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Abstract: The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and
glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other
UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion
transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal
function in hyperuricemic patients. We consider the significance of the highly selective inhibition
of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular
disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal
tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose
reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues
increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects
may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl
sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly
affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS,
which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The
highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD,
and CVD.

Keywords: ATP-binding cassette transporter G2; chronic kidney disease; dotinurad; hyperuricemia;
organic anion transporter1/3; urate transporter 1

1. Introduction

Urate transporter 1 (URAT1), which is a urate anion exchanger that regulates serum
uric acid (UA) levels in the human kidney, was identified in 2002 [1], and it has been
targeted by uricosuric agents. In humans, renal reabsorption of UA into the blood plays
an important role in controlling serum UA levels. The UA exchange is mediated by
various molecules expressed in the renal proximal tubule [2,3] (Figure 1). UA enters the
proximal tubule epithelial cells in exchange for monocarboxylate via apical URAT1 and for
dicarboxylate via the apical organic anion transporter (OAT) 4 [4]. OAT1 and OAT3 on the
basolateral membrane of epithelial cells transport UA from the renal interstitial into the
renal proximal tubule epithelial cells [4,5]. Renal UA reabsorption is mainly mediated by
URAT1 and glucose transporter 9 (GLUT9) [1,6–8]. Apical GLUT9b plays a significant role
in UA reabsorption; the reabsorbed UA exits the proximal tubule epithelial cells into the
blood through basolateral GLUT9a [4]. The ATP-binding cassette transporter G2 (ABCG2)
has been identified as a high-capacity UA exporter that mediates renal and/or extra-renal
(intestinal) UA excretion [9,10].
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Uricosuric agents have been developed to target such UA transporters and have been 
used as therapeutic agents for hyperuricemia. Probenecid inhibits URAT1 and GLUT9 
[11]. Benzbromarone also inhibits URAT 1 and GLUT 9 [12]. Lesinurad and arhalofenate 
inhibit URAT1 and OAT4 [11]. It has been difficult to accurately evaluate the function of 
URAT1 because the previous uricosuric agents inhibited not only URAT1 but also GLUT9 
and OAT4. 

A highly selective inhibitor of URAT1, dotinurad, was developed [13] and is available 
in Japan. Unexpectedly, we found that dotinurad improved serum lipids, blood pressure, 
body weight, albuminuria, and the estimated glomerular filtration rate (eGFR); in addi-
tion, it reduced serum UA in patients with hyperuricemia complicated by CKD and dia-
betic kidney disease (DKD) [14]. Furthermore, the 24 week-dotinurad treatment favorably 
affected arterial stiffness and oxidative stress, suggesting that dotinurad provides off-tar-
get vascular protection [15].  

Dotinurad is characterized by its high selectivity, as it inhibits URAT1 but does not 
inhibit other UA transporters, such as ABCG2 and OATs. Here, we discuss the influences 
of the inhibition of URAT1 and the non-inhibition of other UA transporters on metabolic 
syndrome, CKD, and cardiovascular disease (CVD). Therefore, the effects of dotinurad 
beyond UA lowering are also the subject of discussion. 

 
Figure 1. Urate transporters in the kidneys and intestine. Black arrows indicate the flow of uric acid 
and uremic toxins. ABCG2—ATP-binding cassette transporter G2; GLUT9—glucose transporter 9; 
OAT—organic anion transporter; UA—uric acid; URAT1—urate transporter 1; UT—uremic toxin. 

2. The Association of URAT1 and Other UA Transporters with Metabolic Syndrome 
2.1. Metabolic Syndrome and Hyperuricemia  

Hyperuricemia is significantly associated with the development and severity of met-
abolic syndrome. A meta-analysis showed that higher serum UA levels led to an increased 
risk of metabolic syndrome, with a linear dose–response relationship [16]. The serum UA 
concentrations increased with the number of components of metabolic syndrome adjusted 
for age, sex, creatinine clearance, and alcohol, and diuretic use [17]. Multivariate analyses 
showed that the visceral fat area (VFA) was the most important determinant of elevation 
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Figure 1. Urate transporters in the kidneys and intestine. Black arrows indicate the flow of uric acid
and uremic toxins. ABCG2—ATP-binding cassette transporter G2; GLUT9—glucose transporter 9;
OAT—organic anion transporter; UA—uric acid; URAT1—urate transporter 1; UT—uremic toxin.

Uricosuric agents have been developed to target such UA transporters and have been
used as therapeutic agents for hyperuricemia. Probenecid inhibits URAT1 and GLUT9 [11].
Benzbromarone also inhibits URAT 1 and GLUT 9 [12]. Lesinurad and arhalofenate in-
hibit URAT1 and OAT4 [11]. It has been difficult to accurately evaluate the function of
URAT1 because the previous uricosuric agents inhibited not only URAT1 but also GLUT9
and OAT4.

A highly selective inhibitor of URAT1, dotinurad, was developed [13] and is available
in Japan. Unexpectedly, we found that dotinurad improved serum lipids, blood pressure,
body weight, albuminuria, and the estimated glomerular filtration rate (eGFR); in addition,
it reduced serum UA in patients with hyperuricemia complicated by CKD and diabetic
kidney disease (DKD) [14]. Furthermore, the 24 week-dotinurad treatment favorably
affected arterial stiffness and oxidative stress, suggesting that dotinurad provides off-target
vascular protection [15].

Dotinurad is characterized by its high selectivity, as it inhibits URAT1 but does not
inhibit other UA transporters, such as ABCG2 and OATs. Here, we discuss the influences
of the inhibition of URAT1 and the non-inhibition of other UA transporters on metabolic
syndrome, CKD, and cardiovascular disease (CVD). Therefore, the effects of dotinurad
beyond UA lowering are also the subject of discussion.

2. The Association of URAT1 and Other UA Transporters with Metabolic Syndrome
2.1. Metabolic Syndrome and Hyperuricemia

Hyperuricemia is significantly associated with the development and severity of
metabolic syndrome. A meta-analysis showed that higher serum UA levels led to an
increased risk of metabolic syndrome, with a linear dose–response relationship [16]. The
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serum UA concentrations increased with the number of components of metabolic syndrome
adjusted for age, sex, creatinine clearance, and alcohol, and diuretic use [17]. Multivariate
analyses showed that the visceral fat area (VFA) was the most important determinant of
elevation in serum UA and a decrease in UA clearance [18]. The magnitude of the insulin
resistance and the serum UA levels were significantly related; insulin resistance was also
significantly and inversely related to urinary UA clearance, and urinary UA clearance was
significantly and inversely associated with serum UA levels [19]. Insulin resistance due
to visceral fat accumulation may increase serum UA by decreasing renal UA clearance in
patients with metabolic syndrome.

2.2. The Effect of Insulin Resistance on URAT1 Expression

To elucidate the mechanism of obesity and metabolic syndrome-related hyperuricemia,
the expression of URAT1 was investigated [20]. The protein level of URAT1 increased in the
kidneys of leptin-deficient mice (ob/ob mice) [20]. Furthermore, the quick fat diet (crude fat
content: 13.6%) enhanced the protein level of URAT1 in the kidneys of C57BL/6 mice [20].
Insulin-resistant Otsuka Long–Evans Tokushima Fatty (OLETF) rats and the control, Long–
Evans Tokushima Ohtsuka (LETO) rats, were used as a model for acute hyperuricemia [21].
The OLETF rats showed a significantly higher incidence of hyperuricemia compared to
the control LETO rats, indicating that insulin resistance induces hyperuricemia following
a high-purine load [21]. Following a high-purine load, insulin resistance enhanced UA
reabsorption through upregulation of the URAT1 expression [21].

A high-fructose diet (HFD) upregulated the expression of GLUT9 and URAT1 in
the kidneys and increased the serum UA concentration in rats [22]. Another study also
revealed that long-term HFD significantly upregulated the protein expression of GLUT9
and URAT1 in the kidneys of mice [23]. Resveratrol is a polyphenol that is abundant in
plants; it has been reported to exert anti-inflammatory and antioxidative effects, inhibit
lipid peroxidation, and extend life in mice [24]. Furthermore, the effects of resveratrol on
the amelioration of insulin resistance and liver and kidney pathologies have been shown
in several animal models [25,26]. Compared with those in the HFD group, the protein
expression levels of GLUT9 and URAT1 were significantly lower in the HFD group treated
with resveratrol. Insulin resistance enhanced the expression of URAT1 and GLUT9.

2.3. The Effect of Insulin on UA Transport by Other Urate Transporters

Insulin and hyperinsulinemia reduce the renal fractional excretion of UA and play
a key role in the genesis of hyperuricemia and gout. Physiological euglycemic hyperin-
sulinemia induced by insulin infusion in healthy volunteers acutely reduced urinary UA,
suggesting a significant contribution of insulin to the pathogenesis of hyperuricemia [27–29].
In rats, insulin decreased urinary UA excretion, with a concurrent increased expression of
URAT1 and a decreased expression of ABCG2 [30]. There was an increased expression of
GLUT9 in the kidneys of streptozotocin-induced diabetic mice [31]. The heterologous ex-
pression of individual UA transporters in Xenopus oocytes revealed that insulin increased
UA transport by GLUT9, OAT1, and OAT3 and decreased UA transport by ABCG2 [32].

The effects of insulin resistance and hyperinsulinemia on UA transport by each of
the UA transporters are shown in Figure 2. Insulin resistance and hyperinsulinemia
increase UA transport by URAT1 and GLUT9 and decrease UA transport by ABCG2,
which may induce a decrease in renal UA clearance. Therefore, URAT1, GLUT9, and
ABCG2 can be therapeutic targets for uricosuric drugs in patients with insulin resistance
and hyperinsulinemia.
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Figure 2. Changes in UA transport by UA transporters in the kidneys and intestine by insulin re-
sistance and hyperinsulinemia. Upward- and downward-facing arrows indicate increase or de-
crease in substances or expression of molecules, respectively. Right allow and ? indicate no change 
and no available data about change of substances or expression of molecules, respectively. ABCG2—
ATP-binding cassette transporter G2; GLUT9—glucose transporter 9; OAT—organic anion trans-
porter; UA—uric acid; URAT1—urate transporter 1. 
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ments in HbA1c, serum lipids, blood pressure, and body weight. 
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administration significantly ameliorated high-fat diet-induced obesity and insulin re-
sistance [33]. Serum TG in high-fat diet-fed mice was elevated in comparison with that in 
normal-fat diet-fed mice, and dotinurad significantly reduced serum TG in both types of 
mice [33]. Remarkably, a high-fat diet induced nonalcoholic fatty liver disease (NAFLD), 
which was attenuated by dotinurad [33]. Various factors, such as pro-inflammatory cyto-
kines released from adipose tissues, hypercholesterolemia, and hyperuricemia, contribute 
to the development of NAFLD in high-fat diet-induced obese mice [34]. Hyperuricemia 
directly induces fat accumulation and inflammation in hepatocytes through URAT1 [35]. 
Dotinurad may improve NAFLD by inhibiting extracellular UA uptake in hepatocytes via 
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Figure 2. Changes in UA transport by UA transporters in the kidneys and intestine by insulin
resistance and hyperinsulinemia. Upward- and downward-facing arrows indicate increase or decrease
in substances or expression of molecules, respectively. Right arrow and ? indicate no change and no
available data about change of substances or expression of molecules, respectively. ABCG2—ATP-
binding cassette transporter G2; GLUT9—glucose transporter 9; OAT—organic anion transporter;
UA—uric acid; URAT1—urate transporter 1.

2.4. The Effect of Inhibition of URAT1 on Metabolic Parameters in Humans

We found that dotinurad reduced body weight, blood pressure, HbA1c, serum low-
density lipoprotein-cholesterol (LDL-C), triglyceride (TG), and non-high-density lipoprotein-
cholesterol (non-HDL-C), as well as serum UA, in patients with CKD and DKD [14]. To our
knowledge, our study is the first to report such metabolic effects of dotinurad. We specu-
lated that dotinurad selectively inhibits URAT1 and increases the urinary concentration
of UA in the proximal tubules; this un-reabsorbed UA may compete with urinary glucose
for apical GLUT9b, reducing glucose reabsorption, which may induce improvements in
HbA1c, serum lipids, blood pressure, and body weight.

2.5. The Effect of Inhibition of URAT1 on Metabolic Parameters in Mice

Tanaka, Y. et al. found that URAT1 was also expressed in the liver, white adipose
tissue (WAT), and brown adipose tissue (BAT) in addition to the kidneys [33]. Dotinurad
administration significantly ameliorated high-fat diet-induced obesity and insulin resis-
tance [33]. Serum TG in high-fat diet-fed mice was elevated in comparison with that in
normal-fat diet-fed mice, and dotinurad significantly reduced serum TG in both types of
mice [33]. Remarkably, a high-fat diet induced nonalcoholic fatty liver disease (NAFLD),
which was attenuated by dotinurad [33]. Various factors, such as pro-inflammatory cy-
tokines released from adipose tissues, hypercholesterolemia, and hyperuricemia, contribute
to the development of NAFLD in high-fat diet-induced obese mice [34]. Hyperuricemia
directly induces fat accumulation and inflammation in hepatocytes through URAT1 [35].
Dotinurad may improve NAFLD by inhibiting extracellular UA uptake in hepatocytes via
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URAT1, resulting in a reduction in lipid deposition and inflammation. The re-browning of
brown adipose tissue (BAT) and the browning of epididymal white adipose tissue (WAT)
may be also associated with an improvement in NAFLD via adipokines [36].

WAT could be converted to beige adipose tissue (browning), which increases energy
expenditure by activating the uncoupling protein 1 (UCP1), which improves systemic
insulin resistance [36,37]. The uptake of UA in WAT by URAT1 leads to WAT dysfunction
and the deterioration of systemic insulin resistance [38]. In epididymal WAT, dotinurad
significantly increased the UCP1 expression under high-fat diet conditions, indicating
that the selective inhibition of URAT1 led to the browning of WAT under high-fat diet
conditions [33]. A previous study showed that the enhanced UA uptake into WAT via
URAT1 and the elevation in the intracellular UA led to the inhibition of the leptin–AMP-
activated protein kinase (AMPK) pathway, which resulted in a reduction in the UCP1
expression in WAT [37].

The upregulation of the expression and activity of UCP1 in BAT plays an important
role in the improvement of glucose metabolism and insulin sensitivity [39]. The UCP1 levels
in BAT were significantly increased by dotinurad [33]. The uptake of UA can increase the
oxidative stress in adipocytes, which induces insulin resistance [40]. The reactive oxygen
species (ROS) levels in BAT were significantly reduced by treatment with dotinurad [33].

2.6. The Effects of Other UA-Lowering Drugs on Metabolic Parameters

Allopurinol and febuxostat are xanthine oxidase (XO) inhibitors that reduce the hep-
atic production of UA. In comparison with no treatment, the allopurinol and febuxostat
treatments induced a significant reduction in body weight, systolic blood pressure, blood
glucose, insulin, and lipids in rat models of insulin resistance and metabolic syndrome [41].

Allopurinol significantly reduced hepatic steatosis, epididymal fat, serum UA, the
homeostatic model assessment for insulin resistance (HOMA-IR), hepatic enzyme levels,
and cholesterol in the HFD-fed OLETF rats [42]. The hepatic expression of lipogenic genes,
such as sterol regulatory element-binding protein 1c (SREBP-1c) and stearoyl-CoA desat-
urase 1 (SCD-1), was significantly upregulated in the OLETF and the HFD-fed OLETF rats
compared with the LETO rats. However, allopurinol significantly downregulated SREBP-1c
and SCD-1 gene expressions in the HFD-fed OLETF rats. Peroxisome proliferator-activated
receptor alpha (PPARα) and carnitine palmitoyl-transferase 1 (CPT-1) were significantly
downregulated in the OLETF and the HFD-fed OLETF rats compared with the LETO
rats [42]. However, allopurinol improved the downregulation of lipid oxidation genes
observed in the HFD-fed OLETF rats. The hepatic mRNA expression of tumor necrosis
factor-alpha (TNF-α) was significantly increased in the OLETF and the HFD-fed OLETF
rats, and this increase was abolished by allopurinol. In addition, allopurinol significantly
decreased endoplasmic reticulum (ER) stress-induced protein expression, in comparison
with the no-treatment group.

Insulin resistance increases the expression of SREBP-1c, which increases fatty acid (FA)
synthesis [43]. Hepatic FA metabolism is controlled by the combination of FA uptake, FA
export by very-low-density lipoprotein (VLDL) secretion, FA synthesis by SREBP-1c, and
FA oxidation by β-oxidation. The entry of FA into mitochondria depends on CPT-1. One
of the major regulators of CPT-1 is PPARα [44–47]. The activation of PPARα induces the
transcription of genes associated with FA oxidation [44,48,49]. SCD1 plays a crucial role in
FA oxidation, FA synthesis, and storage [50]. It was proposed that SCD1 plays a crucial role
in the development of obesity in Mediterranean countries [51]. In experimental animals,
SCD1 was significantly associated with obesity and insulin resistance [52,53]. Therefore, the
allopurinol-mediated downregulation of SREBP-1c and SCD-1 genes and the upregulation
of PPARα and CPT-1 in the HFD-fed OLETF rats indicate that allopurinol has a beneficial
effect on hepatic steatosis in insulin resistance.

The relationship between the decrease in serum UA and VFA reduction in patients with
gout was investigated [54]. The UA-lowering therapy (ULT) (febuxostat 20–80 mg/day or
benzbromarone 25–50 mg/day) resulted in a decrease in the serum UA level, accompanied
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by a decrease in VFA. Using the multiple regression model, change in serum UA was a
significant determinant of the decrease in VFA (beta, 0.302; p = 0.001). The reduction in
serum UA is positively associated with reduced VFA, providing a rationale for clinical
trials to affirm whether ULT promotes the loss of visceral fat in patients with gout. The
ULT significantly reduced body weight, blood pressure, serum TG and total cholesterol
levels, aspartate aminotransferase (ALT), and aspartate aminotransferase (AST).

Treatment with the XO inhibitor, topiroxostat, suppressed weight gain compared to
control without any impact on food intake in diabetic obese mice [55]. However, the weight
of the fat pads and the hepatic and muscle TG content did not change. Prehypertensive,
obese adolescents, aged 11 to 17 years, were randomized to the XO inhibitor, allopurinol,
uricosuric, probenecid, or placebo in a randomized, double-blinded, placebo-controlled
trial (RCT) [56]. The subjects treated with ULT showed a significantly high reduction in
blood pressure.

The effects of UA-lowering drugs on body weight, visceral fat, blood pressure, glu-
cose metabolism, and hepatic steatosis are shown in Table 1. These results suggest that
lowering serum UA improves metabolic parameters, regardless of whether XO inhibitors
or uricosuric drugs are used.

Table 1. The effects of UA-lowering drugs on body weight, visceral fat, blood pressure, glucose and
lipid metabolism, and hepatic steatosis.

UA-Lowering
Drugs XO Inhibitors Uricosuric Drugs

Allopurinol Febuxostat Topiroxostat Benzbromarone Probenecid Dotinurad

Inhibition
of UA

Transporters
ABCG2 ABCG2

ABCG2 ABCG2

URAT1
URAT1 URAT1
GLUT9 GLUT9
OAT1 OAT1
OAT3 OAT3

Body weight
Reduced Reduced Suppressed

weight gain Reduced
No data

Reduced

(animal) [41] (animal and
human) [41,54] (animal) [55] (human) [54] (animal and

human) [14,33]

Visceral fat
Reduced Reduced No change Reduced

No data
Reduced

(animal) [42,56] (human) [54] (animal) [55] (human) [54] (animal) [33]

Blood pressure
Reduced Reduced

No data
Reduced

Reduced [56]
(human)

Reduced
(animal and

human) [41,56]
(animal and

human) [41,54] (human) [54] (animal and
human) [14,33]

Glucose
metabolism

Improved Improved
No data

No change
No data

Improved

(animal) [41] (animal) [41] (human) [54] (animal and
human) [14,33]

Serum lipids
Improved Improved

No data
Improved

No data
Improved

(animal) [41] (animal and
human) [41,54] (human) [54] (animal and

human) [14,33]

Hepatic
steatosis

Improved Improved No change Improved
No data

Improved
(animal) [42] (human) [54] (animal) [55] (human) [54] (animal) [33]

ABCG2—ATP-binding cassette transporter G2; GLUT9—glucose transporter 9; OAT—organic anion transporter;
UA—uric acid; URAT1—urate transporter 1; XO—xanthin oxidase.

2.7. The Possible Mechanisms of an Improvement in Metabolic Parameters by Dotinurad

The possible mechanisms of an improvement in metabolic parameters by dotinurad
are shown in Figure 3. In the kidney, dotinurad selectively inhibits URAT1 and increases the
urinary concentration of UA in the proximal tubules; this un-reabsorbed UA may compete
with urinary glucose for apical GLUT9b, reducing glucose reabsorption, which may induce
an improvement in HbA1c, serum lipids, blood pressure, and body weight. In the liver,
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the inhibition by dotinurad of UA entry into the liver via URAT1 may upregulate the
genes associated with FA oxidation and may downregulate the genes associated with FA
synthesis and inflammation, which improve hepatic steatosis, systemic insulin resistance,
and serum lipids. The inhibition of URAT1 in WAT by dotinurad induces the browning of
WAT, and the inhibition of URAT1 in BAT increases the expression of UCP-1 and decreases
the production of ROS, which may reduce body weight and visceral fat and may improve
insulin resistance as well as glucose and lipid metabolism.
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3. The Association of URAT1 and Other UA Transporters with CKD
3.1. CKD and Hyperuricemia

UA induces hypertension through its effects on endothelial function and impaired
nitric oxide (NO) production [57]. Hypertension can be the initial trigger leading to renal
damage [58]. Hyperuricemia is caused by the activation of vasoactive and inflammatory
processes [59], which may induce CKD. Histologic analyses showed the presence of arte-
riolosclerosis and tubulointerstitial injury in hyperuricemia-induced renal damage [60].
Serum UA levels were significantly correlated with vascular resistance at both the af-
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ferent and efferent arteriole in the glomerulus, suggesting that hyperuricemia may be
harmfully associated with glomerular perfusion [61]. Furthermore, the activation of the
renin–angiotensin system (RAS) by hyperuricemia may be associated with the development
of CKD [62]. The activation of RAS can induce renal vasoconstriction and reduce renal
plasma flow. UA may also increase oxidative stress and pro-inflammatory cytokines and
induce the proliferation of vascular smooth muscle cells (SMC) [2]. UA crystals can cause
tubular damage through inflammation mediated by crystals [2].

High serum UA levels are significantly associated with an increased risk of CKD. A
total of 2059 community-dwelling Japanese subjects aged ≥40 years without CKD were
followed for 5 years [63]. CKD increased with higher serum UA levels, with 21% (serum
UA 4.1–4.9 mg/dL), 47% (serum UA 5.0–5.8 mg/dL), and 210% (serum UA ≥ 5.9 mg/dL).
Similarly, there were positive associations between the serum UA level and the adjusted
risk of developing a decline in eGFR < 60 mL/min/1.73 m2 [63]. This study showed that
hyperuricemia is a significant risk factor for a decline in eGFR and albuminuria. A screened
cohort study including 48,177 individuals showed that the calculated incidences of end-
stage renal disease (ESRD) per 1000 people increased from 1.22 (without hyperuricemia) to
4.64 with hyperuricemia for men, and also increased from 0.87 (without hyperuricemia) to
9.03 with hyperuricemia for women [64]. Hyperuricemia is significantly associated with
the development and progression of CKD.

3.2. The Effect of CKD on Renal URAT1 Expression

The possibility that the hyperuricemia observed in renal dysfunction was due to
decreased UA clearance from the kidneys due to decreased renal function has previously
been considered. As various UA transporters exist in the proximal tubule of the kidney, the
influence of CKD progression on these transporters must be considered. Both the mRNA
expression and the immunohistochemistry of the URAT1 were decreased in the CKD rat
model [65].

3.3. The Effect of CKD on Other Urate Transporter Expressions

Both the mRNA expression and the immunohistochemistry of GLUT9 and ABCG2 in
the kidneys were decreased in the CKD rat model [65]. CKD patients accumulate uremic
toxins (UTs) in the body and potentially require dialysis. ABCG2 is a major transporter of
UTs such as indoxyl sulfate (IS) [66]. ABCG2 regulates the renal and intestinal excretion of
IS and strongly affects CKD survival rates [67]. Considering the decreased renal clearance
of UA and UT in CKD rat models, intestinal ABCG2 may play a compensatory role [67].

OAT1/3-mediated active tubular secretory clearance was reduced by 50% relative
to the GFR decline in severe CKD, whereas the change in the active secretion in mild
and moderate CKD was proportional to GFR [68]. The 4-pyridoxic acid (PDA) was the
biomarker used to evaluate the inhibition of OAT1 and OAT3 [69–71]. Recent clinical
studies have reported an increase in plasma PDA in CKD populations [72,73]. The changes
in plasma PDA concentrations in CKD exceeded those reported after probenecid inhibition
and were likely a reflection of deteriorating active renal secretion. OAT1 and OAT3 play
a key role in the handling of UTs such as IS [74]. UTs inhibit OAT1 and OAT3, which
contribute to the decline in renal drug and UT clearance in patients with CKD [75].

3.4. The Effect of IS on CKD

The accumulation of IS has been observed in the serum of CKD patients. Dietary
protein-derived tryptophan is metabolized into indole by intestinal bacteria. Indole is
absorbed into the blood and is metabolized to IS in the liver [76]. IS is normally excreted
into urine. In CKD, however, a reduced renal IS clearance leads to the elevation of serum IS.
IS leads to progression of both tubulointerstitial fibrosis and glomerular sclerosis. Moreover,
IS induces oxidative stress in tubular cells, mesangial cells, vascular SMC, and endothelial
cells, which are also involved in the progression of CKD.
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Serum IS levels increased gradually with the decrease in renal function and reached
the highest level in CKD stage 5 [77]. Serum IS was measured in 604 pediatric participants
(mean eGFR of 27 ± 11 mL/min/1.73 m2) following enrolment into the prospective Car-
diovascular Comorbidity in Children with CKD study [78]. During a median follow-up
time of 2.2 years, the composite renal survival endpoint, defined as a 50% loss of eGFR, or
eGFR < 10 mL/min/1.73 m2, or the start of renal replacement therapy, was investigated.
The median survival time was shorter in patients with IS levels in the highest versus the
lowest quartile for IS (1.5 years, 95%CI [1.1,2.0] versus 6.0 years, 95%CI [5.0,8.4]). Serum IS
levels were significantly associated with renal survival, which was independent of other
risk factors, such as baseline eGFR, proteinuria, and blood pressure.

The effects of CKD progression on UA transport by each UA transporter are shown
in Figure 4. CKD progression decreases the expression of URAT1 and GLU9, which may
increase serum UA, and decreases the expression of OAT1 and OAT3, which may increase
serum UA and UT. Furthermore, CKD progression decreases the expression of renal ABCG2,
which may increase renal UA and UT, and increases intestinal ABCG2, which may reduce
serum UA and UT. To suppress the progression of CKD, UT should be smoothly excreted
from the body. For this purpose, drugs that do not inhibit ABCG2 are desired.
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Figure 4. Changes in UA transport by urate transporters in the kidneys and intestine by CKD
progression. Upward- and downward-facing arrows indicate increase or decrease in substances or
expression of molecules, respectively. ? indicates no available data about change of substances or
expression of molecules. ABCG2—ATP-binding cassette transporter G2; CKD—chronic kidney dis-
ease; CVD—cardiovascular disease; GLUT9—glucose transporter 9; OAT—organic anion transporter;
UA—uric acid; URAT1—urate transporter 1.

3.5. The Effect of Inhibition of URAT1 on CKD

The effects of UA-lowering drugs on renal function and renal outcome are shown
in Table 2.
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We previously reported that starting treatment with dotinurad decreased blood urea
nitrogen (BUN) and increased eGFR, and the increased dose of dotinurad further decreased
BUN and increased eGFR with a reduction in UA in a diabetic patient with CKD stage
G4 [79]. In this case, an improvement in albuminuria after the start of dotinurad was also
observed [79]. In our study, the 6-month dotinurad treatment improved albuminuria and
eGFR in hyperuricemic patients [14]. In another study, although eGFR did not significantly
change in patients whose eGFR was 30 or more, dotinurad significantly improved the eGFR
in patients whose eGFR was less than 30 [80]. The frequency of patients with improved
eGFR was significantly higher in patients whose eGFR was less than 30 (p = 0.038) than
in patients whose eGFR was 30 or more. In the multivariate logistic regression analysis,
the baseline eGFR < 30 and the achievement of a serum UA level of ≤ 6.0 mg/dL were
significantly associated with improved eGFR (p = 0.033 and p = 0.015, respectively) [80].
This study suggested that dotinurad may have the potential to improve renal function in
patients with advanced CKD.

Yanai, K. et al. investigated the efficacy and safety of dotinurad in 34 hyperuricemic pa-
tients with advanced CKD (stages G3–5) [81]. The 12-month dotinurad treatment significantly
reduced the annual decline in eGFR from −6.0 ± 12.9 to −0.9 ± 4.6 mL/min/1.73 m2/year
(p < 0.05), but such a change was not observed in the control group, suggesting that dotinu-
rad can attenuate renal function decline in advanced CKD individuals with hyperuricemia.

3.6. The Effects of Other UA-Lowering Drugs on CKD

In an RCT of 54 hyperuricemic patients with CKD, the patients were randomly assigned
to treatment with allopurinol or to continuation of the usual therapy for 12 months [82].
The serum creatinine level in the allopurinol group tended to be lower than that in the
controls after 12 months (p = 0.08). The combined endpoints of significant deterioration in
renal function and dialysis dependence were observed in 16% and 46.1% of the allopurinol
group and control group, respectively (p = 0.015).

One hundred and thirteen patients with eGFR < 60 mL/min were randomly assigned
to treatment with allopurinol at 100 mg/day or to the continuation of the usual therapy [83].
In the control group, eGFR decreased by 3.3 ± 1.2 mL/min/1.73 m2, and in the allopurinol
group, eGFR increased by 1.3 ± 1.3 mL/min/1.73 m2 after 24 months. The post hoc analysis
of a long-term follow-up after completion of the 2-year RCT showed that during the initial
and long-term follow-up (median, 84 months), the allopurinol group had a significantly
lower occurrence of a renal event compared with the control group (hazard ratio [HR], 0.32;
95% confidence interval [CI], 0.15–0.69; p = 0.004) [84].

A greater reduction in serum UA with febuxostat was associated with an increase
in eGFR and decreased proteinuria in patients with CKD stages 3b, 4, and 5 [85]. In a
1-year cohort study of 73 hyperuricemic patients with eGFR < 45 mL/min, the treatment in
51 patients was changed from allopurinol to febuxostat, and the other 22 patients continued
treatment with allopurinol [86]. The serum UA levels significantly decreased from 6.1 ± 1.0
to 5.7 ± 1.2 mg/dl in the febuxostat group and significantly increased from 6.2 ± 1.1 to
6.6 ± 1.1 mg/dl in the allopurinol group. The eGFR decreased from 27.3 to 25.7 mL/min
in the febuxostat group and from 26.1 to 19.9 mL/min in the allopurinol group, suggesting
that febuxostat slowed the progression of renal disease in the CKD cohort in comparison
with allopurinol. In an RCT, receiving febuxostat for 12 weeks reduced the urinary levels
of fatty acid-binding protein 1 (FABP1), albumin, and β2-microglobulin, whereas the
levels of these markers did not change in the control group [87]. Urinary FABP1 and
β2-microglobulin are the markers for proximal tubular impairment [88,89]. However, the
meta-analysis showed no significant differences in the changes in serum creatinine from the
baseline between the febuxostat and allopurinol groups [90]. The eGFR did not significantly
change within 3 months. A significant difference existed in the changes in albuminuria
levels from the baseline between the febuxostat and allopurinol groups (mean difference
[MD], −80.47 mg/gram creatinine [gCr]; 95% CI, −149.29 to −11.64 mg/gCr; p = 0.02) [90].
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A nationwide database analysis showed that a lower risk of progression to dialysis was
observed in pre-dialysis stage 5 CKD febuxostat users without compromising survival [91].

Topiroxostat treatment resulted in a significant reduction in serum UA, systolic and
diastolic blood pressures, and urinary protein compared with the baseline values [92].
However, serum creatinine, urinary N-acetyl-beta-D-glucosaminidase (NAG), which is
the marker for renal tubular impairment [93], and eGFR did not change significantly [92].
Another study reported that topiroxostat significantly improved eGFR and reduced the
urinary albumin/creatinine ratio compared to a placebo [94].

A 13-year inception cohort study showed that compared with allopurinol, benzbro-
marone therapy was associated with a reduced risk of progression to dialysis; the adjusted
HR was 0.50 (95% CI, 0.25–0.99) [95]. We could not find any RCTs and meta-analyses that
investigated the effect of probenecid on CKD.

3.7. The Effects of Febuxostat and Dotinurad on Advanced CKD

Serum IS levels increased gradually with the decrease in renal function and reached
the highest level at CKD stage 5 [77]. The serum IS concentration is significantly associated
with renal survival [78]. Therefore, ABCG2-mediated excretion of IS [66] may be more
critical for patients with CKD stage 4 or 5. The start of dotinurad, which did not inhibit
ABCG2, improved eGFR in our patients with CKD stage 4 [79]. In this case, an improvement
in albuminuria after the start of dotinurad was also observed [79]. Although eGFR did
not significantly change in patients with 30 ≤ eGFR < 45 and eGFR ≥ 45, dotinurad
significantly improved eGFR in patients with eGFR < 30 [80]. However, in a cohort study
of 778 gout patients, febuxostat reduced eGFR (19.1 mL/min/1.73 m2 at baseline) by
0.7 mL/min/1.73 m2 in patients with CKD stage 4, 5 [96]. Another study also showed that
the 12-month febuxostat treatment did not significantly improve the eGFR in patients with
CKD stage 4, 5 (p = 0.13) [97].

Table 2. The effects of UA-lowering drugs on renal function and renal outcome.

UA-Lowering
Drugs XO Inhibitors Uricosuric Drugs

Allopurinol Febuxostat Topiroxostat Benzbromarone Probenecid Dotinurad

Inhibition
of UA

Transporters
ABCG2 ABCG2

ABCG2 ABCG2

URAT1
URAT1 URAT1
GLUT9 GLUT9
OAT1 OAT1
OAT3 OAT3

Albuminuria No data Improved
[85,87,90] Improved [92] No data No data Improved

[14,79]

eGFR or serum
creatinine

Improved
[82,83] Improved [85] Not improved [93]

and Improved [94] No data No data Improved
[14,79–81]

eGFR in
patients with
CKD stage 4

and 5

No data Not improved
[96,97] No data No data No data Improved

[79–81]

Proximal
tubular

impairment
No data Improved [87] Not improved [93] No data No data No data

Renal outcomes Improved [84] Improved [91] No data Improved [95] No data No data

ABCG2—ATP-binding cassette transporter G2; GLUT9—glucose transporter 9; OAT—organic anion transporter;
UA—uric acid; URAT1—urate transporter 1; XO—xanthin oxidase.

To suppress the progression of CKD, drugs that do not inhibit ABCG2, which ex-
cretes UTs such as IS, are desired. Febuxostat has been reported to be a strong ABCG2
inhibitor [98], and dotinurad does not inhibit ABCG2. Taniguchi, T. et al. evaluated
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whether hypouricemic agents, including dotinurad, affect IS clearance in rats [99]. Febuxo-
stat caused highly significant renal IS accumulation by suppressing its excretion. Dotinurad
did not significantly affect the clearance of IS.

4. The Association of URAT1 and Other UA Transporters with the Development of CVD
4.1. The Association of URAT1 with Atherogenesis

High levels of UA are associated with the development of CVD. The plasma membrane
enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was shown to
inhibit the insulin receptor function, and high expression levels of ENPP1 were observed in
the cells of insulin-resistant subjects [100]. Cultures of human umbilical vein endothelial
cells were stimulated with insulin, UA, and the URAT1 inhibitor probenecid [101]. UA
inhibited the insulin-induced Akt/endothelial nitric oxide synthase (eNOS) axis [101],
suggesting that UA has a key role in reducing Akt–eNOS axis activity, which induces
endothelial dysfunction [101]. UA induced ENPP1 binding to the insulin receptor, leading
to an impairment of insulin signaling. Probenecid reverted such UA effects, indicating that
UA intracellular uptake by URAT1 is required for its action.

The expression of URAT1 on human aortic vascular SMC was reported [102]. URAT1
was expressed in the cell membrane, and UA enters human vascular SMC via URAT1 [103].
UA upregulated C-reactive protein (CRP) mRNA in human vascular SMC (HVSMC) and
human umbilical vein endothelial cells (HUVEC) [104]. UA stimulated HVSMC prolif-
eration, whereas UA inhibited the serum-induced proliferation of HUVEC, which was
attenuated by co-incubation with probenecid. UA also increased HVSMC migration and
inhibited HUVEC migration. In HUVEC, UA reduced NO release. The entry of UA into
cells via URAT1 may induce endothelial dysfunction and the proliferation of SMC by
inducing inflammation.

4.2. The Association of Other UA Transporters with Atherogenesis

NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) is an intracellular sensor
that detects microbial motifs, endogenous danger signals, and environmental irritants,
resulting in the formation and activation of the NLRP3 inflammasome. The assembly of the
NLRP3 inflammasome leads to the caspase 1-dependent release of the pro-inflammatory
cytokines interleukin (IL)-1β and IL-18 [105]. Soluble UA absorbed by cells through UA
transporters accumulates intracellularly and activates the NLRP3 inflammasome, thereby
increasing IL-1β secretion. ABCG2 excludes intracellular UA. GLUT9 and ABCG2 were
expressed in macrophage-like J774.1 cells; however, URAT1 was not expressed in these cells.
The entry of soluble UA via GLUT9 increased the mRNA and protein levels of ABCG2
in macrophage-like J774.1 cells, and an ABCG2 inhibitor, febuxostat, but not dotinurad,
increased IL-1β production in cells pretreated with UA, suggesting that the inhibition
of ABCG2 enhances IL-1β production, especially under hyperuricemic conditions, by
increasing intracellular UA accumulation in macrophage-like cells [106].

4.3. The Effect of Inhibition of URAT1 on Atherosclerosis

The cardio-ankle vascular index (CAVI), a marker of arterial stiffness, was developed
in 2004 [107]. Several studies have demonstrated that the CAVI is high in patients with
various atherosclerotic risk factors and that the treatments of cardiovascular risk factors
improve the CAVI [107]. A multicenter prospective cohort study with a 5-year follow-up
period that included patients (aged 40–74 years) with CVD risks was performed [108]. The
CAVI predicted the primary outcome (HR, 1.38; 95% CI, 1.16–1.65; p < 0.001). When the
CAVI was incorporated into a model with known CVD risks for predicting CV events, the
global χ2 value increased, suggesting that the CAVI predicted CV events. The 24-week
treatment with dotinurad significantly reduced the CAVI from 9.29 to 8.92 (p = 0.044),
suggesting that dotinurad may favorably affect arterial stiffness [15]. The derivatives of the
reactive oxygen metabolite concentration at week 24 were significantly lower than those
at the baseline [15]. URAT1 inhibition by dotinurad at the urate entry site on the vascular
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walls and the resultant attenuation of ROS production might have caused such beneficial
vascular effects [103,104].

4.4. The Effects of Other UA-Lowering Drugs on Endothelial Function

Endothelial dysfunction is an initial phase in the atherosclerotic process. Hyper-
uricemia and advanced CKD, in particular, are related to endothelial dysfunction through
impairment of NO bioavailability, and the markers of endothelial dysfunction are associ-
ated with the stages of CKD [109]. XO inhibitors produce benefits related to endothelial
function by reducing oxidative stress [110]. A meta-analysis of RCTs showed that allop-
urinol therapy is associated with significantly improved endothelial function in subjects
at risk of CVD, and the beneficial effects of allopurinol seemed to be more remarkable in
patients with normal UA at the baseline [111]. Allopurinol has an antioxidant property,
which may be associated with an improvement in endothelial function [110].

The elevated expression of the eNOS inhibitor, asymmetric dimethylarginine (ADMA),
is associated with endothelial dysfunction [112–115]. Furthermore, the elevation of ADMA
is associated with an increased risk of CVD. The 8-week febuxostat treatment did not
show improvements in serum ADMA, high-sensitivity CRP, or vascular stiffness measured
using the ankle–brachial index in patients with CKD [116]. The febuxostat treatment did
not alter endothelial function, which was assessed using flow-mediated dilation during a
2-year study period in patients with asymptomatic hyperuricemia [117]. Furthermore, an
RCT showed that neither topiroxostat nor febuxostat had any significant effects on arterial
stiffness measured with the CAVI over 24 of weeks treatment [118].

Nakata, T. et al. compared the effects of benzbromarone and febuxostat on endothelial
function in a randomized, cross-over, open-label study. Thirty patients with hyperuricemia
were divided into two groups; they were initially treated with benzbromarone or febuxostat
for three months; these were then switched for the next three months [119]. Endothelial
function was defined by reactive hyperemia indexes (RHI), determined using Endo-PAT
2000. Adiponectin and the RHI significantly increased after treatment with benzbromarone.
The changes in the RHI (p = 0.026) and adiponectin levels (p = 0.001) were significantly
greater in patients treated with benzbromarone than in those treated with febuxostat.
In addition to reducing UA, benzbromarone increased adiponectin and might be more
beneficial for endothelial function than febuxostat.

4.5. The Effects of UA-Lowering Drugs on CVD

A meta-analysis was conducted to determine the association between two ULTs com-
monly used in clinical practice (febuxostat vs. allopurinol) with major adverse cardiac
events (MACE), using 10 RCTs [120]. No significant association of either of the ULTs with
all-cause mortality, myocardial infarction, or stroke was noted. The retrospective cohort
study used data from the Japanese healthcare record database, including 152,166 patients;
it showed that ULT for patients with asymptomatic hyperuricemia did not prevent the de-
velopment of CVD [121]. In the subgroup analysis, the subjects prescribed topiroxostat had
a higher risk of developing CVD (HR, 1.89; 95% CI, 1.18 to 3.03; p = 0.01). The meta-analysis
showed that in patients without atherosclerotic disease, febuxostat likely had a similar CV
risk profile to allopurinol [122]. However, in patients with a history of CVD, allopurinol
treatment was associated with less CV mortality compared with febuxostat treatment.

In a large population-based cohort of gout patients, allopurinol was associated with
an increased risk of composite CV events and all-cause mortality compared with benzbro-
marone [123]. In a large cohort of 38,888 elderly gout patients, treatment with probenecid
appeared to be associated with a modestly decreased risk of CV events compared with
allopurinol [124].

IS accumulates in the bodies of CKD patients. In the renal proximal tubules, IS
excretion is mediated by OAT1/3 and ABCG2 (Figures 1 and 4). OAT1 and OAT3 are
inhibited by probenecid and benzbromarone. OAT inhibitors, such as probenecid, suppress
IS uptake into the kidney, leading to increased plasma IS concentration, which is harmful
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for CVD in CKD patients [99]. Therefore, hypouricemic agents that do not affect OATs and
ABCG2 are effective therapeutic options for the treatment of hyperuricemia complicated
by CKD.

CVD can explain a large part of the high mortality observed in CKD. Elevated serum IS
induces vascular alterations. In a cohort of CKD patients, the highest serum IS tertile was a
powerful predictor of overall and CV mortality (p = 0.001 and p = 0.012, respectively) [125].
This indicates that serum IS may have a significant role to play in the development of CVD
and higher mortality in CKD patients.

5. A Summary of Unfavorable Effects of the Inhibition of ABCG2, OAT1, and OAT3 on
the Kidneys and Vascular Endothelial Cells in CKD Patients

A summary of the unfavorable effects of the inhibition of ABCG2 and of OAT1 and
OAT3 on the kidneys and vascular endothelial cells in CKD patients is shown in Figure 5.
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Figure 5. A summary of unfavorable effects of the inhibition of ABCG2, OAT1, and OAT3 on the kid-
neys and vascular endothelial cells in CKD patients. Upward- and downward-facing arrows indicate
increase or decrease in substances. ABCG2—ATP-binding cassette transporter G2; GLUT9—glucose
transporter 9; IL-1β—interleukin-1b; OAT—organic anion transporter; ROS—reactive oxygen species;
UA—uric acid; UT—uremic toxin.

Among CKD patients, the inhibition of renal ABCG2 may increase renal UT accu-
mulation, which produces ROS, resulting in renal damage. The inhibition of intestinal
ABCG2 and renal OAT1/3 increases plasma UT, which produces ROS, inducing endothe-
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lial dysfunction. Endothelial dysfunction causes renal dysfunction. The inhibition of
ABCG2 induces UA accumulation in macrophages due to reduced excretion of UA by
ABCG2, which induces the increased secretion of IL-1b. Such inflammatory cytokines
induce endothelial dysfunction.

6. A Summary of the Beneficial Effects of Dotinurad on the Kidneys and Atherosclerosis
in CKD Patients

A summary of the beneficial effects of dotinurad on the kidneys and atherosclerosis in
CKD patients is shown in Figure 6. Dotinurad does not inhibit intestinal ABCG2 and renal
OAT1 and OAT3, which do not increase plasma UA and UT. This property is beneficial for
endothelial function. URAT1 inhibition in endothelial cells and vascular SMC by dotinurad
may prevent the development and progression of atherosclerosis. In the kidneys, dotinurad
reduces renal UA accumulation by inhibiting UA reabsorption, which may increase the
excretion of UT into urine due to reduced competition against UA for ABCG2. This property
is beneficial for renal function in CKD patients.
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7. Possible Beneficial Effects of Dotinurad for Heart Failure (HF)

A cohort study, which included 1665 adults aged ≥65 years, from the National Nu-
trition and Health Survey in elderly people in Taiwan showed that hyperuricemia was
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associated with HF hospitalization [126]. The National Health and Nutrition Examination
Survey in China also reported that patients with hyperuricemia or gout were more likely
to have HF compared with those without hyperuricemia or gout [127]. The serum UA
level was reported to be an important marker of comorbidities and functional status in
patients with HF with a preserved ejection fraction (HFpEF) [128]. Hyperuricemia was
an independent predictor of all-cause mortality in patients with chronic HF (CHF) [129].
In elderly multimorbid patients, acute HF prognosis appeared to be influenced by hyper-
uricemia independently of renal function [130]. After adjusting the confounding factors
using propensity score matching, hyperuricemia was found to be a determinant of HF
with a reduced ejection fraction (HFrEF) (odds ratio [OR], 1.247; 95% CI, 1.172–1.328;
p < 0.001) [131]. Hyperuricemia significantly increased all-cause death by 2.4 times and
HF readmission by 1.8 times in HFrEF patients [131]. Hyperuricemia and CKD, both
individually and cumulatively, are associated with an increased mortality risk in patients
with CHF [132]. The serum UA level and hyperuricemia were shown to be associated with
HF readmission in an observational study in China [133]. The systematic review showed
that serum UA elevation was associated with the severity and complications of congestive
HF [134]. It was speculated that serum UA served as a useful surrogate marker of oxidative
stress in congestive HF patients [135]. Such accumulated evidence has shown a significant
association between hyperuricemia and the development and progression of HF.

The UA level at the baseline was negatively correlated with the left ventricular ejection
fraction [LVEF] of the follow-ups (r = −0.19; p = 0.046) [131]. Elevated UA was associated
with greater hemodynamic impairment in advanced HF [136]. Elevated serum UA was
closely associated with right ventricular dysfunction in patients with HFpEF [137]. In
patients with CHF, those with hyperuricemia had significantly lower LVEF (38.2 ± 7.0
and 44.5 ± 5.1, respectively; p < 0.05). Patients with hyperuricemia had a significantly
thicker interventricular septum (IVS) than those without it (10.49 ± 2.9 vs. 10.93 ±1.64 mm,
respectively; p < 0.006). The LV mass index was higher in patients with hyperuricemia
(p < 0.001) [138]. Hyperuricemia is associated with right and left ventricular ejection
dysfunction and the remodeling of the myocardium.

The sodium–glucose cotransporter-2 inhibitor empagliflozin decreases the risk of CV
death or hospitalization for HF in patients with HFrEF. An interaction between serum
UA and the treatment effect suggested a benefit of empagliflozin in terms of mortal-
ity (cardiovascular and all-cause mortality) in patients with elevated serum UA (p for
interaction = 0.005 and = 0.011, respectively) [139]. Long-term febuxostat treatment was
associated with protective effects in terms of LV hypertrophy (LVH) or LV diastolic dys-
function in patients with hypertensive LVH and asymptomatic hyperuricemia. Febuxostat
also displayed a trend of a reduced risk of new-onset HFpEF in patients with LVH and
asymptomatic hyperuricemia [140]. After a median follow-up of 23.5 months, the primary
endpoint reflected by E/e’, which is the marker for diastolic dysfunction, in the benzbro-
marone (URAT1 inhibitor) group reached a significant improvement when compared with
the control group (p < 0.001) [141]. The favorable trend of freedom from the composite
endpoints or new-onset HFpEF was observed in the benzbromarone group (p = 0.037 and
p = 0.054, respectively) [141].

Serum UA was reported to activate NLRP3 inflammasome in cardiomyocytes, which
may provide one therapeutic strategy for myocardial damage induced by serum UA [142].
UA induced myocardial hypertrophy by activating autophagy via the adenosine monophos-
phate kinase (AMPK)-unc-51-like kinase (ULK1) signaling pathway [143]. UA promoted
cardiomyocyte injury through activation of the NLRP3 inflammasome and ROS/transient
receptor potential melastatin 2 (TRPM2) channel/Ca2+ pathway in a myocardial infarction
animal model [144]. High UA levels stress cardiomyocytes by accelerating the arginine
metabolism via the upregulation of ornithine decarboxylase [145]. Recently, various direct
unfavorable effects of UA on cardiomyocytes have been reported.

Very recently, URAT1 was found to be expressed in cardiomyocytes and indeed
worked as a UA transporter [146]. Dotinurad substantially attenuated high-fat diet-induced
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cardiac fibrosis, inflammatory responses, and cardiac dysfunction. Dotinurad could be a
promising candidate as a therapeutic tool for HF.

8. Conclusions

The pathophysiology of metabolic syndrome and the effects of dotinurad are shown
in Figure 7. In metabolic syndrome, excessive energy intake and decreased physical activity
induce the accumulation of visceral and hepatic fat, which results in inflammation and
insulin resistance. Such metabolic disturbance induces dyslipidemia, impaired glucose
metabolism, hypertension, and hyperuricemia, which may lead to CKD and CVD. Dotinu-
rad reduces serum UA and the entry of UA into adipose tissue and the liver by inhibiting
URAT1. Therefore, dotinurad may directly and indirectly reduce the accumulation of
visceral and hepatic fat, potentially leading to improvements in the inflammatory state
and insulin resistance. These effects may improve hypertension and glucose and lipid
metabolism, potentially benefiting the development and progression of CKD and CVD.
Dotinurad also directly inhibits UA entry into vascular endothelial cells and SMC, poten-
tially offering protective effects for the kidneys and CV systems. Non-inhibition of ABCG2
by dotinurad does not increase the accumulation of renal and plasma IS, as it is favorably
associated with the development and progression of CKD and CVD.
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