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Abstract: A well-known natural ingredient found in several medicinal plants, berberine (Ber), has
been shown to have anticancer properties against a range of malignancies. The limited solubility
and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study,
we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and
Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and
mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and
cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag
and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via
upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation
of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant
dose-dependent elevation in inflammatory markers’ (TNF-α, NF-κB, and COX-2) levels compared to
the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of
cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant
dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence
that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration
rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of
control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against
HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability.
Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent
anticancer characteristics of selenium.
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1. Introduction

On a worldwide basis, cancer poses a substantial social, economic, and public health
risk. The most common cancers around the world are those of the liver, lung, colon, and
stomach, and liver cancer ranks as the third most common in terms of global morbidity
and mortality [1]. Berberine (Ber) is a small isoquinoline alkaloid present mainly in the
stem and roots of various herbs within the Berberis genus [2]. It displays a variety of
biological activities, such as anti-inflammatory [3], anti-diabetic [4], anti-hyperlipidemic [5],
cardioprotective, memory-enhancing, and anti-depressant effects [6–8]. Previous research
has suggested that Ber has strong potential as an anticancer agent due to its notable
antitumor effects [9–11]. The anticancer activity of Ber has been demonstrated in various
cancer types, including liver cancer [12], human gastric cancer [13], prostate cancer [14],
endometrial cancer [15], pancreatic cancer [16], and ovarian cancer [17].

Berberine has shown the ability to inhibit cancer cell growth through different mecha-
nisms, including apoptosis, cell cycle regulation, and autophagy modulation. To address
its poor lipid and water solubility, the development of berberine derivatives became im-
perative [10,18]. Recently, the discipline of nanomedicine has made great progress in the
development of new nanoparticles, particularly for cancer treatment [9].

Selenium (Se) is involved in the regulation of the immune response and in cancer
prevention [19,20]. Selenium nanoparticles (SeNPs) are considered promising potential
drug delivery systems and have shown a variety of benefits, including improved antitumor
activity, reduced cytotoxicity, and high drug-loading capacity [21]. Thus, SeNPs have
been used as an important anticancer medication delivery mechanism [22]. To harness the
pharmacological benefits of selenium nanoparticles, it is crucial to consider factors such as
the size of the particles, their chemical composition, and the amount administered [23].

Silver stands out as the most commercially viable precious metal for the fabrication of
nanoparticles and nanomaterials. Its utilization is attributed to its ability to improve various
physicochemical features compared to bulk materials, encompassing electrical, thermal, cat-
alytic, and optical properties [24]. The advantages of silver nanoparticles in drug delivery
systems include adjustable dimensions and configurations, dense attachment of surface lig-
ands, the increased stability of nucleic acids bound to the surface, and enhanced precision in
timed/controlled drug delivery within cells. Additionally, these nanoparticles offer protection
for attached therapeutics from degradation [25]. AgNPs have been widely used in household
utensils, healthcare, and diverse areas such as food preservation, environmental studies, and
biomedical applications, due to their exceptional features [26]. These nanoparticles possess
anti-neoplastic, antiangiogenic, antimicrobial, and anti-inflammatory properties that are highly
beneficial for various purposes [27]. Interestingly, several studies demonstrated the biological
and anticancer effects of silver nanoparticles [28,29].

Chemical, physical, and biological procedures are all used to produce nanoparticles.
Green synthesis, which refers to the environmentally friendly and sustainable manufactur-
ing of nanoparticles without the use of hazardous chemicals or toxic solvents, has gained
popularity in biological processes in recent years [30]. Popular green synthesis processes
use natural sources such as plants and microorganisms. This process has several advan-
tages over traditional synthesis methods, including lower costs, greater scalability, less
hazardous waste, and a high-performance structure that can be easily scaled up for indus-
trial production. Furthermore, green synthesis can produce nanoparticles with distinct
forms, sizes, and surface qualities that are customized for specific applications. Enzymes,
proteins, polyphenols, flavonoids, and terpenoids, which can act as catalyzing, reducing,
stabilizing, or capping agents for one-step synthesis, are among the biological sources used
for the synthesis of green nanoparticle synthesis [31].

This work aimed to compare the in vitro antitumor activity of green synthesized
berberine–silver nanoparticles (Ber-AgNPs) and berberine–selenium nanoparticles
(Ber-SeNPs) in the human liver cancer cell line HepG2.
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2. Materials and Methods
2.1. Chemicals and Reagents

Berberine (>99%), silver nitrates (AgNO3), sodium selenite (Na2SeO3), and dimethyl
sulfoxide (DMSO) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO,
USA). Cisplatin (CDDP; Pt(NH3)2Cl2) (UNISTIN®, EIMC United Pharmaceuticals, Badr
City, Cairo, Egypt) was used in this study as a positive control. Otherwise, all reagents
utilized were of the highest purity.

2.2. Biosynthesis of Ber-AgNPs

The effective green synthesis of AgNPs followed the methodology outlined by
El-Khadragy et al. [26]. Briefly, a 0.1 mM/mL aqueous solution of berberine was introduced
into a solution containing 0.1 mM/mL AgNO3 and agitated at temperatures ranging from
45 to 50 ◦C. The size of the synthesized Ber-AgNPs, measured using a Zetasizer (ZEN 3600),
averaged 215.4 ± 10.8 nm, with a mean zeta potential of −3.73 mV (Supplementary Data:
Table S1 and Figure S1). The formed NPs had a Ber:Ag ratio equal to 3.1:1.

2.3. Biosynthesis of Ber-SeNPs

Combining two milliliters of berberine (0.1 mM/mL) with ten mL of Na2SeO3
(0.1 mM/mL) and stirring for a full day at room temperature resulted in the synthesis of
Ber-SeNPs [10]. The average size of the Ber-SeNPs, measured using a Zetasizer (Nano
series, ZEN 3600, Malvern, UK), was found to be 171.5 ± 4.2 nm, with a mean zeta potential
of −12.4 mV (Supplementary Data: Table S1 and Figure S1). The formed NPs had a Ber:Se
ratio equal to 4.3:1.

2.4. Cell Lines and Culture Conditions

The hepatocellular carcinoma cell line (HepG2) and the mouse normal liver cell line (BNL)
were acquired from Nawah Scientific Inc., located in Mokatam, Cairo, Egypt. These cell lines
were grown in T25 culture flasks, maintaining a density of 2 × 104 cells, in Dulbecco’s modified
Eagle medium (DMEM; Gibco, ThermoFisher Scientific, Waltham, MA, USA) supplemented
with 10% fetal calf serum, 100 U/mL penicillin, and 100 IU/mL streptomycin. The culture
was carried out in a humidified incubator with a 5% CO2 atmosphere at 37 ◦C, with media
changes every 48 h. Passage occurred when cells reached 75% confluence under an inverted
microscope. For cell collection, trypsinization with 0.025% trypsin and 0.02% EDTA was
followed by washing in phosphate buffered saline (PBS).

2.5. Design of the Study

To assess the anticancer mechanism of the tested materials, HepG2 cells were divided
into seven groups. One of them was incubated with Ber (13 µg/mL), and the other four
groups were incubated with Ber-AgNPs and Ber-SeNPs (one-third or one-half of the IC50
of each group of NPs). Untreated cells were considered as a control; however, CDDP was
used as a positive control (0.17 µg/mL). The design of the study is detailed in Table 1.
Incubation was extended for 24 h.

Table 1. Study design of HepG2 cells exposed to different treatments.

Group Treatment Dose Exposure Time

Group 1: Control Vehicle

24 h

Group 2: Ber 13 µg/mL
Group 3: Ber-AgNPs 1/3 IC50 0.4 µg/mL
Group 4: Ber-AgNPs 1/2 IC50 0.6 µg/mL
Group 5: Ber-SeNPs 1/3 IC50 0.013 µg/mL
Group 6: Ber-SeNPs 1/2 IC50 0.02 µg/mL

Group 7: CDDP 0.17 µg/mL
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2.6. Cytotoxicity Assay

The sulforhodamine B (SRB) assay was used to evaluate cell viability. In 96-well plates,
100 µL of HepG2 or BNL cell suspension (5 × 103 cells) was incubated for 48 h in full
medium. Another 100 µL of medium with varying drug concentrations was added for
cell treatment with the vehicle, Ber, Ber-AgNPs, Ber-SeNPs, or CDDP. After 24 h of drug
exposure, cells were fixed at 4 ◦C for one hour and the medium was substituted with
150 µL of 10% TCA. After removing TCA, cells were washed five times with distilled water.
Subsequently, 70 µL of 0.4% w/v SRB solution was added and incubated for 10 min in a
dark area. After three 1% acetic acid washes, plates were air-dried overnight. Subsequently,
150 µL of 10 mM TRIS was used to remove the SRB staining from proteins. The absorbance
was measured at 540 nm using a microplate reader (Biotech, Inc., Minneapolis, MN, USA).

2.7. Wound Healing Cell Migration Assay

Cell migration was evaluated by investigating the cell capacity to migrate within
the cellular environment in a 2D in vitro wound healing assay [32]. Briefly, HepG2 cells
were seeded into six-well plates (2 × 105 cells/well) one day before treatment with Ber,
Ber-AgNPs, Ber-SeNPs, and CDDP. When the confluence reached ~90%, the cells were
exposed to Ber, Ber-AgNPs, Ber-SeNPs, and CDDP for 24 h. Then, a horizontal scratch was
performed, and the plates were washed with PBS to remove debris. Random fields were
selected and photographed at 0, 24, 48, and 72 h. From this, the migrated distances were
measured and the migratory abilities were detected as a ratio of the 72 h distance to the 0 h
distance from the same field.

2.8. Lactate Dehydrogenase (LDH) Assay

To evaluate membrane integrity in the treated HepG2 cells and control, LDH activity
was measured using the LDH kit (Abcam, Cambridge, UK). The leakage of LDH from
the cells was determined in the medium and the quantification of the produced color was
performed at 450 nm using a microplate reader (BioTek ELX800, Winooski, VT, USA). Cells
at a density of 2 × 104 cells were cultured with vehicle, Ber, or Ber-NPs for 24 h at the
concentrations listed in Table 1. As a result, 10 µL of supernatant was incubated for 30 min
with 100 µL of LDH mix (ab65393) and absorbance was measured at 450 nm.

2.9. Determination of Factors Related to Apoptosis and Inflammation

Abcam ELISA kits (Cambridge, UK) were used following the manufacturer’s guide-
lines for the colorimetric determination of mitochondrial apoptosis markers (Bcl-2, Bax,
and cystolic cytochrome C), P53, and cleaved caspase-3. Furthermore, tumor necrosis factor
alpha (TNF-α), cyclooxygenase (COX)-2, and nuclear factor kappa B (NF-κB) were deter-
mined as inflammatory markers. In brief, 2 × 106 of HepG2 cells were cultured, and after
confluence subjected to Ber, Ber-AgNPs, Ber-SeNPs, and CDDP at the concentrations tested
and incubated for 24 h. After removing the medium by centrifuging the cells at 1800× g for
5 min, the cells were recovered and washed in PBS twice. A total of 50 microliters of cold
lysing buffer was used to lyse the pellets. After centrifuging the resulting cell lysate for
1 min at 4 ◦C at 12,000× g, the supernatant was collected. The protein concentrations in
each cell lysate were determined using the Bradford technique. When the protein content
of the sample was more than 4 g/L, the cell extraction buffer PTR was used to dilute it. In
the end, the color of the developed samples was assessed at 405 nm in a microplate reader
(Biotech, Inc., USA).

2.10. Determination of Cell Cycle-Related Factors

The gene expression of cyclin D1 and cyclin-dependent kinase 2 (CDK2) confirmed
the presence of cell cycle-related proteins in treated HepG2 and control cells. Following
cell harvesting, total RNA was extracted using Trizol reagent (Life Technologies, Carlsbad,
CA, USA) according to the manufacturer’s instructions. Quantification of isolated RNA
was performed with nanodrop, and cDNA synthesis was conducted using RevertAid TM
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H Minus Reverse Transcriptase (ThermoFisher Scientific, Waltham, MA, USA). RT-PCR
operations were performed using SYBR Green Supermix (Biorad, Hercules, CA, USA) on
a ViiATM 7 system (Thermo Fisher Scientific, USA). The housekeeping control used was
the β-actin gene. Detailed gene-specific primers for cyclin D1 and CDK2 can be found
in Table 2. The results are presented as folds of change in gene expression compared
to controls.

Table 2. Sequences of the qPCR primers.

Gene Accession Number Forward (5′–3′) Reverse (5′–3′)

Cyclin D1 NM_053056.3 GAGGCGGAGGAGAACAAACA GGAGGGCGGATTGGAAATGA
CDK2 NM_001290230.2 GACACGCTGCTGGATGTCA GAGGGGAAGAGGAATGCCAG
β-actin NM_001101.5 AGCCTCGCCTTTGCCG CGCGGCGATATCATCATCCA

2.11. Determination of the Oxidative Status of Cells

Confluent HepG2 cells cultured in T25 cell culture flasks were treated for 24 h with Ber,
Ber-AgNPs, Ber-SeNPs, and CDDP. After being harvested, cells were lysed in a lysing buffer
and supernatant was collected after the lysate was centrifuged at 12,000× g for one minute
at 4 ◦C. The supernatant was immediately used for the estimation of reactive oxygen species
(ROS) using the green fluorescent strain 2,7-dichlorofluorescein diacetate (DCFH-DA) [9].
However, lipid peroxidation (LPO) and glutathione (GSH) were colorimetrically evaluated
in the supernatant according to Ellman [33] and Ohkawa et al. [34], respectively. Total
protein was estimated using the Bradford method in each cell lysate using bovine serum
albumin as the standard [35].

2.12. Statistical Analysis

Results are presented as mean ± standard deviation (SD). To assess differences among
groups, a one-way ANOVA was conducted, and multiple comparisons were performed
using Tukey’s test. Statistical analysis was carried out using SPSS software (version 20.0).
Significance was considered when the p values were smaller than 0.05.

3. Results
3.1. Cytotoxic Effect of Berberine and Its Nanoderivatives

The cytotoxic effect of berberine and its nano-derivatives Ber-AgNPs and Ber-SeNPs
against HepG2 and BNL cells was investigated using the SRB assay (Figure 1). Taking
into account IC50, the results revealed 26.69, 1.16, and 0.04 µg/mL for Ber, Ber-AgNPs,
and Ber-SeNPs, respectively. However, cisplatin (CDDP) showed an IC50 of 0.33 µg/mL.
Berberine nanoparticles significantly decreased the HepG2 cell IC50 compared to Ber alone
by approximately 23 and 667 folds for Ber-AgNPs and Ber-SeNPs, respectively. However,
normal BNL cells were less sensitive to the cytotoxicity exerted by the tested materials.
IC50 was >100, 4.12, and 1.02 µg/mL for Ber, Ber-AgNPs, and Ber-SeNPs, respectively.

3.2. Berberine and Its Nanoderivatives Exhibit Antimigratory Properties against HepG2 Cells

To further test the anticancer properties of berberine and its nanoderivatives (Ag and
Se), a wound-healing assay was carried out to investigate the effect of the materials tested
on the migration of HepG2 cells (Figure 2). The results revealed that the rate of migration
in the cells treated with berberine and its nanoforms (Ber-AgNPs and Ber-SeNPs) was
significantly lower than in the control cells.
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Figure 1. The viability of HepG2 and BNL cell lines after 48 h of incubation with berberine and its
nanoderivatives (Ber-AgNPs and Ber-SeNPs) using the SRB assay. Incubation with serial concentra-
tions (0.01–100 µg/mL) of the tested materials was carried out in triplicate. Data are presented as the
mean ± SD of three separate experiments. Ber, berberine; CDDP, cisplatin.

Figure 2. Migration capacity is determined by wound healing assay. HepG2 cells were treated with
berberine and its nanoderivatives (Ag and Se), and the wound thickness exhibited a lower slope
for closure comparable to control cells. After 48 h, the treated cells showed a clear gap, while the
untreated HepG2 cells filled the bulk of the injured area. Vertical stripes indicate the width of the
growth-free zone. Ber, berberine; CDDP, cisplatin.
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3.3. LDH Enzyme Leakage

The evaluation of cell membrane damage and loss of integrity was estimated using
the LDH assay in treated and control HepG2 cells (Figure 3). Regarding untreated cells,
incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent
increase (p < 0.05) in LDH activities in the medium of the treated HepG2 cells. Treatment
with one-third and one-half of the IC50 of Ber-AgNPs led to elevations of approximately 1.96
and 2.89 times, respectively, compared to the control. Similarly, treatment with one-third
and one-half of IC50 of Ber-SeNPs led to increases of approximately 1.85 and 2.87 times,
respectively, compared to the control.

Figure 3. Lactate dehydrogenase (LDH) activity in HepG2 cells after 24 h of incubation with berberine
and its nanoderivatives (Ber-AgNPs and Ber-SeNPs). Data were presented as (mean ± SD) from
three separate experiments. Different letters indicate statistically significant differences at p < 0.05.
Ber, berberine; CDDP, cisplatin.

3.4. Effect of Berberine and Its Nanoderivatives on HepG2 Cell Apoptosis

To evaluate changes in mitochondrial apoptotic regulators after treatment with berber-
ine and its nanoderivatives, levels of pro-apoptotic proteins (Bax and cytochrome C) and
the anti-apoptotic protein (Bcl-2) were assessed. Furthermore, changes in the Bcl-2/Bax
ratio were also evaluated (Figure 4). After incubation with one-third and one-half the IC50
of the Ber-AgNPs or Ber-SeNPs, a tendency of a decrease in Bcl-2 levels was observed,
accompanied by an increase in Bax levels, compared to the control group. However, the
cytochrome C showed a dose-dependent increase in both NP treatments. Furthermore,
berberine caused obvious alterations in Bcl-2, Bax, and cytochrome C levels compared to
the control and CDDP-treated cells. The Bcl-2/Bax ratio was significantly reduced in a
dose-dependent manner by ~56.9 and 72.87% after treatment with one-third and one-half
IC50 of the Ber-AgNPs, respectively, compared to the control cells. Similarly, treatment
with one-third and one-half IC50 of Ber-SeNPs led to a significant decline in Bcl-2/Bax
ratio by 45.79 and 72.8%, respectively, compared to the control. These results clarify the
mechanisms of Ber and its nanoderivatives in inducing the intrinsic apoptotic pathway.
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Figure 4. Changes in the levels of the regulatory apoptotic proteins Bcl-2, Bax, and cytochrome C in
HepG2 cell lines after 24 h of treatment with berberine and its nanoderivatives. Data are presented
as the mean ± SD from three separate experiments. Different letters indicate statistically significant
differences at p < 0.05. Ber, berberine; CDDP, cisplatin.

3.5. Changes in p53 and Caspase-3 Levels

The alteration in the protein levels of p53 and caspase-3 was assessed (Figure 5). Re-
garding untreated cells, incubation with both Ber-NPs concentrations led to a nonsignificant
increase in p53 levels in treated HepG2 cells, except for the higher dose of Ber-AgNPs,
which showed a significant elevation by ~59.2%. Furthermore, caspase-3 activities showed
a nonsignificant increase in the one-third IC50 of both Ber-NPs; however, a significant
increase was observed in the higher concentrations (Ber-AgNPs and Ber-SeNPs) of ~89 and
97%, respectively, compared to the controls. These results suggest evidence of cell death
via the p53-dependent apoptotic pathway, except for the lower dose of Ber-SeNPs, which
exhibited p53-independent apoptosis.



Cells 2024, 13, 287 9 of 15

Figure 5. Alterations in p53 levels and caspase-3 activities in treated HepG2 cells and controls after
24 h. The effect of berberine and its nanoderivatives was investigated using an ELISA assay. Data are
presented as the mean ± SD from three separate experiments. Different letters indicate statistically
significant differences at p < 0.05. Ber, berberine; CDDP, cisplatin.

3.6. Cell Cycle Regulators

CDK-2 and cyclin D1 expressions were assessed in treated and control HepG2 cells to
evaluate the effects of Ber and Ber-NPs incubation (Figure 6). In the Ber-AgNPs groups,
cyclin D1 and CDK 1 expression was significantly down-regulated (p < 0.05) in a dose-
dependent pattern compared to the control cells at both concentrations (one-third one-
half IC50). In the Ber-SeNPs groups, the higher dose (one-fourth IC50) showed a down-
regulation of cyclin D1 and CDK-2 gene expression by approximately 0.4 and 0.25 times,
respectively, compared to the controls. However, the lower dose of Ber-SeNPs (one-third
IC50) did not show a considerable change. Maximum down-regulation was observed in the
Ber-AgNPs (one-half IC50) groups (~52 and 48% for cyclin D1 and CDK-2, respectively). The
decline in cyclin D1 expression suggests a cell cycle arrest in the G1 phase due to Ber-AgNPs
incubation (both doses) and the higher doses of Ber-SeNPs. However, downregulation
of CDK-2 contributed to G2/M arrest in all tested groups, except for the lower-dose
Ber-SeNPs group.

Figure 6. Changes in levels of the cyclin D1 and CDK-2 mRNA expression patterns in HepG2 cell
lines after 24 h of treatment with berberine and its nanoderivatives. Data are presented as the mean
± SD of three separate experiments. Different letters indicate statistically significant differences at
p < 0.05. Ber, berberine; CDDP, cisplatin.
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3.7. Effect on the Inflammatory Mediators

TNF-α, COX-2, and NF-κB were colorimetrically assessed in treated and control
HepG2 cells (Figure 7). HepG2 cells incubated with berberine and its nanoderivatives ex-
hibited a significant (p < 0.05) dose-dependent increase in TNF-α levels compared to control
cells. The maximum value was observed in Ber-AgNPs (one-half IC50) with a significant
increase compared to the Ber and control groups (1.4- and 3.69-fold, respectively). Simi-
larly, incubation with Ber and both Ber-NP concentrations (Ag and Se) led to a significant
(p < 0.05) dose-dependent elevation in NF-κB and COX-2 levels compared to the control
cells. It should be noted that Ber-AgNPs achieved the maximum effect (one-half IC50) with
a significant increase compared to the Ber and control groups.

Figure 7. Changes in TNF-α, NF-κB, and COX-2 levels of HepG2 cells after 24 h of treatment
with berberine and its nanoderivatives. Data are presented as the mean ± SD from three separate
experiments. Different letters indicate statistically significant differences at p < 0.05. Ber, berberine;
CDDP, cisplatin.

3.8. Oxidative Status

The effect of berberine and its nanoderivatives on ROS, LPO, and GSH was evalu-
ated in treated and control HepG2 cells (Figure 8). The results revealed that Ber and its
NPs exerted oxidative stress on HepG2 cells. This effect was noticed with a significant
dose-dependent increase in ROS after incubation with Ber and Ber-NPs with respect to
control cells. Furthermore, Ber-AgNPs exhibited oxidative stress in both treated groups by
increasing the LPO, with a significant increase of ~33.74% in the higher one; however, Ber-
SeNPs showed a nonsignificant decrease. Ber-AgNPs treatments caused a dose-dependent
decline in GSH levels with significant (p < 0.05) records in the higher one (one-half IC50),
which decreased by ~53% comparable to the control cells. However, the Ber-SeNPs dose-
dependently elevated GSH levels in both treated groups with nonsignificant records with
respect to the control cells.

Figure 8. Oxidative stress on HepG2 cell lines after 24 h of treatments with berberine and its
nanoderivatives. Data are presented as the mean ± SD from three separate experiments. Different
letters indicate statistically significant differences at p < 0.05. Ber, berberine; CDDP, cisplatin.
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4. Discussion

Berberine is a natural herbal alkaloid found in the roots and barks of Berberis sp.
and has remarkable biological and pharmacological activities as an anti-inflammatory,
antidiabetic, antimicrobial, anti-oxidant, and anticancer agent [10,36]. In this research, we
developed berberine nanoparticles based on silver and selenium in a trial to enhance berber-
ine absorption and bioavailability in target cells. The anticancer properties of berberine
were extensively reported [10,36–38]. Our results reveal that berberine and its Ag and Se
nanoderivatives exerted cytotoxic and antimigratory potencies in vitro against HepG2 cells.
Furthermore, the in vitro cytotoxic effect of Ber-AgNPs against MDA-MB-231 and MCF-7
cancer cell lines was proven by Bhanumathi et al. [39]. Moreover, the anticancer potency of
Ber-SeNPs was previously reported in vivo as reducing tumor size and cell proliferation in
Ehrlich solid tumors [10]. Our results are in accordance with those of Wang and Zhang [15],
who reported that Ber suppresses the in vivo and in vitro migration of endometrial can-
cer cells by inhibiting the miR-101/COX-2/PGE2 signaling cascade. Additionally, Liu
et al. [40] showed that Ber decreased the viability and inhibited the migration of Panc-1 and
hTERT-HPNE pancreatic cancer cells by regulating the citrate metabolism and transport
in mitochondria. In cytotoxic potency, Ag and Se berberine nano-derivatives showed a
greater effect than berberine alone, and this is in agreement with Sahibzada et al. [41], who
suggested that berberine nanoparticles had better biological activity than unprocessed Ber,
which may be ascribed to enhanced solubility and bioavailability. Furthermore, Ber-SeNPs
were superior to Ber and Ber-AgNPs, which may be attributed to their original anticancer
properties [42,43].

The magnitude of the zeta potential indicates the possible stability of the Ber-SeNPs. If
the zeta potential increases, there will be an increased repulsion between particles, leading to
a more stable dispersion of particles. If all suspended particles have a strong zeta potential
that is negative or positive, they seem to repel each other, and the particles are not likely to
join together [44]. In the end, this helps to better penetrate and deliver Ber-SeNPs particles.

Lactate dehydrogenase is a stable cytoplasmic enzyme found in almost all living
cells; its release outside the cell is a crucial feature of cell damage [45]. In this study, we
quantified LDH in cell culture media as a remarkable sign of cytotoxicity. Our results
reveal that Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent increase
in LDH activities in the medium of treated HepG2 cells, which confirms the cytotoxic
potentials of Ber and its nanoderivatives. These results are in the same line as Wang
et al. [46], who clarified that Ber stimulated the release of LDH from IMCE and HT-29 colon
cancer cell lines in a manner dependent on concentration. Similarly, Ber was approved to
increase LDH release in the triple-negative breast cancer MDA cell line of triple-negative
breast cancer [47]. Our results show that one-half IC50 of both Ber-AgNPs and Ber-SeNPs
exhibited more LDH release in culture media than Ber. This is in accordance with previous
literature that proved that Ber nanomaterials, such as berberine-loaded silver nanoparticle
bioformulation of silver nanoparticles [39], berberine-loaded disulfide-bridged mesoporous
organosilica nanoparticles [48], nanoparticles loaded with berberine [49], and SeNPs [10],
boost berberine’s cytotoxic potency against different cancer cells, and due to their nanosize,
they become easier for cells to absorb.

In this paper, the results show that Ber and its Ag and Se nanoparticles exerted a
good antitumor effect against HepG2 cells by inducing apoptosis by up-regulating Bax,
cytosolic cytochrome C levels, and caspase-3 activity, along with down-regulating Bcl-2
levels. HepG2 cells express wild-type functional p53 that showed up-regulation after the
treatments in this study. This up-regulation in addition to those above suggests evidence
of cell death via the p53-dependent apoptotic pathway, except for the lower dose of Ber-
SeNPs, which exhibited p53-independent apoptosis. Furthermore, it leads to G1 cell
cycle arrest by depleting the expression of cyclin D1 and CDK-2 mRNA. Similarly, earlier
research has shown that berberine hinders lung cancer cell growth by affecting the matrix
metalloproteinase 2 (MMP-2)/Bcl-2/Bax and Janus kinase 2 (Jak2)/vascular endothelial
growth factor (VEGF)/NF-κB/AP-1 signaling pathways [50]. Additionally, it induces arrest
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of the G1 cell cycle through the Akt/CREB signaling axis [51]. Additionally, berberine was
found to trigger apoptosis by activating the intrinsic pathway, as it activates caspase-3 and
caspase-8, which in turn release cytochrome C, in addition to promoting ROS production
in tumor cells [50,52]. Furthermore, previous work confirmed that berberine induced cell
cycle arrest by upregulating levels of p21, p27, and p38 together with downregulating
levels of cyclin A, cyclin D, CDK1, and CDK4 [53,54]. Furthermore, berberine-derived silver
nanoparticles induce apoptosis in breast cancer cells by suppressing the expression of HIF-
1α through the inhibition of the expression of the PI3K/AKT and Ras/Ras/ERK protein in
signaling pathways and the generation of reactive oxygen species (ROS) [55]. Consistent
with this, Othman et al. [10] showed that Ber-SeNPs caused apoptosis by increasing Bax
levels and caspase-3 activity while decreasing Bcl-2 levels in a model of Ehrlich solid tumors
in mice.

HepG2 cells express mRNAs for several cytokines and cellular regulators, including
tumor necrosis factor (TNF)-α [56]. Our results demonstrate that berberine and its ap-
plied nanoderivatives promoted dose-dependent elevations in TNF-α, NF-κB, and COX-2
levels in HepG2 cells; notably, the highest level of these parameters was obtained after
treatment with one-half IC50 of Ber-AgNPs. Consequently, the increased levels of these
inflammatory mediators in the supernatant of HepG2 cells demonstrated that berberine
and its applied nano-derivatives can activate the apoptotic pathway by upregulating in-
flammatory factors [57,58]. Moreover, Wang et al. [59] reported the ability of berberine to
up-regulate TNF-α, which in turn enhances apoptosis in the hepatocellular carcinoma cell
line (SMMC-7721).

An effective treatment strategy is to induce oxidative stress, since cancer cells are
very vulnerable to ROS. Our results indicate that Ber and its NPs caused oxidative stress
in HepG2 cells. This influence was shown with a significant dose-dependent increase
in ROS and LPO and a decrease in GSH levels after incubation with Ber and Ber-NPs.
Nanoparticles have the ability to infiltrate cells, generate ROS, and inhibit antioxidant
molecules as a result of their diminutive dimensions and expansive surface area. Ber
enhances the rate of ROS generation in tumor tissues, thus inducing oxidative stress.
Berberine enhances the activity of oxidative stress of SeNPs and AgNPs, leading to the
activation of apoptosis and inflammatory pathways. These findings are consistent with
earlier research [50,52]. However, several studies have shown that berberine exhibits anti-
inflammatory effects [60,61]. Therefore, the effect of induced inflammation on normal cells
still awaits further investigation, particularly in an appropriate in vivo model.

This study has some limitations; although the results of the current study demonstrate
that the biosynthesized Ber-NP derivatives are promising for potential future applications in
the development of new anticancer drugs, more molecular, pharmacologic, and toxicologic
experiments in vivo and in vitro are needed to confirm the safety and efficacy of these
compounds, to gain more insight into the precise underlying mechanism of action, and to
determine the optimal dose and route of administration.

5. Conclusions

We conclude that Ber and both Ber-NPs (Ag and Se) can inhibit the growth and migra-
tion of the hepatocellular carcinoma cell line (HepG2) by triggering oxidative stress and
apoptotic cascades. The anticancer activity of Ber nanoparticles exceeds that of unprocessed
Ber, perhaps because of their improved solubility and bioavailability. Furthermore, Ber-NPs
exhibited greater efficacy compared to Ber, potentially due to the inherent anticancer char-
acteristics of selenium and silver. More in vivo investigations are still needed to confirm
our results.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells13030287/s1. Table S1 and Figure S1: The characterization of berberine-
loaded silver nanoparticles (Ber-AgNPs) and berberine-loaded selenium nanoparticles (Ber-SeNPs); the
hydrodynamic diameter was determined using a Zetasizer and the surface charge was determined by
calculating the Zeta potential.
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