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Abstract: One of the main obstacles to therapeutic success in colorectal cancer (CRC) is the devel-
opment of acquired resistance to treatment with drugs such as 5-fluorouracil (5-FU). Whilst some
resistance mechanisms are well known, it is clear from the stasis in therapy success rate that much is
still unknown. Here, a proteomics approach is taken towards identification of candidate proteins
using 5-FU-resistant sublines of human CRC cell lines generated in house. Using a multiplexed stable
isotope labelling with amino acids in cell culture (SILAC) strategy, 5-FU-resistant and equivalently
passaged sensitive cell lines were compared to parent cell lines by growing in Heavy medium with
2D liquid chromatography and Orbitrap Fusion™ Tribrid™ Mass Spectrometry analysis. Among
3003 commonly quantified proteins, six (CD44, APP, NAGLU, CORO7, AGR2, PLSCR1) were found
up-regulated, and six (VPS45, RBMS2, RIOK1, RAP1GDS1, POLR3D, CD55) down-regulated. A total
of 11 of the 12 proteins have a known association with drug resistance mechanisms or role in CRC
oncogenesis. Validation through immunodetection techniques confirmed high expression of CD44
and CD63, two known drug resistance mediators with elevated proteomics expression results. The
information revealed by the sensitivity of this method warrants it as an important tool for elaborating
the complexity of acquired drug resistance in CRC.

Keywords: colorectal cancer; drug resistance mechanisms; in vitro models; proteomics; 5-fluorouracil;
stable isotope labelling with amino acids in cell culture (SILAC)

1. Introduction

5-Fluorouracil (5-FU)-based chemotherapy has been used during the last 60 years as
the main postoperative adjuvant treatment for advanced colorectal cancer (CRC) patients.
5-FU is converted by different routes into several active metabolites in mammalian cells,
leading to the inhibition of deoxythymidine monophosphate (dTMP) production: an
essential element for DNA repair and replication processes. This leads to cytotoxicity and
cell death [1,2].

However, the overall response in advanced CRC patients when they are treated with 5-
FU alone is not higher than 15% due to development of mechanisms of resistance [3]. Some
of the mechanisms of resistance to 5-FU are well known and can be mitigated for, such as
those related to increased levels of the intermediate metabolites thymidylate synthase (TS)
and dihydropyrimidine dehydrogenase (DPD), its interactions as a substrate for multidrug
resistance cell membrane pumps, such as MDR1 [4], and alterations in cell cycle kinetics
or apoptotic pathways. However, it is clear from the stasis in improvement in therapy
success rate over the past three decades that there is still much that is undiscovered [5],
with other cell- or vesicle-surface proteins possibly having a role in drug resistance, for
example CD44 [6–8].
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Previous studies focused on the discovery of mechanisms of resistance have taken a
genomics approach. However, somatic alterations observed between sensitive and resistant
tumour cells are not always significant at the transcriptional level [9,10]. Genomics is
complemented and enhanced by proteomic analysis, which focuses on global protein
changes within a biological system at a specified time or under a set of conditions, thus
providing information on functionality in biological and molecular processes [11]. In this
respect, a stable isotope labelling with amino acids in cell culture (SILAC)-based method
for quantitative proteomic analysis of CRC-resistant sublines to 5-FU is a powerful tool to
identify new biomarkers and mechanisms of resistance in vitro, which can be extrapolated
to other cancer- and drug-resistance discoveries [12]. The SILAC approach is a simple and
straightforward one based on metabolic stable isotope labelling of proteins by growing
cells in a medium containing 13C and 15N lysine and arginine essential amino acids [10,13].
After six to nine cell divisions, all instances of the specific amino acid will be replaced
by its isotopic analogue, giving rise to Heavy isotopic proteins [14]. Subsequently, the
comparison of two cell lines (e.g., control and experimentally manipulated) with proteins
from the non-labelled (Light) control and the labelled (Heavy) experimentally manipulated
extract can be combined, digested, and then analysed using LC-MS/MS. The resulting
mass spectrometry data facilitate both protein identification and relative quantification [15].

In this study, we employed the SILAC proteomics approach to uncover candidate
proteins potentially involved in novel mechanisms of 5-FU resistance within internally
generated drug-resistant CRC cell lines. Our focus on selected proteins revealed subtle
patterns of differential expression, providing key insights into the intricacies of 5-FU
resistance. Subsequent validation through advanced immunodetection methods further
reinforced these findings, contributing to compelling evidence for investigating these
candidate proteins in future studies for their involvement in novel mechanisms of drug
resistance in CRC.

2. Materials and Methods
2.1. Materials

Two human CRC cell lines, DLD-1 and HT-29, were selected for this study due to
their sensitivity to 5-FU in preliminary in-house studies. A mammary adenocarcinoma cell
line, MDA-MB-231, was included as a CD44-expressing cell line for validation studies. The
human DLD-1 colon adenocarcinoma cell line was obtained from ATCC (LGC Standards,
Middlesex, UK) whilst the HT-29 human colon adenocarcinoma and MDA-MB-231 human
mammary adenocarcinoma cell lines were obtained from the National Cancer Institute
Department of Cancer Treatment and Diagnosis Tumour Repository (Frederick, MD, USA).
The cells were maintained in an RPMI 1640 culture medium supplemented with 10% (v/v)
foetal bovine serum (FBS), 1 mmol/L sodium pyruvate, 2 mmol/L of L-glutamine (all from
Merck, Gillingham, UK) and incubated at 37 ◦C in 5% CO2. Dulbecco’s phosphate-buffered
saline (PBS) was used for washing steps.

5-FU (Merck, Gillingham, UK) was prepared as a 11 mM stock solution in dimethyl
sulfoxide (DMSO, Merck, Gillingham, UK) and aliquots stored at −20 ◦C until use.

For the SILAC labelling procedure, stable isotope-labelled amino acids, L-Arginine-
HCl (13C6, 15N4) and L-Lysine-2HCl (13C6, 15N2), 10% (v/v) dialyzed FBS, and L-Proline
were all purchased from Thermo Fisher Scientific (Loughborough, UK). L-lysine and L-
arginine, essential amino acids with metabolic incorporation, were chosen for SILAC
experiments because they lack biosynthetic pathways in mammalian cells and hence
cannot be synthesized de novo, ensuring any signal detected is due solely to incorporation
for the experiment [16]. In addition, these amino acids possess properties that make
them compatible with mass spectrometric analysis for precise quantification, with the
labelled forms readily distinguishable from their unlabelled counterparts. Details of other
materials used for proteomics procedures, immunoblotting, and immunofluorescence are
given below.
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2.2. Chemosensitivity Assay

Chemosensitivity was evaluated using the MTT assay as described previously [17].
Briefly, 180 µL of 1 × 104 cells/mL suspension was added to each test well of a 96-well plate
and incubated overnight at 37 ◦C. 5-FU or control solutions were added to each well and
the plates cultured under standard conditions for 4 days, after which cells were incubated
with MTT solution (5 mg/mL) in PBS for 4 h. Formazan crystals were then solubilised in
150 µL of DMSO and the plates scanned at 540 nm on a Thermo Scientific Multiskan EX
plate reader (Thermo Fisher Scientific, Loughborough, UK). Chemosensitivity in terms of
the half maximal inhibitory concentration (IC50) was then determined from the data.

2.3. Development of 5-FU-Resistant Human CRC Sublines

CRC sublines with resistance to 5-FU were established and derived from DLD-1 and
HT-29 parent cell lines by continuous exposure to increasing concentrations of 5-FU over a
period of ten months (Figure 1). IC75 values were used as initial starting doses for DLD-1
and HT-29 parent cell lines, 15 and 18 µM, respectively. 5-FU concentration was gradually
increased up to 250 µM in the DLD-1/5-FU cell line and up to 60 µM in the HT-29/5-FU
cell line (Figure 1). For each parent cell line, two controls grown in drug-free media were
harvested in parallel for further analyses at low (DLD-1 P9 and HT-29 P9) and high (DLD-1
P65 and HT-29 P57) passages.

2.4. SILAC Approach for Quantitative Proteomic Analysis

Quantitative proteomics characterization of resistant cell lines was carried out using a
stable isotope labelling amino acids in cell culture (SILAC)-based approach. DLD-1 and
HT-29 CRC parent cell lines were SILAC labelled with L-Arginine-HCl (13C6, 15N4) and
L-Lysine-2HCl (13C6, 15N2) by culturing them for 9 passages in RPMI Media with 10% (v/v)
dialyzed FBS for SILAC and incubated at 37 ◦C in 5% CO2 (Figure 1). L-Proline was added
to avoid the metabolic conversion of Heavy arginine to Heavy proline [18]. The medium
was replaced every 4 days once cells reached 65–75% confluency. The SILAC-labelled
cell line samples were evaluated in triplicate by assessment of SILAC ratios between
unlabelled and labelled versions of lysine-containing peptides and arginine-containing
peptides to determine Heavy arginine and lysine incorporation into proteins, respectively.
To determine Heavy SILAC-labelling efficiency, protein was extracted from wild-type cells
after 9 passages and subjected to Mudpit proteomics (or Shotgun proteomics). In both
cases, DLD-1 and HT-29 cell lines grown in SILAC media achieved >98% incorporation of
labelled amino acid into their proteins, in line with rates achieved by previous groups for
this methodology [19,20].

2.5. Protein Extraction and Protein Digestion

All materials for protein extraction buffer were provided from Merck (Gillingham,
UK) unless otherwise stated. For each cell line, 1 × 107 cells were harvested, washed with
PBS, and proteins were extracted from the cells using protein extraction buffer containing
7 M urea, 2 M thiourea, 0.4% CHAPS, 0.1% sodium dodecyl sulphate (SDS), 0.05% Sodium
deoxycholate, and protease inhibitor cocktail from Roche (Welwyn Garden City, UK) in
PBS at 4 ◦C, and then homogenized by sonication with a SH70G Sonicator from Philip
Harris Scientific (Lichfield, UK). Samples were centrifuged at 13,000 rpm for 25 min at 4 ◦C,
with the protein yield measured using a Bradford assay kit (Thermo Fisher, Loughborough,
UK). Proteomics analysis was performed on paired Light- and Heavy-labelled protein
extracts (see Figure 1) in parallel for DLD-1 and HT-29 cell lines. Paired extracts of Light
samples (200 µg of protein from Parent cell line, low or high passage control, or resistant
sublines) and Heavy samples (200 µg of protein from Parent cell line grown in SILAC
media) were combined for protein digestion. The combined extract samples were treated
with 1 mL of chilled acetone overnight at −20 ◦C for protein. Precipitated protein was
resuspended in 40 µL of 8 M urea, reduced with 50 mM dithiothreitol (DTT) (Merck,
Gillingham, UK) at 70 ◦C for 15 min, and alkylated with 100 mM iodoacetamide (IAA)
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(Merck, Gillingham, UK) at room temperature for 15 min. The protein sample was diluted
4-fold and digested overnight at 37 ◦C, with 1 mg/mL PierceTM trypsin (Thermo Fisher
Scientific, Loughborough, UK) at a protein—protease ratio of 10:1. 
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Figure 1. Flowchart for the SILAC experimental approach showing (A) parent cell line growth
in SILAC medium with Heavy amino acids that are incorporated to parent cell line during nine
passages. (B) Parent cell line growth in drug-free RPMI medium to be used as a control during protein
quantification, and (C) parent cell line growth in 5-FU-containing RPMI medium during the process
of the establishment of CRC-resistant sublines. The strategy was applied in parallel for DLD-1 and
HT-29 cell lines.

2.6. Shotgun Proteomics

Digested peptides from each paired sample underwent strong cationic exchange
chromatography (SCX) using an ISOLUTE® SCX column (Biotage, Hengoed, UK). The
column was equilibrated with a loading buffer (LB) of 10mM potassium di-hydrogen
phosphate (KH2PO4), 0.01% Sodium azide (pH = 3.0) in 25% acetonitrile (ACN) from Merck
(Gillingham, UK), and peptides were eluted and collected sequentially with incremental
increases in concentration (30 mM to 1000 mM) of Potassium Chloride (KCl) prepared in
loading buffer. A total of 12 SCX fractions were collected and desalted using C18 columns
(Kenesis, Cambridgeshire, UK) before lyophilisation using 45 ◦C aqueous mode of Genevac
Centrifugal Evaporator EZ-2 SP (Thermo Fisher Scientific, Loughborough, UK).

All SCX fractions were separated on an Ultimate 3000 HPLC connected on-line to an
Orbitrap Fusion™ Tribrid™ Mass Spectrometer (Thermo Fisher Scientific, Loughborough,
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UK). Each SCX fraction was resuspended in 30 µL of 0.1% formic acid and 10µL of each frac-
tion was loaded on a C18 trap column (300 µm × 5 mm, 100 A) (Thermo Fisher Scientific,
Loughborough, UK) at a flow rate 10µL/min. After washing for 4 min with loading buffer
A (2% ACN, 0.1% formic acid), peptides were then transferred to a C18 analytical column
(75 µm × 50 cm, 2 µm, 100 A) (Thermo Fisher Scientific, Loughborough, UK) at a tempera-
ture of 40 ◦C. The peptides were eluted using a gradient of Solvent B (100% ACN, 0.1% FA):
0 min at 5%, 5 min at 7%, 65 min at 25%, 80 min at 45%, and 85 min at 85%. The eluted
peptides were ionized by electrospray ionization (2000 V) using a steel emitter and acquired
with an Orbitrap Fusion mass spectrometer coupled with the Nanospray Flex™ Ion Source
(Thermo Fisher Scientific, Loughborough, UK), and ion transfer tube temperature was set
at 275 ◦C.

The Orbitrap Fusion mass spectrometer was operated in the data-dependent acquisi-
tion (DDA) mode. The MS1 survey scan of parent ion was set from 350 to 1500 m/z, and
data were acquired at a high resolution of 120,000 (m/z 200); the AGC target was set to
3 × 105 and the maximum injection time was 100ms. The second stage of mass spectrom-
etry (MS2) scans was performed on IonTrap at rapid scan rate, with dynamic exclusion
(±5 ppm), 50 s; cycle time, 3 s; isolation width, 0.7 m/z; and MIPS mode as peptide. Ions
with charge states 2–7 were sequentially fragmented by collision-induced dissociation (CID)
with a fixed collision energy of 35%. All LC-MS acquisitions were performed in positive
ion mode only.

MS/MS spectra generated were analysed in the Mascot 2.4 Database Manager search
algorithm (Matrix Science, London, UK) through Proteome Discoverer platform (version 2.2;
Thermo Fisher Scientific, Loughborough, UK) using the human database from UniProt
(SwissProt Version 2.5.1) with records of 551,705 functional proteins. Search parameters,
including up to 2 missed trypsin cleavages, MS1 mass tolerance of 10 ppm, and MS2 mass
tolerance of 0.6 Da, were selected. Dynamic modifications included Oxidation (M) and
Deamidated (NQ) and Carbamidomethyl (C) as a static modification. A protein identifi-
cation confidence threshold of p < 0.05 with at least one unique peptide and two peptide
spectral matches (PSMs) was used to establish lists of quantified proteins. The peptide
and protein SILAC ratios were determined using SILAC peptide pair searches with fixed
L-Arginine-HCl (13C6, 15N4 plus 10Da) and L-Lysine-2HCl (13C6, 15N2 plus 8Da) modifica-
tions. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (https://www.proteomexchange.org/) partner repository with
the dataset identifier PXD047672 (data submitted 10 December 2023).

2.7. Immunoblotting

Validation of CD44 SILAC proteomic quantification results was carried out by im-
munoblotting. A sample of 20 µg of whole-cell lysate from each cell line was separated by
SDS-PAGE electrophoresis in 12% Acrylamide gels using a Llaemli buffer system flowed by
electroblotting onto Hybond-P nitrocellulose blotting membrane (0.45 µm) (Thermo Fisher
Scientific, Loughborough, UK) using constant Amperage of 300 mA for 2 h. Polyclonal
rabbit Anti-human CD44 (Abcam, Cambridge, UK) at 1:2000 dilution, or mouse Anti-β-
Actin at 1:7000 dilution (Merck, Gillingham, UK), was used to verify proteomic analyses.
Horseradish peroxidase-conjugated Goat Anti-rabbit IgG (ab6721, Abcam, Cambridge, UK)
was used as a secondary antibody. All immunoblots were analysed using GelAnalyzer
(http://www.gelanalyzer.com/?i=1, accessed on 10 March 2018) and normalised with
respect to β-actin. The MDA-MB-231 mammary adenocarcinoma cell line was used as a
positive control cell line for high CD44 expression [21].

2.8. Immunofluorescence

CD63 protein expression was assessed in the DLD-1 parent cell line and DLD-1/5-
FU-resistant subline. The DLD-1 parent cell line and DLD-1/5-FU-resistant subline were
added at 1 × 104 cells/mL to sterile 22 × 22 mm coverslips in a 6-well plate and incubated
overnight at 37 ◦C. Medium was removed and each well was washed three times with

https://www.proteomexchange.org/
http://www.gelanalyzer.com/?i=1
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Phosphate-buffered saline (PBS) provided by Severn Biotech (Kidderminster, UK) for 2 min.
After PBS washing, 1ml of pre-chilled methanol was used to fix the cells in the freezer for
10 min. After fixing, TPBS (50 µL Triton X-100 from Merck (Gillingham, UK) in 50 mL of PBS)
was used to wash each well three times. Blocking for non-specific binding of antibodies
was carried out by incubating cells for 1 h at room temperature with 1.5% normal rabbit
serum (NRS; Abcam, Cambridge, UK) prepared in TPBS (30 µL NRS + 1970 µL of TPBS).
CD63 was detected with the primary mouse monoclonal antibody [TS63] to CD63 (Abcam,
Cambridge, UK) overnight, followed by incubation in TRITC-conjugated rabbit anti-mouse
secondary antibody (Abcam, Cambridge, UK). Cells were washed, counterstained with
DAPI, and mounted with Vectashield® Mounting Media with DAPI (Vector Laboratories,
Peterborough, UK) before being subjected to microscopy. Fluorescent images were captured
at X40 objective lens magnification using a Leica DM2000 microscope (Wetzlar, Germany).
Finally, fluorescence intensities were determined using the Leica Application Suite software
v4.0 for quantitative analysis.

2.9. Statistical Analysis

All statistical tests for MTT assays and growth curves were generated using GraphPad
Prism 5.0 (GraphPad Software, Inc., San Diego, CA, USA). The effect of each drug on the
viability of CRC cell lines was measured by MTT assay. Cells in log phase were exposed to
indicated concentrations of 5-FU and, after 4 days incubation, cell survival was determined
by MTT assay. Results are expressed as the means ± SD of 3 independently repeated
experiments. One-way ANOVA statistical analyses, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and
**** p ≤ 0.0001, were selected to compare the sensitivity (IC50 value) among sublines for
statistical analysis (* p ≤ 0.05). In all tests, p ≤ 0.05 was considered to indicate a statistically
significant difference.

The protocol used for data processing in proteomics analysis was as follows. Only
master proteins with at least one unique peptide, identified twice in the LC-MS analysis
with a Mascot score > 20 (p < 0.05) and quantified in both Light and Heavy samples,
were selected for downstream analysis. These multi-SILAC datasets were then subjected to
analysis using the LIMMA package [22] in R programming. The raw protein abundances for
each dataset were normalised using the Median approach and subsequently transformed
into log2 values to calculate expression differences between groups. Multi-SILAC datasets
were generated from three individual SILAC experiments, encompassing a resistant subline,
a low-generation control, and a long-generation control. A fold change and its associated
p-value, with adjusted p-values of 5% FDR (Benjamini–Hochberg method) for multiple
comparisons, were calculated for each protein according to their significant different ratio
expressions between the resistant subline and its two related control cell lines with a high
and a low number of passages. All commonly quantified proteins in resistant and parent
cell lines (multi-SILAC dataset) were classified into three groups in terms of expression,
relative among single SILAC experiments. Three groups were defined as “not altered
proteins”, “up-regulated proteins”, and “down-regulated proteins”, using ±1 as log2 fold
change threshold for up-regulated and down-regulated proteins. The data for all proteins
were summarised and plotted as log2 fold change versus the −Log10 of the adjusted p-
value of LIMMA-modelled proteomics data. Venn diagrams were created with web tool
provided by the University of Ghent Belgium, through the Bioinformatics and Evolutionary
Genomics department (https://bioinformatics.psb.ugent.be/webtools/Venn/; accessed
on 5 May 2018). Protein groups derived from this cluster analysis were subject to gene
ontological examination using EnrichNet [23], STRING [24], and DAVID [25] bioinformatics
(all accessed on 4 December 2023): web applications to identify significant biological
processes, pathways, and functions linked to the resistance mechanism.

https://bioinformatics.psb.ugent.be/webtools/Venn/
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3. Results
3.1. Establishment of DLD-1 and HT-29 Drug-Resistant Sublines to 5-FU

Initial chemosensitivity assays established IC75 values for 5-FU of 15 µM for DLD-1
and 19 µM for HT-29, and these concentrations were selected to initiate resistant subline
development. The resistance indices were evaluated by MTT according to the relative
resistance for pre-treated cell lines with 5-FU in comparison with parent cell lines. This was
defined as the ratio of IC50 of the resistant subline to the IC50 of the sensitive parent cell
line. Both cell lines showed a progressive response when grown under increasing 5-FU con-
centrations and, after ten months of episodic drug exposure, DLD-1/5-FU [IC50 = 250 µM]
and HT-29/5-FU [IC50 = 60 µM]-resistant sublines were established (Figure 2A,B), showing
a 130.2-fold and 3.5-fold change in 5-FU resistance, respectively.

Cells 2023, 12, x FOR PEER REVIEW  2  of  4 
 

 

 

Figure 2. Comparative 5‐FU sensitivity of the generated resistant sublines and their respective wild 

types (A,B), and the similarities and differences seen in terms of protein expression for the different 

sublines  (C,D). Graphs  (A,B) show cell survival profiles of parent cell  lines and  their  respective 

resistant sublines to 5‐FU for (A) DLD‐1 (B) HT‐29 CRC cell lines under exposure to (A) 5‐FU [1–

1000 μM] and (B) 5‐FU [0.03–100 μM] doses over 96 h. MTT assays were performed in three inde‐

pendent experiments. The difference in IC50 among parental cell line and resistant 5‐FU sublines is 

highly significant  in  the  three experiments  (p ≤ 0.0001). A 130.2‐fold change and 3.5‐fold change 

difference in IC50 was found in the DLD‐1/5‐FU [250 μM] and HT‐29/5‐FU [60 μM] resistant sublines, 

respectively  (**** p ≤ 0.0001). The  (C,D) Venn diagrams show  the number of proteins commonly 

quantified in the two parent cell lines (C) DLD‐1 and (D) HT‐29, with a high and a low number of 

passages and in their respective resistant sublines to 5‐FU. P refers to the number of cell passages 

carried out when the subline was assessed. 

   

Figure 2. Comparative 5-FU sensitivity of the generated resistant sublines and their respective wild
types (A,B), and the similarities and differences seen in terms of protein expression for the different
sublines (C,D). Graphs (A,B) show cell survival profiles of parent cell lines and their respective
resistant sublines to 5-FU for (A) DLD-1 (B) HT-29 CRC cell lines under exposure to (A) 5-FU
[1–1000 µM] and (B) 5-FU [0.03–100 µM] doses over 96 h. MTT assays were performed in three
independent experiments. The difference in IC50 among parental cell line and resistant 5-FU sublines
is highly significant in the three experiments (p ≤ 0.0001). A 130.2-fold change and 3.5-fold change
difference in IC50 was found in the DLD-1/5-FU [250 µM] and HT-29/5-FU [60 µM] resistant sublines,
respectively (**** p ≤ 0.0001). The (C,D) Venn diagrams show the number of proteins commonly
quantified in the two parent cell lines (C) DLD-1 and (D) HT-29, with a high and a low number of
passages and in their respective resistant sublines to 5-FU. P refers to the number of cell passages
carried out when the subline was assessed.

3.2. Identification of Proteome Changes in DLD-1- and HT-29-Resistant Sublines to 5-FU Using a
Mass Spectrometry by SILAC Approach

From the three SILAC experiments for each cell line (resistance and two passage
controls), an average of 3640 proteins were quantified (Mascot score ≥ 28, PSMs ≥ 2,
peptide SILAC ratios ≥ 2, and at least one unique peptide) in DLD-1 and HT-29 cell lines.
There were 3748 proteins common between the three DLD-1 experiments and 4161 common
between the HT-29 datasets (Figure 2C,D). Unique proteins in the passage controls were
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generally low scoring and not detected specifically due to passage related changes. For
both cell lines the resistance subtype generated the most unique protein identifications.

Overall, 4622 and 4529 unique gene products were quantified for the DLD-1 and
HT-29 cell lines, of which 3003 were common. Analysis of quantified data (raw data de-
posited 10 December 2023 at https://www.proteomexchange.org/ with the dataset identi-
fier PXD047672) was performed by LIMMA modelling through comparing the relative log2-
fold change in expression of the resistant cell lines to the short and long generation controls
(p < 0.05). Dispersion of log2-fold change in DLD-1/5-FU proteins was significantly higher
(p < 0.0.5; p = 0.0035) than log2-fold change dispersion in HT-29/5-FU proteins. Based on a
±1 log2-fold change threshold in the resistant cell lines compared to generation controls,
118 proteins were increased and 93 were decreased in expression in the DLD-1 dataset
(Supplementary Table S1), with 66 increased and 109 decreased in expression in the HT-29
dataset (Supplementary Table S2).

To relate proteins with altered expressed with function, proteins were classified ac-
cording to five biological processes which may mediate drug response and drug resistance:
(1) apoptotic process, (2) DNA repair process, (3) metabolism of drugs and small molecules,
(4) intracellular protein transport, and (5) cellular membrane transport and cell membrane
organization processes. This is based on molecular functions identified by GO and pathway
analysis for selected proteins using EnrichNet.

Of the up-regulated proteins in DLD-1/5-FU, those involved in protein transport
(SEC24D, VPS16, VPS36, SYNRG, STAM2, GOPC, TMED4, CORO7, RAB2B, TBC1D17, and
CCDC53) were also linked with vesicle formation and trafficking, along with additional up-
regulated genes (SEC24D, SYTL2, WASHC3, HIP1, DYNLT3, DCTN3, SPAST). Furthermore,
proteins involved in DNA repair, chromatin remodelling (HDAC3, PMS2, TAOK1, ROMO1,
PRKCD), transcription (TRIP4, NFAT5, JUND), anti-apoptosis/apoptosis (NOL3, PAWR,
PRKCD), stress (NFAT5, EIF2AK4, APP, STK39), small molecule transport (NFAT), and
heparin sulphate/matrix degradation (NAGLU, APP, AGRN, ITGA3), were predominant.

Among the uniquely down-regulated proteins in DLD-1/5-FU-resistant subline, those
associated with anti-apoptosis/apoptosis proteins (EMC4, DHCR24, TCTN3), small
molecule metabolism (FDXR, DHCR24), vesicle formation (VPS45, VPS52, AP3S1, AP3B1,
AP3M1), Five Friends of Methylated CHTOP (5FMC) complex (WDR18, TEX10, PELP1)
and DNA repair, chromatin remodelling, and H3K9me3 methylation (PDS5B, H2AFY2,
SMARCD2, MYBBP1A, TRIM28, RIOX2) were the most significantly altered. Six en-
zymes associated with lipid metabolism were down regulated (TAMM41, ACSL4, SPTLC3,
DHCR24, FDXR, HMGCS1).

Of the up-regulated proteins in HT-29/5-FU-resistant subline, 35 proteins were de-
scribed as integral components of the transmembrane region (BET1, OCLN, TFRC, TOR4A,
FUT4, LDLR, MAN2A1, EPCAM, DST, REEP4, ADGRE5, HLA-A, PLSCR1, ADPGK,
TNFRSF21, METTL2B, ATL2, SPINT1, ALG2, ERLIN1, APLP2, HACD3, CPD, MYOF,
GOLIM4, CLN6, PLPP2, FDFT1, SLC12A2, CCDC51, FTH1, GALNT7, APP, QSOX2, DSG2)
(p < 4.45 × 10−5 4.4 × 10−5) and eight of these proteins were also associated with both
endoplasmic reticulum and Golgi apparatus (HACD3, BET1, ERLIN1, ATL2, CLN6, DST,
FDFT1, REEP4).

Within the down-regulated proteins from HT-29/5-FU, eight proteins were associated
with cell–cell adhesions (EFHD2, S100P, SH3GLB1, ANXA1, CAPZA1, CSNK1D, LYPLA2,
TAGLN2) (p < 4.3 × 10−4 4.3 × 10−4).

The next step in the analysis was to identify which proteins demonstrated a similar
up- or down-regulation in both cell lines. Of those proteins six were up-regulated in both
cell lines: CD44; Amyloid-beta precursor protein (APP); N-acetyl-alpha-glucosaminidase
(NAGLU); Coronin 7 (CORO7); Anterior gradient protein 2 homolog (AGR2); and Phos-
pholipid scramblase 1 (PLSCR1). Six were down-regulated in both cell lines: Vacuolar
protein sorting-associated protein 45 (VPS45); RNA binding motif single stranded interact-
ing protein 2 (RBMS2); Serine/threonine-protein kinase RIO1 (RIOK1); Rap1 GTPase-GDP

https://www.proteomexchange.org/
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dissociation stimulator 1 (RAP1GDS1); DNA-directed RNA polymerase III subunit RPC4
(POLR3D); and Complement decay-accelerating factor (CD55) (Table 1 and Figure 3).

Table 1. Characteristics of the proteins commonly up-regulated and down-regulated in the 5-FU-
resistant DLD-1 and HT-29 cell lines.

Gene
Name

UniProt
Accession 1

MW 2

[kDa] Calc. pI 2 Seq
Coverage 3 Peptides 4 PSMs 5 Mascot

Score 6
Abundance Ratio:

Log2 R/LP 7

Commonly up-regulated DLD-1 HT-29

CD44 antigen CD44 P16070 81.5 5.3 8.2 5 76 1261 0.97 2.23
Amyloid-beta A4 precursor
protein APP P05067 86.9 4.8 24.8 14 103 1122 1.39 1.04

N-acetyl-alpha-
glucosaminidase NAGLU P54802 82.2 6.7 26.9 12 61 561 1.45 1.43

Coronin 7 CORO7 P57737 100.5 5.8 28.6 12 64 864 1.09 0.82
Anterior gradient protein 2
homolog AGR2 O95994 20.0 9.0 57.1 10 488 7943 0.32 2.47

Phospholipid scramblase 1 PLSCR1 O15162 35.0 4.9 9.4 3 27 515 0.74 1.30

Commonly down-regulated

Vacuolar protein
sorting-associated protein 45 VPS45 Q9NRW7 65.0 8.2 11.9 6 30 377 −4.83 −2.93

RNA binding motif single
stranded interacting protein 2 RBMS2 Q15434 43.9 9.1 27.5 6 27 533 −0.87 −2.00

Serine/threonine-protein
kinase RIO1 RIOK1 Q9BRS2 65.5 6.2 13.7 4 11 150 −1.13 −0.05

Rap1 GTPase-GDP
dissociation stimulator 1 RAP1GSD1 P52306 66.3 5.3 23.9 10 50 1010 −1.75 −1.46

DNA-directed RNA
polymerase III subunit RPC4 POLR3D P05423 44.4 7.0 4.5 1 7 159 −0.33 −0.09

Complement
decay-accelerating factor CD55 P08174 41.4 7.6 25.5 5 15 123 −2.28 −1.78

1 Accession number is the unique identifier in the UniProt database (https://www.uniprot.org/, accessed on 1
September 2017); 2 molecular weight and pI are theoretical values based on the amino acid sequence; 3 sequence
coverage is the percentage of the amino acid sequenced covered by the 4 peptides unique to the protein which
were identified from the total number of 5 peptide spectral matches. 6 Mascot Score is the database search
engine confidence score for the protein identity where p < 0.05 significance is achieved for a value of 28 or higher
(https://www.matrixscience.com/, accessed on 1 September 2017). 7 The abundance ratios are the expression
levels determined by MS analysis of the SILAC ratios, where R is the value for Light isotope data in the resistant
cell lines and LP is the value of the Heavy isotope data in the Heavy-labelled low passage control.

3.3. Validation of the SILAC Proteomics Approach Using Immunodetection of CD44 and CD63

To validate the findings of the quantitative proteomics methodology, two proteins
with up-regulated expression in the resistant sublines were further investigated using
immunodetection techniques: CD44, which was up-regulated in both cell lines, and CD63,
which was up-regulated in DLD-1/5-FU. Their roles in resistance are covered in the discus-
sion section.

Expression of CD44 protein was further analysed using immunoblotting (Figure 4,
Supplementary Figure S1). Analysis of DLD-1 and HT-29 wild-type and resistant sublines
showed a single band of 81 kDa molecular weight, which was most intense in the DLD-1/5-
FU-resistant subline sample. Band intensities were adjusted relative to ß-actin and ratios
for CD44 were observed to closely match the SILAC data (Figure 4).

Additional validation of DLD-1/5-FU proteomics results obtained by the SILAC
approach (Supplementary Tables S1 and S2) was carried out for CD63 protein by im-
munofluorescence (Figure 4F,G). CD63 expression was significantly increased in the DLD-
1/5-FU-resistant subline (Figure 4F) compared to the weakly labelled DLD-1 parent cell
line (Figure 4G).

https://www.uniprot.org/
https://www.matrixscience.com/
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change higher than ±1 were considered as altered proteins in resistant sublines. Commonly up-
regulated (red) and down-regulated (green) proteins in both 5-FU-resistant sublines are highlighted.
(B) Venn diagrams showing significantly up-regulated and down-regulated proteins in resistant
sublines DLD-1/5-FU and HT-29/5-FU.
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Figure 4. (A) Densitometry for CD44 expression was performed for (B) DLD-1 and (C) HT-29
parent cell lines and 5-FU-resistant sublines and analysed using a t-test. (D,E) show that relative
expression of CD44 abundance in the indicated samples was divided among CD44 abundance in
SILAC sample, and relative abundance was calculated as previously during the SILAC protocol to
estimate SILAC ratios (L/H). SILAC ratios (L/H) for CD44 were DLD-1/5-FU (4.7), DLD-1 P = 9 (0.44),
DLD-1 P = 65 (1.2), HT-29/5-FU (7.01), HT-29 P = 9 (2.8), and HT-29 P = 57 (0.42). Data are presented as
mean (n = X); an asterisk represents significant differences (Student’s t-test, * p < 0 0.05). MDA-MB-231
mammary adenocarcinoma cell line was used as a positive control cell line for high CD44 expression.
(F,G) show immunolocalization of CD63; in (F) DLD-1/5-FU-resistant subline with strong labelling,
and in (G) DLD-1 parent cell line with weak labelling.

4. Discussion

In this study, we applied a pioneering SILAC proteomics approach to identify potential
novel markers for 5-FU resistance in CRC. Whilst Tam et al. recently reported proteomic
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analysis of CRC-resistant cell lines [26], the approach described here employs a unique
strategy to identify candidates for potential novel 5-FU resistance mechanisms in drug-
resistant sublines of CRC cell lines generated in house, incorporating (i) parallel generation
of high-passage wild-type controls for each cell line to enable distinction between resistance
and long-term culturing, (ii) a multiplexed SILAC quantitative approach for accurate
comparison of expression changes between two controls (LP and HP) and the resistant cell
lines, and (iii) 2D LC separation to increase proteome coverage during MS and MS/MS
analysis. The results in terms of differential expression of two selected proteins with known
roles in 5-FU resistance were then validated using immunodetection methods.

Employing 2D-LC-MS and SILAC in our methodology provides us with higher sen-
sitivity and accuracy in relative quantification, allowing more in-depth analysis of the
proteome and, consequently, detection of more proteins with higher confidence. In ad-
dition, this was the first study of its type to use control parental cell lines grown for the
same number of passages as the resistance cell lines, which could then be used in a multi-
SILAC strategy to identify potential resistance-specific molecular mechanisms. As can be
seen from the large differences seen in protein expression profiles between the early- and
late-passage wild-type cell lines, this is a crucial first step to take in analysis to exclude
proteins which altered expression levels solely due to pressures of continued extended
passaging, as opposed to pressures of prolonged 5-FU exposure. For any such studies
where there is ‘omics’ analysis of prolonged drug exposure cell sublines, accounting for
differences between the early- and late-passage wild-type cell line should be the first step.
In concentrating on a single drug, our study aims to eliminate potential confounding factors
introduced by the complexities of drug combinations. This approach allows for a more
in-depth exploration of the specific mechanisms underlying chemo resistance associated
with the individual drug we are investigating. This deliberate strategy not only streamlines
our investigation but also facilitates a more straightforward interpretation of the results,
offering valuable insights for the development of targeted therapeutic interventions.

A higher 5-FU resistance level was developed for the DLD-1 cell line compared with
the HT-29 cell line (Figure 2A,B). The differences in sensitivity may be due to the loss of DNA
mismatch repair (MMR) activity [27], which is characteristic of hypermutable phenotypes
such as seen for the DLD-1 cell line, but not HT-29 [28]. MMR could drive somatic mutations
in DLD-1 subclones, increasing development of resistant sublines (Figure 2A,B). In 2010,
Sargent et al. found evidence of lack of success of 5-FU therapy in stage II and III colon
cancer patients with high microsatellite instability (MSI) or defective DNA mismatch repair
system [29]. Previously, similar results showed a lack of success from 5-FU therapy in
CRC patients with MSI tumours [29–31], suggesting that 5-FU chemotherapy may be
counterproductive in patients with MSI.

Validation of quantitative proteomics findings derived from a SILAC approach and
statistical modelling (LIMMA analysis) was carried out using immunoblotting and im-
munocytochemistry techniques for the detection and visualisation of up-regulated proteins
CD44 and CD63, as identified in the proteomics analysis.

CD44 protein is known to be involved in drug resistance and to act as a cancer stem
cell (CSC) biomarker, as discussed below. CD63 is a protein of the tetraspanin family, also
known as transmembrane 4 superfamily. Tetraspanin proteins participate in numerous
physiological processes like cell adhesion, motility, and proliferation. Additionally, CD63
activity is related to proto-oncogene tyrosine-protein kinase Src (SRC), which was found to
be overexpressed in both resistant cell lines during the proteomics study. SRC has been
described to be one of the proto-oncogenes with more relevance during chemotherapy
resistance development, including resistance to 5-FU in CRC [32]. CD63 has been suggested
as a resistance mediator by tumour-derived exosomes containing doxorubicin and other
cytotoxic agents in MCF7 cell lines [33] and mediates anoikis resistance in murine melanoma
cell lines [34]. However, the role of CD63 in CRC is unclear although, along with α3-
Integrin, it showed higher expression in human colon carcinoma cells with spontaneous
metastatic ability [35]. Alterations in expression of CD63 have been observed to occur in
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apoptotic peripheral blood leukocytes (PBL) of CRC patients after 5-FU administration [36].
Exosomes may be acting as shed vesicles that allow CRC cells to export 5-FU or cytotoxic
products and may be considered as possible mechanisms of resistance in CRC to 5-FU by
decreasing harmful effects of the drug within these cells.

Whilst the proteomic analyses identified several proteins which were up-regulated
or down-regulated in either the DLD-1/5-FU or HT-29/5-FU sublines (see Section 3.3),
these are not considered further here, as the primary focus in this research is to identify
potentially universal markers of resistance, which are either commonly up-regulated or
down-regulated in both cell lines. Interesting resistance-associated candidate proteins seen
in these categories are discussed here.

Of the six commonly up- and down-regulated proteins, there is already evidence link-
ing CD44, APP, and AGR2 with drug resistance mechanisms as discussed below, although
evidence is slight and not always related to 5-FU or CRC. Whilst no clear association with
resistance was seen for some proteins, some (NAGLU, CORO7, and PLSCR1), as also
discussed below, have been associated with oncogenic activity.

As previously noted, CD44 has been associated with chemo resistance in different types
of cancer, including CRC [6–8]. CD44 is a transmembrane protein which acts as a receptor
for hyaluronic acid, which activates intracellular survival pathways under stress conditions
such as chemotherapy. It is involved in proliferation, differentiation, and motility [37].
A study in CRC patients with hepatic metastasis found the highest expression of CD44
gene by reverse transcription PCR in CRC patients with hepatic metastasis tissue, followed
by non-hepatic metastasis CRC patients and normal mucosa [38]. A study of radiation
resistance in DLD-1, HCT-116, and HT-29 CRC cell lines indicated that high expression of
CD44 is associated with increased radiation resistance [39]. Additionally, CD44 is known
to be a cell surface biomarker of cancer stem-like cells (CSLCs), and tumour cells with
CSLC properties have high proliferative activity, clonogenic activity, tumour growth, and
decreased apoptosis, and are able to survive chemotherapy [40,41]. Nautiyal et al. observed
a significant increase of CD44 expression levels of colon mucosa cells in 20-month-old
Fisher-344 rats when they were compared with young, 5-month-old rats [42]. Comparable
results were found by Patel et al. in normal mucosa of patients with adenomas. The study
showed an increase of CD44 levels in subjects over 55 years when they were compared to
patients below 55 years, suggesting ageing increases the number of stem-like cells that may
lead to a greater predisposition in colonic mucosa to subsequent transformation [43]. CD44
is crucial for maintaining the CSC phenotype and for supporting cancer cell expansion
in both in vitro and in vivo colorectal cancer cell studies [44]. Hence, the presence of 5-
FU in cell growth media during a high number of passages may be acting as a selection
pressure factor for resistant subclones with CSC phenotype features. DLD-1 and HT-29
subpopulations with CSC features would have the capacity to self-renew and differentiate
faster, with new aberrant signalling pathways leading to the development of mechanisms
of resistance to 5-FU.

From the proteomics data, a number of proteins were identified in the resistant cell
lines, which supported CD44’s role in enhanced stemness as a potential mechanism of
resistance to be further explored. For HT-29 in particular, increased levels of stem cell
proliferation marker Epcam (SILAC ln ratio, L [resistant]/H [wild type] of 1.489) and
generic proliferative marker Ki-67 (0.350), along with decreased expression of proapoptopic
regulators p53 (−0.552), Bax (−1.139), APAF1 (0.746), and caspase 8 (−0.495), and increased
expression of Caspase activity and apoptosis inhibitor 1 (0.878), all key components of the
intrinsic pathway, were seen, whilst for DLD-1, proliferative marker Ki-67 was increased
(0.546), while apoptopic factors p53 (−1.215) and Bax (−0.296) showed decreasing levels.

Of the other commonly up-regulated proteins, APP is a cell surface receptor found
physiologically on the neurons and interacts with APP molecules on surrounding cells
to promote transsynaptic adhesion [45]. APP proteins are expressed in gastrointestinal
tumours and their members are transported to the cell membrane, where they act in cell–
cell interaction, cell adhesion, and metastatic processes. It has previously been shown in
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hepatic cancer cell lines that APP overexpression contributes to the resistance of liver cancer
cells to 5-FU [46].

AGR2 is required for MUC-2 synthesis and secretion in the production of mucus by
intestinal cells. It is considered as a proto-oncogene playing a role in cell growth, cell migra-
tion, and cell differentiation, including in CRC [47]. In an SW480 tumour xenograft model,
knockdown of AGR2 was seen to mediate the resistance to 5-Aza-2′-deoxycytidine [48].

NAGLU catalyses degradation of heparan sulphate and has been proposed through ex-
periments in drosophila as protection against stress resistance and neurodegeneration [49].
In addition, fusion of the NAGLU gene with the Ikaros family zinc finger protein 3 (IKZF3)
has been shown to be oncogenic in CRC patients [50].

CORO7 promotes F-actin polymerisation and post-Golgi trafficking [51]. A study has
shown that serum autoantibodies generated against CORO7 were seen in CRC patients
and found to interact directly with the proto-oncogene tyrosine kinase SRC [52].

PLSCR1 plays an important role during apoptosis through recognition of damaged
cells by the reticuloendothelial system [53]. Inhibition of PLSCR1 protein by an antiphos-
pholipid scramblase 1 antibody was shown to have an anti-proliferative effect in CRC
cell lines in vitro. Additionally, PLSCR1 is thought to be involved in tumour proliferation
because its overexpression has been observed as part of EGF stimulation pathways. The
enzyme has been seen to be overexpressed in CRC patient samples and linked to poor prog-
nosis [54]. Expression has also been linked to therapy-resistant glioblastoma multiforme
patients [55].

Of the six commonly down-regulated proteins, some evidence could be found to link
all, apart from POLR3D, with involvement in drug resistance mechanisms as discussed
below.

VPS45 plays a role in vesicle-mediated protein trafficking from the Golgi stack through
the trans-Golgi network [56]. Increased sensitivity to methylmercury with down-regulation
of endosome trans-Golgi transport intensified the resistance phenotype in a yeast model [57].

RBMS2 has been implicated in DNA replication, gene transcription, cell cycle progres-
sion, and apoptosis [58]. Xu et al. demonstrated that overexpression of RBMS2 in breast
cancer cells increased their sensitivity to doxorubicin [59].

RIOK1 participates in maturation of the 40S ribosomal subunit [60]. It has been shown,
in the same study, to promote tumour growth in a CRC cell line and to be tumourigenic in
a lung cancer xenograft model [61]. Knockdown of RIOK1 has also been found to mediate
radio resistance in CRC cells [62].

RAP1GDS1 participates in activation of G proteins like Rap1a/Rap1b, RhoA, RhoB,
and KRAS, and promotes the GDP/GTP exchange reaction by stimulating GDP dissociation
from G proteins [63]. A study in prostate cancer cells demonstrated high expression of
RAP1GDS1 in cells under hypoxia and postulated that targeting it and similar CLK kinases
may provide benefit in the treatment of cancers in which tumour hypoxia contributes to
resistance to therapy [64].

CD55 is a major regulator of both the classical and alternative complement activa-
tion pathways [65]. CD55 overexpression has been linked to aggressiveness and poor
prognosis [66], and antibody-targeting controlled CRC xenograft growth in mice [67].

In terms of proteins which are known to be typically involved in the development of
multidrug resistance, then, some changes were seen, although not consistently for both cell
lines. Markers of drug resistance, ALDH1A3 (5.352), ABCC1 (1.803), and ABCG2 (1.569)
were significantly escalated in HT 29, with ABCB1 (0.639) and ABCG2 (1.840) escalated with
DLD-1. NF-κB [68] was seen to be up-regulated in DLD-1 (1.010), with no change in HT-29,
whilst thymidylate synthase was not detected at the level utilised in this proteomic strategy.

As discussed above, for 11 out of the 12 commonly identified up-regulated and down-
regulated proteins there is already some evidence for association with drug resistance
mechanisms, or role in CRC oncogenesis. This suggests that there is value in progressing to
mechanistic studies using the resistant cell line panel we have developed here, as well as
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validation in archival clinical material from patients treated with 5-FU-containing therapy
where sensitivity or resistance to the regime is known.

5. Conclusions

In conclusion, we have demonstrated the power of applying a SILAC proteomic
approach and the quantification of protein expression to identify potential markers for
5-FU drug resistance by comparing protein expression between 5-FU-resistant sublines and
wild-type sensitive parental cell lines with high and low passaging. The importance to this
methodology of using both low- and high-passage wild-type cell lines, and of validation
using conventional immunodetection techniques has been highlighted.

We have revealed a panel of commonly altered proteins during development of
acquired resistance to 5-FU, and these findings will act as a source of potential target
proteins for extensive mechanistic studies going forward.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13040342/s1, Figure S1: complete Western Blot images;
Table S1: R-LIMMA analysis data set for the DLD-1 cell lines; Table S2: R-LIMMA analysis data set
for the HT-29 cell lines.
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