iCMs MI (LAD) miR-106a-363

(cluster) Notch3 ↑ Proliferation [192]

MSCs NRCMs
NRCFs MI (LAD) miR-4732 -

↑ Angiogenesis
↓ Fibrosis,
apotosis

[193]

HUCMSCs CMs MI (LAD) miR-23a-3p DMT1 ↓ Ferroptosis [129]
mESs
MEFs

H9c2
HUVECs MI (LAD) miR-294 - ↑ Angiogenesis,

proliferation [194]

lncRNAs
Source of
Exosomes

In Vitro
Essay

In Vivo
Model lncRNA Signaling Biological Effects Refs.

Plasma HUVECs
HMVECs MI (LAD) KLF3-AS1 miR-138-5p ↓ Apoptosis,

pyroptosis [195]

Cardiac
myocites

hPSC-CVPC

NRCMs
HUVECs MI (LAD) MALAT1 miR-92a/KLF2

miR-497 ↑ Angiogenesis [196,197]

ECs CMs MI (LAD) LINC00174 SRSF1/p53 ↓ Apoptosis,
autophagy [198]

CMs CFs MI (LAD) AK139128 - ↓ Fibrosis [199]
MSCs H9c2 MI (LAD UCA1 miR-873/XIAP ↓ Apoptosis [200]

MSCs - MI TARID Tcf21/Smad3/TGF-
β

↓ Fibrosis [201]

circRNAs
Source of
Exosomes

In Vitro
Essay

In Vivo
Model lncRNA Signaling Biological Effects Refs.

BMSCs MI (LAD) circ_002113 miR-188-3p/RUNX1 ↓ Apoptosis [202]
HUCMSCs H9c2 MI (LAD) circ_0001273 - ↓ Apoptosis [203]

CMs
Ac16

ECs
Ac16 MI (LAD) circ_HIPK3 miR-29a/VEGFA

miR-33a-5p/IRS1
↑ Angiogenesis
↓ Apoptosis [89,90]

ADSCs HL-1 - circ_0001747 miR-199b/MCL1

↑ Proliferation,
viability

↓ Inflammation,
apoptosis

[204]

ECs CMs MI (LAD) circWhsc1 Trim59/Stat3/Cyclin
B2

↑ Proliferation
↓ Fibrosis [205]

Plasma VSMCs
CMECs MI (LAD) circCEBPZOS miR-1178-

3p/PDPK1 ↑ Angiogenesis [206]
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3. Small EVs in the Pathological Process of Cardiomyopathies

Cardiomyopathies are defined as “a myocardial disorders in which the heart mus-
cle is structurally and functionally abnormal, in the absence of coronary artery disease,
hypertension, valvular disease, and congenital heart disease, however, sufficient to cause
the observed myocardial abnormality” [207]. Cardiomyopathies can be classified into
primaries or secondaries. Primary cardiomyopathies are mostly idiopathic, leading to
heart failure and sudden death, while secondary cardiomyopathies develop in response to
several extrinsic factors such as hypertension, metabolic disorders, drug-induced myopathy,
ischemic heart disease and coronary artery disease [208–210].

3.1. Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is one of the most common cardiac genetic
conditions, with a prevalence greater than 1 in 500 in the general adult population [211].
This inherited disorder is characterized by left ventricular hypertrophy (>15 mm for adults),
that cannot be only attributed to abnormal load conditions [212] (Figure 2D). Essential
histopathological features include myocyte hypertrophy and disarray alongside heightened
myocardial fibrosis; the combination of these hallmarks leads to left ventricular outflow
track obstruction, impaired diastolic function and cardiac arrhythmias [213]. Genetically,
HCM is an autosomal-dominant disorder caused by mutations in genes encoding for
contractile and structural proteins of the cardiac muscle sarcomere apparatus [214]. Ge-
netic analysis has improved our knowledge about the molecular bases of HCM, enabling
clinicians to make an early identification prior to the onset of cardiac disease.

3.1.1. Small Extracellular Vesicle Transcriptomic Analyses in Hypertrophic Cardiomyopathy

In this pathological scenario, James et al. (2021) [215] performed a transcriptomic anal-
ysis on small EVs derived from human-induced pluripotent stem cell-derived cardiomy-
ocytes (hiPSC-CMs) with or without the c.ACTC1G301A mutation. This model of HCM [216]
was chosen for this study as it had previously been shown to recapitulate many key disease
phenotypes including abnormal contractility, Ca2+ sensitivity/handling, arrhythmogenesis
and hypertrophic brain natriuretic peptide signaling. Transcriptomic analysis of HCM
small EVs has shown that CMs alter their EV cargo when HCM sarcomeric mutations are
present. To be more precise, they observed differences in snoRNA cargo within HCM-
released small EVs that specifically is altered when HCM hiPSC-CMs were subjected to an
increased workload. In total, 12 snoRNAs were identified including 10 SNORDs (SNORD6,
SNOTRD116-23, SNORD116-25, SNORD116-29, SNORD18A, SNORD42A, SNORD43,
SNORD58C, SNORD60, and SNORD 101) and 2 SNORAs (SNORA3B and SNORA20).
The functional role of these snoRNAs is related with post-translational modifications and
alternative splicing processes differentially regulated in HCM (Table 3).

3.1.2. Mechanistic Insights into Small Extracellular Vesicle Related with
Hypertrophic Cardiomyopathy

Some years ago, Tian et al. (2018) demonstrated an upregulation of miRNA-27a
levels in both infarcted myocardial tissue and systemic circulation in a rodent model
of MI. The identified miRNA-27a exhibited a propensity for incorporation into small
EVs, contributing to oxidative stress and promoting hypertrophic gene expression via
modulation of the Nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated
protein 1 (Nrf2/keap1) signaling pathway [217]. Moreover, clinical studies corroborated
increased miRNA-27a levels in failing hearts and systemic circulation, suggesting its
potential utility as a diagnostic and prognostic biomarker for HF [218–220]. Furthermore,
the same lab evidenced that miR-27a* exhibited resistance to degradation and mirrored the
expression pattern of miRNA-27a in chronic HF. This miR-27a* is packaged into small EVs
and taken up by CM-targeting Z-line-associated protein PDLIM5, thereby contributing to
hypertrophic gene expression [221].
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3.1.3. Therapeutic Approaches

A recent study has evidenced that YF1, a derived non-coding RNA from cardiosphere-
derived cell exosomes alleviates cardiomyocyte hypertrophy, inflammation, and fibrosis
associated with HCM in transgenic mice harboring a clinically relevant mutation in cardiac
troponin I (cTnIGly146) [222] (Figure 2D).

Table 3. Summary of ncRNAs associated with cardiomyopathies (↑ upregulated and ↓ downregulated).

Assay DE ncRNAs Main ncRNAs Sample Ref.
Hypertrophic cardiomyopathy >> snoRNAs

James et al. (2021) 12 snoRNA

SNORD6, SNOTRD116-23, SNORD116-25,
SNORD116-29, SNORD18A, SNORD42A,

SNORD43, SNORD58C, SNORD60, SNORD 101,
SNORA3B and SNORA20)

hiPSC-CMs [215]

Dilated cardiomyopathy >> miRNAs

Zhang et al. (2023) ↑ 48 miRNAs
↓ 44 miRNAs

miR-423-5p, hsa-miR-185-5p, hsa-miR-150-5p,
hsa-miR-10a-5p_R-1, hsa-miR-1304-3p_1ss13CA,

sa-miR-3138_L-5R+2

Plasma
(DCM patient) [223]

3.2. Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM), with an incidence of 1 in 2500 individuals, is defined
as the presence of left ventricular dilation along with systolic dysfunction [208,224]. More-
over, DCM is frequently associated with an increased likelihood of severe arrhythmias,
which suggests the pathological affection of the cardiac conducting system. Finally, with
disease progression, the right ventricle and diastolic function are affected, leading to HF
and death [225] (Figure 2E). Some genes are associated with the initiation, progression and
pathology of DCM; nonetheless, while these genes seem to be linked to DCM, only a limited
number directly contribute to the onset of DCM owing to genetic variations [226,227].

3.2.1. Small Extracellular Vesicle Transcriptomic Analyses in Dilated Cardiomyopathy

Zhang et al. (2023) [223] performed high-throughput sequencing in plasma exo-
somes of DCM patients with chronic heart failure (CHF) and healthy controls, and a
total of 3687 miRNAs were detected in these biological samples. However, only 92 miR-
NAs were significantly differentially expressed between the two groups; 48 miRNAs
were upregulated and 44 miRNAs were downregulated [223]. Six of these miRNAs have
been identified as significant contributors to the development of DCM through diverse
mechanisms, such as the regulation of fibrosis (miR-423-5p, hsa-miR-185-5p, hsa-miR-150-
5p, hsa-miR-10a-5p_R-1) [228–233], hypertrophy (hsa-miR-150-5p) [231,232], inflamma-
tion (hsa-miR-1304-3p_1ss13CA, hsa-miR-150-5p) [231,232,234], oxidative stress (hsa-miR-
1304-3p_1ss13CA) [234], angiogenesis (hsa-miR-150-5p) [235] and mitochondrial function
(sa-miR-3138_L-5R+2) [236] (Table 3).

3.2.2. Small Extracellular Vesicle Proteomic Analyses in Dilated Cardiomyopathy

Bayes-Genis laboratory explored the proteomic signature of plasma-derived small
EVs obtained from DCM patients and healthy controls. A total of 176 proteins (74.6%)
were shared by controls and DCM patients, whereas 51 proteins were exclusive for the
DCM group and 7 proteins were exclusive for the control group [237]. They observed
that some proteins were generally over-represented in the cargo proteome of circulating
DCM small EVs compared with control small EVs. These included fibrinogen, crucially
associated with a high risk of cardiovascular disease due to its contribution to endothelial
injury, plasma viscosity and thrombus formation [237–242]; serotransferrin, related with
anemia as comorbidity in HF patients [237,243–247]; protease inhibitor α-1-antitrypsin
(AAT) as a putative biomarker for the evaluation of disease status [248,249]; and several
apolipoproteins [237]. Gene ontology analysis evidenced that proteins associated with
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stress as well as with protein activation were found to be more abundant in DCM small
EVs when compared to control samples [237].

3.2.3. Mechanistic Insights into Small Extracellular Vesicle Related with
Dilated Cardiomyopathy

Wu et al. (2018) [250] analyzed three different serum exosomal miRNAs, exo-miR-
92b-5p, exo-miR-192-5p and exo-miR-320a, in patients with DCM and acute HF (AHF) vs.
healthy volunteers. In the study, exo-miR-92b-5p was increased in DCM-AHF patients
compared to control, and was finally considered as a potential biomarker that potentially
predicts DCM-AHF in patients [250]. Recent research with angiotensin II-stimulated hiPSCs
differentiated cardiomyocytes has evidenced that miR-218-5p is upregulated in the DCM-
Exos. This microRNA has been identified as a critical contributor to fibrogenesis through
the activation of Tgf-β signaling after the suppression of TNFAIP3 [251].

3.2.4. Therapeutic Approaches

Several labs have reported the therapeutic role of small EVs in DCM. Vandergriff et al.
(2015) [252] analyzed the therapeutic role of cardiac stem cell-derived exosomes (CSC-exo)
in a mouse model of doxorubicin-induced DCM. Systemic delivery of human CSC-exo
in mice showed improved heart function via echocardiography, as well as decreased
apoptosis and fibrosis [252]. Sun et al. (2018) [253] proved that mesenchymal stem cell-
derived exosomes (MSC-Exos) alleviate inflammatory cardiomyopathy by improving
the inflammatory microenvironment of the myocardium, especially by regulating the
activity of macrophages in a mouse model of DCM [253]. Ni et al. (2020) [254] evidenced
that trophoblast stem cell-derived exosomes (TSC-exos) could alleviate DOX-induced
cardiac injury via the let-7i/YAP pathway. They observed an improvement of cardiac
function and decreased inflammatory responses, accompanied by downregulated YAP
signaling [254] (Figure 2E). Zhang et al. (2022) [255] evidenced that small EVs derived from
KLF2-overexpressing endothelial cells reduced cardiac inflammation and ameliorated left
ventricular dysfunction in DCM mice by targeting the CCR2 protein to inhibit Ly6Chigh
monocyte mobilization from the bone marrow [255].

3.3. Diabetic Cardiomyopathy

The prevalence of diabetes mellitus (DM) is approximately 9.3% of the world pop-
ulation [256]. In this vast group, HF has emerged as the most common cardiovascular
complication of diabetes [257]. Diabetic cardiomyopathy (DmCM) is a myocardial-specific
complication that is associated with coronary microvascular dysfunction and increases
the risk of HF in patients with diabetes [258] (Figure 2F). DmCM is characterized by left
ventricle dysfunction, CM apoptosis and interstitial fibrosis developed in the absence of
coronary artery disease, valvular disease and/or hypertension [259,260].

3.3.1. Mechanistic Insights into Small Extracellular Vesicle Related with
Diabetic Cardiomyopathy

Some years ago, Gonzalo-Calvo et al. (2017) [261] evidenced that circulating miR-1
and miR-133a levels are actively released from CM exosomes in response to lipid overload
and are robustly associated with myocardial steatosis in type 2 diabetes patients [261].
Moreover, microRNAs which are encapsulated within exosomes offer a stable source of
information to study the role of miRs associated with HF in diabetic hearts with preserved
ejection fraction (HFpEF). Huang et al. (2022) [262] evidenced the association of exosomal
miR-30d-5p and miR-126a-5p with diabetic HFpEF [262]. It has been shown that circulating
miR-30d downregulation reduces the cardioprotective role of miR-30d in HF [263–265],
whereas miR-126a downregulation decreases cardiac microvessel density and impairs
ventricular function [266].

In addition, recent research evidenced that exosomes deliver Mst1 protein between
cardiac microvascular endothelial cells (CMECs) and CM, playing a pivotal role in the
development of DmCM. In this scenario, the increase in Mst1 in CM inhibits cell autophagy,
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enhancing the apoptotic CM ratio and, moreover, affecting glucose metabolism which leads
to insulin resistance that finally contributes to DmCM and impaired cardiac function [267].
The same lab has recently demonstrated that exosomes mediate the interaction between
CMECs and CFs. They observed that exosomes derived from CMECs under high glucose
were rich in TGF-β1 mRNA, which significantly promoted the activation of CFs. This
condition aggravates perivascular and interstitial fibrosis in mice with DmCM [268].

3.3.2. Therapeutic Approaches

Heat shock protein (Hsp) response is a cellular intrinsic defense mechanism [269]. The
expression of these proteins in type 1 and type 2 diabetes are decreased, contributing to
diabetes-induced organ damage [270]. In this scenario, it has been evidenced that CM
exosomes derived from a transgenic mouse model with cardiac-specific overexpression
of Hsp20 protected against in vitro hyperglycemia-triggered cell death, as well as in vivo
STZ-induced cardiac adverse remodeling. Thus, Hsp20-engineered exosomes might be a
novel therapeutic agent for DmCM (Figure 2D). Moreover, Lin et al. (2019) [271] evidenced
that mesenchymal stem cell (MSC)-derived exosomes significantly increased the levels
of fatty acid transporters (FATPs) and fatty acid beta oxidase (FA-β-oxidase), whereas
TGF-β1 and Smad2 mRNAs levels were significantly reduced. Such molecular regulation
indicates that MSC-derived exosomes improve DM-induced myocardial injury and fibrosis
via inhibition of the TGF-β1/Smad2 signaling pathway [271]. Similarly, parasympathetic
ganglionic neuron-derived exosomes (PGN-exos) are able to inhibit apoptosis, improve
cell viability and restore levels of anti-apoptotic protein Bcl-2 in diabetes-induced H9c2
cells [272]. Finally, recent data support the notion that ginsenoside RG1 (RG1)-induced
MSCs secrete exosomes that can alleviate DmCM. Mechanistically, exosomes derived from
RG1-induced MSCs transferred circNOTCH1 into macrophages, activating the NOTCH
signaling pathway through the regulatory axis consisting of circNOTCH1, miR-495-3p and
NOTCH1 [273] (Figure 2F). All these findings may contribute to the development of new
therapeutic approaches for DmCM.

4. Small EVs in the Pathological Process of Atrial Fibrillation

Atrial fibrillation (AF) is the most common electrical disorder in humans. With a 2%
prevalence in the general population, the incidence of AF raises to almost 10% in the elderly
(+80 y). AF substantially contributes to morbidity and mortality by significantly altering
the quality of life and, moreover, increasing the risk of embolic stroke and HF [274,275].
The risk of developing AF is enhanced by distinct cardiac and medical conditions, such as
hypertension, cardiomyopathy, valvular dysfunction or obstructive sleep apnea [276,277].

AF is characterized by an irregular electrical pattern in the atrial chambers, lacking
the P wave in the ECG (Figure 2C). Clinically, AF can be classified according its temporal
duration in three distinct types; paroxysmal, persistent and permanent AF [276,277]. AF is
generally considered as paroxysmal AF when the fibrillatory episodes self-terminate within
seven days. Paroxysmal AF may progress to persistent and finally chronic or permanent
states that fail to self-terminate. In the last decade, an increasing number of studies have
reported the contribution of extracellular vesicles to the pathophysiology of AF. In the
following paragraphs, we will summarize the current state-of-the-art information regarding
the transcriptomic and proteomic EV analyses in different AF conditions, as well as an
array of studies in which the role of discrete molecules is studied. Finally, the first insights
of a therapeutic approach to revert AF conditions using EV therapy are envisioned.

4.1. Small Extracellular Vesicle Transcriptomic Analyses in Atrial Fibrillation

Several studies have investigated the concentration of small EVs in AF, providing evi-
dence of an increased number of small EVs in AF vs. sinus rhythm controls [278,279]. Gene
expression analyses have also been performed, most of them focusing on microRNA dif-
ferential expression [280–286], while others demonstrated differentially lncRNA [287,288],
circRNA [289] and protein [290–292] loading. Four different studies analyzed the differen-
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tial expression of microRNAs in AF vs. non-AF patients. Siwaponanan et al. (2022) [280]
revealed that nineteen microRNAs were significantly higher in AF vs. non-AF, and six were
subsequently validated (miR-106b-3p, miR-590-5p, miR-339-3p, miR-378-3p, miR-328-3p
and miR-532-3p). Zhu et al. (2022) [283] screened by high-throughput sequencing analysis
and subsequently verified by qRT-PCR the differential expression of exosomal miRNAs,
identifying that miR-124-3p, miR-378d, miR-2110 and miR-3180-3p were remarkably up-
regulated, while miR-223-5p, miR-574-3p, miR-125a-3p and miR-1299 were downregulated.
Similarly, Wei et al. (2020) [284] searched for differences in the exosomal miRNAs between
AF and normal sinus rhythm (SR) patients by combining high-throughput sequencing
results and real-time PCR. A total of 20 microRNAs were initially identified, among which
miR-92b-3p, miR-1306-5p and miR-let-7b-3p were differentially validated. While most
of these authors highlight that these microRNAs can constitute promising biomarkers to
assess AF in patients, there are limited mechanistic insights into the functional role of these
microRNAs in AF pathophysiology, as only miR-124-3p has been reported to modulate the
Wnt/β-catenin signaling pathway via AXIN1 in CFs [283] (Table 4).

Table 4. Summary of ncRNAs associated with atrial fibrillation (↑ upregulated and ↓ downregulated).

Study DE ncRNAs Main ncRNAs Sample Ref.
microRNAs

Siwaponanan et al.
(2022) ↑ 19 miRNAs miR-106b-3p, miR-590-5p, miR-339-3p,

miR-378-3p, miR-328-3p, and miR-532-3p
large EVs

AF vs. non-AF [280]

Zhu et al. (2022) ↑ 13 miRNAs
↓ 27 miRNAs

miR-124-3p, miR-378d, miR-2110,
and miR-3180-3p

miR-223-5p, miR-574-3p, miR-125a-3p,
and miR-1299

plasma
exosomes

AF vs. non-AF
[283]

Wei et al. (2020) ↑ 33 miRNAs
↓ 117 miRNAs miR-92b-3p, miR-1306-5p, let-7b-3p

plasma
exosomes

AF vs. non-AF
[284]

Mun et al. (2019) ↑ 45 miRNAs miR-103a, miR-107,miR-320d,
miR-486,let-7b

serum
paroxysmal vs.
persistent AF

[285]

Wang et al. (2019) ↑ 21 miRNAs
↓ 18 miRNAs miR-483-5p, miR-142-5p, miR-223-3p

plasma
exosomes

AF vs. non-AF
[282]

Hao et al. (2022) ↑ 41 miRNAs
↓ 50 miRNAs miR-210 atrial myocytes, serum

exosomes [281]

Xie et al. (2023) ↑ 31 miRNAs
↓ 37 miRNAs

miR-641
miR-30e-5p

plasma exosomes
ischemic AF stroke [286]

Three additional studies have investigated the exosomal microRNA differential load-
ing in patients in distinct phases of AF, i.e., paroxysmal, persistent and permanent AF.
Mun et al. (2019) [285] analyzed exosomes from the serum of patients’ supraventricular
tachycardia (SVT) as the controls, and paroxysmal AF and persistent AF patients through
microRNA microarray analysis. Forty-five miRNAs were significantly higher in patients
with persistent AF, but not in patients with paroxysmal AF as compared to control. Simi-
larly, Wang et al. (2019) [282] identified 39 differentially expressed exosomal microRNAs
from plasma of persistent AF and SR patient. Four of them were subsequently validated,
i.e., miR-483-5p, miR-142-5p, miR-223-3p and miR-223-5p, and multivariable logistic analy-
ses demonstrated that one of them, i.e., miR-483-5p, was independently correlated with AF.
Finally, Hao et al. (2022) [281] also analyzed the differential expression of microRNAs in
isolated exosomes from atrial myocytes and patient serum, and particularly focused on
the contribution of miR-210 in AF, directly targeting GPD1L, thus regulating atrial fibrosis
via the PI3K/AKT signaling pathway (Table 4). Interestingly, there are scarce microRNA
similarities between the distinct studies, suggesting a lack of reproducibility. Such low
reproducibility might be attributed to other parameters than AF per se, such as variations
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in sample collection (serum vs. plasma, systemic vs. intracardiac blood sampling) as well
as differences in the microRNA platforms employed for microRNA differential discovery. It
is important to note that such variations should be minimized during the validation steps,
particularly when using RT-qPCR. Thus, protocol standardization would be desirable to
further ascertain the global applicability of these microRNAs as AF biomarkers.

In addition, the exosomal microRNA cargo has also been investigated in AF-associated
cardiovascular diseases, such as stroke. Xie et al. (2023) [286] conducted an analysis of
serum exosomes from healthy individuals with SR, AF and AF-ischemic stroke patients
by deep sequencing. They identified that miR-641 and miR-30e-5p were significantly
upregulated in AF-ischemic stroke patients. These authors suggest that these microRNAs
can be considered biomarkers of ischemic stroke in AF patients. However, no mechanistic
insights are provided in regard to how these microRNAs are related to this CVD (Table 4).

Different studies have provided evidence that the deposition of epicardial adipose
tissue (EAT) surrounding the heart is intimately linked with the onset of AF [293,294].
Furthermore, several studies have demonstrated that EAT can release signaling molecules
that may contribute to the initiation of such electrophysiological disorders [295,296]. There-
fore, different studies have investigated the EAT-exosomal cargo in AF vs. non-AF pa-
tients. These studies have placed particular emphasis on the differential expression of
microRNAs [297], lncRNAs [287,288] and circRNAs [289]. While gene ontology analyses
of the differentially expressed non-coding RNAs revealed functional categories, such as
metabolism and stress response, which might contribute to the pathogenesis of AF, no
further insights are reported about the mechanistic link between these non-coding RNAs
and AF pathophysiology.

4.2. Small Extracellular Vesicle Proteomic Analyses in Atrial Fibrillation

To date, only three studies have investigated the protein content of small EVs in an AF
context [290–292]. Ni et al. (2021) [292] identified differentially expressed exosomal proteins
in AF and non-AF patients, highlighting that bioinformatic analyses revealed enrichment
in proteins involved in anticoagulation, complement system and protein folding. Shaihov-
Teper et al. (2021) [291] studied the role of EAT-derived small EVs in the pathogenesis of
AF. By generating culture explants from patients with AF, these authors uncovered more
secreted small EVs with greater amounts of proinflammatory and profibrotic cytokines
in AF patients compared to those without AF. Mechanistically, they demonstrated that
while EAT-derived small EVs from patients with and without AF shortened the action
potential duration of induced pluripotent stem cell-derived CMs, only those from AF
patients induced sustained reentry. Additionally, Weiss et al. (2021) [290] explored the
differences in circulating small EV proteomic profiles in rivaroxaban-treated non-valvular
AF patients as compared with matched warfarin controls. These authors demonstrated that
circulating small EV profiles were fundamentally altered, with a decrease in highly pro-
inflammatory protein expression and complement factors, along with increased expression
of negative regulators of inflammatory pathways. Therefore, these data suggest the notion
that differential protein cargo in small EVs is also relevant in the AF setting.

4.3. Mechanistic Insights into Small Extracellular Vesicle Related with Atrial Fibrillation

Different molecular cascades have been implicated as triggering factors of AF. In this
context, the contribution of small EVs to AF has been reported to play a fundamental
role in inducing fibrosis [298–302], inflammation [302–305], oxidative stress [302] and
apoptosis [306]. Within the context of AF-atrial fibrosis, both microRNAs and lncRNAs
have been identified. Exosomes containing miR-23a-3p, derived from CFs, can target
SCL7A11, contributing to AF pathophysiology by increasing ferroptosis [299]. Additionally,
exosomes containing lncRNA LINC00636 modulate miR-450a-2-3p and, thus, MAPK1,
leading to improved cardiac fibrosis in AF [298]. Xu et al. (2022) [300] reported that
exosomes, derived from MSCs, overexpressing Nrf2, inhibited cardiac fibrosis in AF, while
Xu et al. (2021) implicated miR-324-3p-regulating Tgf-ß1 and, consequently, fibroblast
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proliferation in AF. In the context of inflammation, the lncRNA LRON was found to
promote M2 macrophage polarization, from atrial myocytes, by delivering miR-23a, thus
decreasing atrial fibrosis [304], while the exosomal-loaded lncRNA PVT1 regulates M1
macrophage polarization from angiotensin II-treated CMs [303]. Curiously, rapid atrial
pacing modulates Kca3.1 function, leading to the promotion of proinflammatory exosome
secretion with the activation of the Akt/RAb27a signaling pathways [305]. Importantly,
Chen et al. (2021) [302] reported that EV containing MIAT can influence multiple triggering
signals leading to AF, such as atrial fibrosis, inflammation and oxidative stress. This process
is modulated by CXCL10 regulation via miR-485-5p. Finally, in the context of AF, CM
apoptosis can also be modulated by the delivery of miR-148a exosomes derived from
BMSCs, modulating SMOC2 expression [306].

Besides the biological processes involved in AF, additional evidence is emerging. For
instance, Yan et al. (2021) [307] reported that lncRNA XIST, shuttled by adipose tissue-
derived mesenchymal stem cell-derived small EVs, suppresses myocardial pyroptosis in
AF by disrupting miR-214-3p-mediated Arl2 inhibition. In addition, Li et al. (2020) [308]
revealed that myofibroblast-derived exosomes containing miR-21-3p were capable of modu-
lating Cav1.2, thus contributing to electrical remodeling in AF. In sum, evidence is emerging
on the functional role of discrete EV-mediated non-coding RNAs contributing to the patho-
physiology of AF.

4.4. Therapeutic Approaches

The importance of small EVs in cell–cell communication in homeostasis and diseases is
undoubtedly emerging, but most importantly, their therapeutic application is also emerging.
Seminal work by Parent et al. (2023) [309] reported a randomized controlled trial in which
the prevention of AF, after open-chest surgery, was evaluated, yielding promising results. In
this context, injection of small EVs at the time of open-chest surgery shows prominent anti-
inflammatory effects and effectively prevented AF due to sterile pericarditis (Figure 2C).

5. Small EVs in the Pathological Process of Heart Failure

Heart failure (HF) is a complex heterogeneous clinical syndrome, representing the ter-
minal stage of several CVDs and associated with a high mortality. It affects approximately
1% to 2% of the adult population [310,311]. This syndrome is produced by an impairment
of ventricular filing or an ejection of blood associated with symptoms of dyspnea, fatigue
and in some cases, pulmonary edema, increased sympathetic activity and circulation redis-
tribution [310,312] (Figure 2B). The main risk of HF is its constant progression. Therefore,
the exploration of biomarkers for early diagnosis and identification of potential therapeutic
targets is essential in the ongoing effort to fight against HF. The discovery of small EVs,
including exosomes, gives us new opportunities to identify diagnostic and therapeutic
biomarkers [313,314]. In the following paragraphs, we summarize the potential of small
EVs in HF as diagnosis biomarkers and their use in therapy.

5.1. Small Extracellular Vesicle Transcriptomic Analyses in Heart Failure

It has been widely documented that the number of small EVs is increased in the serum
of patients with HF. The origin of these small EVs is not exclusive from the damaged
myocardium, since hallmarks present on the surface of the small EVs reveal that they are
also derived from ECs as well as from immune cells, contributing to the development
of this syndrome, promoting the inflammatory process [315–320]. Small EVs’ cargo can
thus be a source of HF diagnostic biomarkers. As previously said, many cardiac diseases
end in HF; one of these is DCM. In order to find biomarkers for DCM diagnosis, Zhang
et al. (2023) performed isolation of exosomes in patients with chronic heart failure (CHF)
caused by DCM. By next generation sequencing, they identified 92 microRNAs differen-
tially expressed, and gene ontology analysis revealed that these microRNAs are related to
oxytocin signalling, Hippo signalling and Ras signalling, pointing them out as candidates
for CHF diagnosis [223]. As mentioned in previous paragraphs, diabetes mellitus is related
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with complications in HF with preserved ejection fraction (HFpEF). In a diabetic rat model
with HFpEF, circulating exosomes decreased their miR-30d-5p and miR-126a-5p expression
levels, suggesting that they can be used as biomarkers for HF [262]. In this scenario, other
authors proposed several microRNAs presents in exosomes from patients with HF as
biomarkers for diagnosis such as miR-27a, miR-34a, miR-92b, miR-146, miR-194, miR-425
and miR-744 [250,321–324] (Table 5). Other biomarkers for HF are piRNAs, which are
ncRNAs 24-32 nucleotides in length associated with PIWI proteins, repressing transposable
elements, and thus keeping the integrity of the germinal cell line. The analysis of piRNA
cargo in exosomes from serum in patients with HF by RNAseq identified 585 upregulated
piRNAs and 4623 downregulated piRNAs, highlighting hsa-piR-02009 and hsa-piR-006426
as the most downregulated piRNAs, suggesting them as potential HF biomarkers [325]
(Table 5). Following ncRNAs, circRNAs can be a promising source of biomarkers. Han
et al. (2020) performed a screening of differentially expressed cirRNAs in HF-EXO by next
generation sequencing, identifying 56 differentially expressed circRNAs, further suggesting
that hsa-circ-0097435 can be used as a biomarker involved in myocardial cell injury [326]
(Table 5).

Table 5. Summary of ncRNAs associated with heart failure (↑ upregulated and ↓ downregulated).

Assay DE ncRNAs Main ncRNAs Sample Ref.
miRNAs

Zhang et al. (2023) 50 miRNAs ↑
48 miRNAs ↓

miR-103a-3p
miR-148a-3p

Plasma
(CDM patient) [223]

Huang et al. (2022) 2 miRNAs ↑ miR-30d-5p
miR-126a-5p HFpEF rat model [262]

Xie et al. (2022) miR-27a ↑ miR-27a Serum
(HF patient) [324]

Beg et al. (2017) 2 miRNAs ↑ miR-486
miR-146a

Plasma
(HF patient) [323]

Wang et al. (2018) 2 miRNAs ↓ miR-425
miR-744

Plasma
(HF patient) [322]

Matsumoto et al. (2013) 2 miRNAs ↑ miR-194
miR-34a

Serum
(Hf patient) [321]

Wu et al. (2018) miR-92b-5p ↑ miR-92b-5p Serum
(Hf patient) [250]

Galluzzo et al. (2021) 20 miRNAs ↑
12 miRNAs ↓ miR-22-3p Plasma

(HF patient) [327]

Xiao et al. (2022) 5 miRNAs ↑
13 miRNAs ↓

miR-214-3p
let-7i-5p
let-7g-5p

HF rat model [328]

piRNAs

Yang et al. (2018) 585 piRNAs ↑
4623 piRNAs ↓

piR-02009
piR-006426

Serum
(HF patient) [325]

circRNAs

Han et al. (2020) 29 circRNAs ↑
27 circRNAs ↓ circ-0097435 Blood

(HF patient) [326]

5.2. Small Extracellular Vesicle Proteomic Analyses in Heart Failure

The study of proteomic signatures in small EVs from the plasma of patients with HF
is also a significant tool for HF diagnosis. As HF is associated with others pathologies, a
proteomic study performed by the isolation of small EVs from the plama of patients with
HF, dyspnea and renal dysfunction shows that these small EVs bear Cystatin C and CD14
that can be used as biomarkers for diagnosis [329].



Cells 2024, 13, 265 20 of 37

5.3. Mechanistic Insights into Small Extracellular Vesicle Related with Heart Failure

As previously pointed out, the great challenge in HF is its unstoppable progression,
and in this progression, small EVs have an important role, controlling the cell-to-cell com-
munication participating in several processes such as cell adhesion, apoptosis, immune
response and vascular function [319]. miR-22-3p was previously known as an HF biomarker
present in exosomes [327]. Functionally, miR-22-3p targets FURIN, and thus induces the
expression of apoptotic-related genes in HF [330]. Transforming growth factor beta (TGF-β)
is a cytokine upregulated in several cardiac diseases [331]. The isolation of exosomes from
fibroblasts treated with TGF-β identified 50 genes differentially expressed related with
cardiac hypertrophy. Cardiomyocytes treated with these exosomes expressed 40 of these
differentially expressed genes, inducing an HF phenotype, thus pointing out fibroblasts
as targets for HF treatment [332]. Sympathetic hyperactivity also plays an important role
in the progression of CHF. Inflammation in the rostral ventrolateral medulla (RMLV), a
key region for sympathetic control, excites the activity of neurons and promotes an in-
crease in sympathetic outflow. In a CHF rat model, the levels of circulating microRNAs
in exosomes vs. microRNA levels in the RVLM were compared, and 59 DE-microRNAs
and 5 overlapping microRNAs were identified. Three of these overlapping microRNAs
were miR-214-3p that was upregulated in exosomes and in RVLM, while let7g-5p and let7i
were downregulated in exosomes and in RVLM of CHF rats. In vitro studies in PC12 cells
showed that miR-214-3p enhanced the inflammatory response, and let7g-5p and let7i-p
reduced neuroinflamation, suggesting that the circulating exosomes enhanced the inflam-
matory response in the RVLM, contributing to sympathetic hyperactivity in CHF [328].
NF-E2-related factor 2 (NRF2) mediated sympathetic activation, and its expression was
decreased in HF. Importantly, cardiac-EVs enriched with microRNAs mediate the cross talk
between heart- and brain-targeting NRF2, thus producing an unbalance in the sympathetic
outflow [333].

5.4. Therapeutic Approaches

Heart transplantation stands out as the most effective treatment against HF. However,
its effectiveness is impaired by the reduced number of donors and the difficulty of organ
preservation. Currently, cold static storage represents the main method of preservation,
but its disadvantages limit the overall success of heart transplantation [334]. During cold
ischemia preservation, the myocardial function of the transplanted heart is impaired and
cell death increases. Of note, as mentioned in the previous paragraphs on therapeutic ap-
proaches, small EVs are deemed as promising therapeutic agents that could be used to avoid
heart transplantation, and in this regard, several labs have conducted scientific studies in
the context of HF. MSC-EVs therapy exerts a cardioprotective effect on the heart, improving
its myocardial function and decreasing cell death [335]. Additional evidences reported
that mesenchymal stem cell exosome (MSC-EXO) delivery produces a cardioprotective
effect, promoting angiogenesis, and decreasing fibrosis and apoptosis by deactivating
the Hippo-YAP pathway in HF [336,337]. The efficiency of MSC-EXO treatment can be
improved with the administration of agomiR-125a-5p. Mechanistically, miR-125a-5p has
KLF13, TGFB1 and DAAM1 as targets genes, involved in macrophages, CF and EC function,
respectively. Moreover, agomiR-125a-5p treatment increased M2 macrophage polarization,
promoted angiogenesis and attenuated fibroblast proliferation in a mouse and porcine
model of I/R [338]. Treatment with BMSCs-EVs improved cardiac function and angio-
genesis and alleviated fibrosis and inflammation in a rat model with acute myocardial
infarction-induced HF via the delivery of BMP2 [339] (Figure 2). Exosomes derived from
embryonic stem cells (ESCs-EXOs) are also able to induce myocardial angiogenesis in a
transverse aortic constriction HF model through the FGF2 signalling pathway by attenuat-
ing myocardial damage [340]. Small EVs secreted by induced pluripotent stem cell-derived
cardiovascular progenitors have a cardioprotective effect, making them a potential treat-
ment for CHF with their cargo enriched in 16 microRNAs associated with tissue repair
pathways [341]. Another source of small EVs suitable for HF treatment are small EVs from
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umbilical cord mesenchymal stem cells (HucMSC-EVs); these small EVs reduce oxidative
stress and cell apoptosis through miR-100-5p, which has NOX4 as a target [342]. Small
EVs from ECs with Krüppel-like factor 2 (KLF2) overexpression can be used as a treatment
against DCM-HF; KLF2 exerts an anti-inflammatory effect, ameliorating left ventricular
dysfunction in DCM mice. KLF2 targets CCR2 protein, preventing monocyte mobilization
from the bone marrow [255]. Human trophoblast stem cell-derived exosomes (TSC-Exos)
showed cardioprotective properties in a mice model of HF induced by doxycycline; the
administration of TSC-Exos and miR-200b inhibitor decreases CM apoptosis, maintains the
integrity of the mitochondria and improves cardiac function through an increase in Zeb1,
which is a target of miR-200b and has an antiapoptotic effect [343,344] (Figure 2B).

In summary, HF is a complex syndrome with a difficult treatment process, and small
EVs play a role in the development of the disease but can also be used as therapeutic or
diagnosis tools.

6. Conclusions and Perspectives

Cell-to-cell communication represents a key biological process in cellular and tissue
homeostasis that is mediated by different molecular mechanisms (see recent reviews [1–3]).
In recent years, exosome-mediated cell-to-cell communication has emerged as a fundamen-
tal process contributing to cellular homeostasis. Multiple lines of evidence have also been
reported, indicating that such exosome-mediated cellular communication is altered and
impaired in pathological conditions, particularly in oncogenesis [4,11]. More recently, im-
paired exosome signaling has also been reported in distinct cardiovascular pathological con-
texts, including ischemic [67–69], electrical [280–286] and structural [215,223] cardiopathies.
It is important to highlight in this context that increasing evidence is reported about the
functional role of exosomes in distinct ischemic diseases, such as MI and coronary artery
diseases, as well as in structural heart diseases such as DCM and HCM, as reviewed in this
study. However, our understanding of the functional role of exosomes in electrical cardio-
vascular alterations is mostly confined to AF, while scarce or no evidence is yet reported
in other relevant electrophysiological defects, such as Brugada, LQT and SQT syndromes,
respectively. This might be indeed caused by the lower prevalence of these cardiac defects
as compared to cardiac structural defects. In the next coming years, we will, therefore,
witness increasing evidence of the functional role of exosomes in other cardiovascular
diseases, such as valvular heart diseases and electrical cardiac wiring defects.

Exosome cargo selectively includes a large array of distinct biologically active molecules,
such as lipids, proteins, coding and non-coding RNAs (microRNAs, lncRNAs and circR-
NAs) [1–3]. Evidence of the differential and selective distribution of combinations of
these molecules, derived from distinct cardiovascular cell sources, i.e., cardiomyocytes,
endothelial and/or epicardial cells and infiltrated immune cells, has been largely docu-
mented [298–305]. Such differential distribution, particularly of microRNAs, lncRNAs
and circRNAs, in distinct pathological conditions has provided molecular hallmarks that
can be exploited as sensitive biomarkers for the early diagnosis and prediction of dis-
tinct cardiovascular pathological conditions. Curiously, while our current identification of
these biomarkers is greatly increasing, only very few of them are consistently validated
in different studies. Such discrepancies might be derived, among other causes, from the
variability of the exosome sample collection (plasma, serum, biopsies), their subsequent
isolation procedures (ultracentrifugation, column binding) and their discovery/validation
strategies (microarrays, next generation sequencing). Thus, there is an urgent need to invest
in providing standardized pipelines that can pave the path for the discovery of robust
biomarkers that can speed up their use into the clinical arena.

Curiously, while numerous reports highlight the fitness of distinct exosome-contained
non-coding RNAs as cardiovascular disease biomarkers, the molecular mechanisms un-
derlying their contribution to such pathology are, in most cases, scarce or even absent.
Therefore, additional studies should be performed to increase our understanding of these
molecular pathways. Such information will pave the path to design novel strategies by



Cells 2024, 13, 265 22 of 37

which exosome cargos can be modified, thus enabling the customization of cell–cell com-
munication pathway modulation. Such cellular and molecular approaches will allow, in
the coming future, the generation of personalized exosome cargos, which will selectively
modulate specific signaling pathway responses, therefore opening novel therapeutic roads.
As mentioned previously, exosomes are secreted by most eukaryotic cells, including embry-
onic stem cells (ESC). These ESC exosomes represent an innovative cell-free approach to
harnessing the robust regenerative capabilities of ESC without the inherent risks associated
with direct transplantation of ESC, such as the potential for teratoma formation [194,345].
Finally, while exosomes hold great promise for clinical applications, some associated chal-
lenges need to be overcome. In this context, it is crucial to emphasize the significance
of the exosome delivery route, as it directly influences the therapeutic effectiveness of
exosomes. Different administration methods for exosome delivery exist, ranging from
less invasive techniques such as intranasal, inhalation and oral administration, to more
invasive approaches like intravenous, intraperitoneal, intramyocardial and intraventricular
injection. Numerous researchers suggest that intramyocardial injection stands out as the
optimal delivery method for cardiac therapy. This is attributed to its ability to achieve
the highest concentration of exosomes in the cardiac muscle, thereby preventing excessive
accumulation in other organs [194,346–348]. The determination of optimal dosages for
exosomes treatments is challenging, primarily influenced by delivery methodologies, and
further by exosomes’ inherent characteristics such as their short half-life and Z-potential
(aggregation index) [349]. Last but not least, for exosome treatments to transition into
clinical practice, it is imperative to define biopharmaceutical safety standards and ensure
cost-effectiveness.

To conclude, exosome-mediated cell-to-cell communication holds promise in under-
standing and treating cardiac diseases, offering potential biomarkers for early diagnosis.
However, overcoming challenges related to standardized collection methods, molecular
understanding, and therapeutic optimization is crucial for the successful clinical integration
of exosome cardiac treatments.
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