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Abstract: In the human body, the majority of tryptophan is metabolized through the kynurenine
pathway. This consists of several metabolites collectively called the kynurenines and includes, among
others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the
associated molecular targets and biological pathways, bring about a situation wherein even a slight
imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad
consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine,
and its physiological and pathological roles are not widely understood. Some studies, however,
indicate that it might be neuroprotective. Information on its hepatoprotective properties have also
emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I
aim to present and critically discuss the current knowledge on CA and its role in physiological and
pathological settings to guide future studies.
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1. Introduction

In the human body, the essential amino acid tryptophan is taken exogenously via
different food products, such as, among others, chicken, turkey, milk products, tuna, ched-
dar cheese, etc. [1]. Melatonin, the “sleep” hormone, is one of the products of tryptophan
conversion [2]. The other known pathway of tryptophan metabolism is the serotonin
pathway. This is dysregulated, among others, in depression, and hence, it is targeted by
antidepressant drugs [3]. Only ca. 5% of all ingested tryptophan is metabolized via the
above-mentioned routes. According to the research, 95% of all tryptophan is metabolized
through the kynurenine pathway [4]. This consists of several metabolites (collectively
deemed the kynurenines). Some are quite well characterized, such as kynurenic acid
(KYNA) [5,6], quinolinic acid (QUIN) [7,8], and (to lesser extent) l-kynurenine (L-KYN) [4].
However, there are metabolites with far less understood roles. These include xanthurenic
acid and cinnabarinic acid (CA) [9].

Kynurenine pathway metabolite synthesis begins from the conversion of trypto-
phan to L-KYN, resulting in the formed intermediate product: N′-formylkynurenine
(Figure 1) [10,11]. This occurs by way of the assistance of two enzymes: tryptophan 2,3-
dioxygenase, a constitutive enzyme mostly found in the liver [10,11], and indoleamine 2,3-
dioxygenase (two isoforms IDO1 or IDO2), an enzyme inducible under inflammatory con-
ditions [12,13]. L-KYN, by the enzyme kynureninase, is almost immediately metabolized to
anthranilic acid, or to KYNA, by the kynurenine aminotransferases (KAT, types I–IV with
different expressions in target organs) [8]. However, L-KYN may also be transformed into
3-hydroxykynurenine via kynurenine 3-monooxygenase. In turn, 3-hydroxykynurenine is
either (1) converted by kynureninase to 3-hydroxyanthranilic acid, or (2) transaminated
by KATs to xanthurenic acid. Subsequently, through autoxidation, 3-hydroxyanthranilic
acid may be spontaneously made into CA [14], or metabolized to the neurotoxic QUIN
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or picolinic acid (resulting in the intermediate product 2-aminomuconic-6-semialdehyde).
QUIN is eventually converted to nicotine adenine dinucleotide (NAD) [8,15].
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that it is an antagonist of the nicotinic cholinergic receptor type α7 [19]; however, other stud-
ies do not confirm this observation [20]. Moreover, KYNA is known to interact with G pro-
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Of note, L-KYN also binds to both of these receptors [4]. It has been shown recently that 
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with, for example, vesicular glutamate transporter (xanthurenic acid) [23], enzyme se-
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Figure 1. An overview of the synthesis of kynurenine pathway metabolites. The major metabolites
are highlighted in yellow (note: cinnabarinic acid is accentuated in green). The following en-
zymes are spotlighted: 3-HAO—3-hydroxyanthranilate oxidase; ACMSD—aminocarboxy-muconate-
semialdehyde decarboxylase; IDO—indoleamine-2,3-dioxygensase; KATs—kynurenine aminotrans-
ferases; KMO—kynurenine-3-monooxygenase; KYNU—kynureninase; NAD—nicotinamide adenine
dinucleotide; TDO—tryptophan-2,3-dioxygenase; QPRT—quinolinate phosphoribosyltransferase.

There are a variety of molecular targets for the kynurenines. For example, KYNA is
the only known endogenous antagonist of the glycine site of the N-methyl-D-aspartate
(NMDA) receptor so far. KYNA also affects the kainate and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors [16–18]. Furthermore, some research has
indicated that it is an antagonist of the nicotinic cholinergic receptor type α7 [19]; however,
other studies do not confirm this observation [20]. Moreover, KYNA is known to interact
with G protein-coupled receptor type 35 (GPR35) [21] and the aryl hydrocarbon receptor
(AhR) [4,5]. Of note, L-KYN also binds to both of these receptors [4]. It has been shown
recently that KYNA might be a ligand for adrenoceptor alpha-2B (ADRA2B) and hydrox-
ycarboxylic acid receptor 3 (HCAR3) [5,22]. Other kynurenine pathway metabolites are
known to interact with, for example, vesicular glutamate transporter (xanthurenic acid) [23],
enzyme sepiapterin reductase (xanthurenic acid) [24], metabotropic glutamate receptors
type II (mGlu2 and mGlu3) (xanthurenic acid) [25], and NMDA agonism (QUIN) [26]. They
might also induce lipid peroxidation (QUIN) [27] and promote the production of reactive
oxygen species (ROS) (3-hydroxykynurenine and 3-hydroxyanthranilic acid) [28].

The wealth of molecular targets and biological pathways associated with kynurenine
activity brings about a situation wherein even slight imbalances in the kynurenine levels,
both in the periphery and central nervous system (CNS), have broad consequences regard-
ing general health. In fact, disturbances in the kynurenine pathway are implicated in the
pathophysiology of cancer [6,29,30], intestine and bowel disorders [31,32], glaucoma [33,34],
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schizophrenia [35,36], depression [37,38], memory impairments [39,40], Huntington’s dis-
ease [41,42], Parkinson’s disease [41,43], multiple sclerosis [44,45], epilepsy [46,47], etc.

CA is the least known kynurenine. Initially described in 1957 [48], more than 60 years
later, data regarding its biological role are scarce. Indeed, in 2014, Fazio et al. [49] called it
the “forgotten” metabolite. Since then, more papers focused on CA have been published.
Nevertheless, in the PubMed database, when typing in “cinnabarinic acid” (November
2023), only about 60 studies can be found, while in ClinicalTrials.gov, nothing is retrieved.
Thus, in the current review, I aim to focus specifically on CA and its role in the context of
its physiological properties and activity in pathological settings. To do so, I summarize the
existing literature data on CA. Additionally, I briefly point out the most important concerns
regarding the CA activity in the human body, as well as perspectives for further research.

2. Chemistry and Molecular Targets of Cinnabarinic Acid
2.1. Cinnabarinic Acid Chemistry

CA (C14H8N2O6, 2-amino-3-oxophenoxazine-1,9-dicarboxylic acid, also called cinnabar-
inate or cinnavalininate (CAS nr 606-59-7) [50] is a member of the class of organic com-
pounds deemed the “phenoxazines” (alternatively, the “phenoxazine chromophores”).
Polycyclic aromatic compounds with a phenoxazine moiety, these are linear tricyclic sys-
tems composed of two benzene rings joined by a 1,4-oxazine ring (Figure 2). CA has a
characteristic brick-brown (described also as orange-brown, red, orange-red) color, and it is
primarily known as a pigment [51–53]. The molecular weight is 300.22 g/mol. The water
solubility is low (i.e., 0.15 g/L); however, it may be dissolved in warm dimethylsulfoxide
(DMSO) to make stock (25 mM) [50].
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Figure 2. Chemical structure and overview of molecular targets and mechanisms of action of
cinnabarinic acid. (+) means increases/stimulates, (−) means inhibits, (?) means contradictory
data that need further investigation. For details, see text and Table 1. AhR—aryl hydrocarbon;
IDO—indoleamine-2,3-dioxygenase; IL22—interleukine 22; mGlu4—metabotropic glutamate recep-
tor type 4; ROS—reactive oxygen species.

Very recently, Gómez-Piñeiro et al. [54] provided new data about the metabolism and
stability of CA under physiological conditions, with CA’s stability being studied under
varied conditions (solvent, aerobic/anaerobic conditions, pH, temperature). In the initial
experiment, CA was dissolved in DMSO, methanol, and acetonitrile to methanol 1:1 at
37 ◦C. Regardless of the solvent, under such conditions, the CA was stable up to 8 h.
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When an equivalent volume of water was added, the stability was lost. Also, with lower
pH, a greater stability was indicated. Under anaerobic conditions, the half-life for CA
in phosphate buffer saline (37 ◦C) was found to be the highest at ca. 8.7 h. In other test
conditions, various reductant compounds were utilized. All, though to different extents,
substantially shortened the CA half-life in the experimental medium. CA, when dissolved
in phosphate buffer saline (37 ◦C) and added to rat liver microsomes, had a half-life of ca.
3.9 h (note: its sub-cellular faction is mostly composed of cytochrome P450 (CYP) enzymes).
In addition, when nicotinamide adenine dinucleotide phosphate (NADPH), a natural co-
factor of CYP enzymes, was added to the mixture, it disappeared within less than 3 min,
and it was discovered that the hem-active site of CYPs is involved in this process. When a
CYP inhibitor was added to the reaction mixture, it prolonged the CA stability half-time.
Next, the authors demonstrated that other products (i.e., dihydrocinnabarinic acid) may be
produced during the decomposition process and that light (un-irradiated conditions) does
not affect the CA stability.

This work is very valuable because it provides knowledge about the CA stability.
Such data must be considered when interpreting results; for example, negative outcomes
may not necessarily come about due to the lack of CA activity but because of CA solution
instability, as well as the presence of other metabolic products if reductants are added to
the solution.

2.2. Cinnabarinic Acid Synthesis

In the human body, CA, formed by the non-enzymatic condensation of two molecules
of 3-hydroxyanthranilic acid, is a byproduct of the kynurenine pathway. There are, however,
reports that CA is also produced in the orange dead leaf butterfly Kallima inachus, where its
decrease triggers the larva-to-pupa transition [55]. CA has also been found deposited in
the fruiting bodies of saprophytic white rod fungi from the Polyporaceae family in, among
others, Pycnoporus cinnabarinus and Pycnoporus sanguineus [56–59] and in southern cinnabar
polypore (Trametes coccinea) [60]. In the fungus Pycnoporus cinnabarinus, CA is created
through the laccase-mediated oxidation of 3-hydroxanthranilic acid [57,59], and it is the
presence of CA that gives these mushrooms their characteristic brick-brown color. CA is
considered a natural pigment, and its isolation from Pycnoporus cinnabarinus culture media
at the laboratory scale has been described [60].

It has been shown in laboratory conditions that laccase [57,61] (which also catalyzes
CA synthesis in fungi, as mentioned above), catalase [62,63], tyrosinase [64], superoxide
dismutase (SOD) [14,62,65], horseradish peroxidase [62,66], and myeloperoxidase [62] may
catalyze the conversion of 3-hydroxyanthranilic acid to CA.

In the Malphigian tubules, but not in the hemolymph of silkworm Bombyx mori,
3-hydroxyanthranilic acid is oxidized to CA (in the presence of manganese ions) [67].
Moreover, the synthesis of CA has been found to take place in the leaves of Tecoma stans [68].
Because the other metabolites of the kynurenine pathway, such as KYNA [5,69–73] and, to
lesser extent, also L-KYN [4], are found in different plants, beverages, and food products, it
would be interesting to test whether certain food products here-to-fore not documented
might also be good sources of CA.

2.3. Receptors and Molecular Mechanisms of Action

CA is the only product of the kynurenine pathway capable of interacting with the
mGlu4 receptor (for a summary of the CA mechanisms of action, see Table 1) [74]. The
mGlu4 receptor is a Gi/Go protein-coupled receptor (GPCR). These are located presynap-
tically and impede neurotransmitter release [75]. CA does not display activity against
other mGlu receptor subtypes [74]. CA binds in the glutamate-binding pocket, in the
extracellular “Venus flytrap” domain, and, specifically, within the orthosteric site of the
mGlu4 receptor located there. According to Fazio et al. [74], CA has partial agonist activity
towards mGlu4 receptors. In related work, using cultured granule cells, which are known
to release glutamate, the authors demonstrated that CA inhibits the formation of cyclic
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AMP. Of note, the researchers showed that when mGlu4 receptors are knocked out, high
doses of CA still exerted activity. Therefore, they suggested that CA may have off-target
effects [74].

Pasceri et al. [76] argued that CA is an IDO inhibitor with the Ki value at 326 nM. The
CA IC50 is, according to their research, equal to 0.46 µM (the percentage of enzyme activity
remaining for 0.1, 1, or 10 µM being 71, 23, and 11%, respectively). This observation agrees
with Carr et al. [77], who demonstrated CA-mediated IDO inhibition, but with the IC50
being ca. 2 µM.

In 2014, Lowe et al. [78] found a new mechanism of CA activity. In their work,
human peripheral blood mononuclear cells (PBMCs) stimulated with antibodies against
CD3 and CD8 in vitro were exposed to a board of kynurenine pathway metabolites (i.e.,
3-hydroxykynurenine, 3-hydroxyanthranilic acid, QUIN, and picolinic acid). Of these,
3-hydroxykynurenine and 3-hydroxyanthranilic acid (but not QUIN or picolinic acid) were
able to promote IL22 release in CD4+ T cells. The upregulation of IL22 in CD4+ cells, but
not in CD8+ T cells, was AhR-mediated, as the blocking of AhR by the potent, selective
antagonist CH-223191 prevented the production of IL22. AhR, being a ligand-mediated
transcription factor that is expressed ubiquitously in human tissues, is mostly involved
in common metabolic functions [79]; however, its activation has an important role within
several pathological processes. These include inflammation and carcinogenesis [5,6,80], and
AhR is also responsible for the removal of toxic compounds (e.g., drugs or environmental
toxins) [81]. Still, as noted in a series of complementary experiments, 3-hydroxyanthranilic
acid itself is not an AhR ligand but is the direct precursor of the endogenous AhR ligand,
CA. In the utilized experiments, the CA activity was found to be linked to the upregulation
of IL22 (but not IL17) in CD4+ T cells, and AhR was seen as being concentration-dependent.
CA also was also discovered to induce the in vitro and in vivo expression of cyp1a1, a
downstream AhR-mediated gene [78].

When compared with other kynurenine pathway AhR ligands (i.e., KYNA and L-
KYN), CA was found to be less effective in the upregulation of cyp1a1. However, research
indicated that it brought about IL22 levels higher than the aforementioned two metabolites,
and this effect was not cyp1a1-dependent. Other research undertaken demonstrated that
human PBMCs can produce CA when challenged with lipopolysaccharide (LPS), a bacterial
toxin that is known to induce overt inflammation, or with inflammatory cytokine interferon
γ (IFNγ). Herein, mouse naïve CD4+ T cells produced CA only when the fungal enzyme,
laccase, was present in the media. As such, this study clearly revealed a new molecular
target for CA [78].

CA was found to inhibit state 3 mitochondrial respiration [82]. What is more, 3-
hydroxyanthranilic acid was discovered to be rapidly oxidized by cytochrome c to CA.
In the study, rat liver and beef heart mitochondria were incubated in CA concomitant
with various substrates (e.g., α-ketoglutarate, malate, isocitrate, pyruvate, or glutamate).
The results of the work demonstrated that a one-hundred-fold excess of glutathione in
the incubation medium did not protect the rat liver and beef heart mitochondria from
CA inhibition. CA was discovered to be at least twenty times more effective than 3-
hydroxyanthranilic acid in inhibiting rat liver mitochondrial respiration. A 1 mM con-
centration of 3-hydroxyanthranilic acid decreased glutamate, malate, pyruvate, and isoc-
itrate oxidation by around 40–70%, with 50 µM of CA giving a similar effect. When
α-ketoglutarate was used as an oxidized substrate, this effect was even more evident. Here,
half-maximal inhibition was seen for 250 µM of 3-hydroxyanthranilic acid and 2 µM of
CA. Because high amounts of 3-hydroxyanthranilic acid were found to be excreted in the
urine of an individual with bladder tumors [83], the author of this work also put forward
a very interesting hypothesis, although so far unverified, that the CA interaction with
mitochondria is responsible for bladder tumor induction [82].

Eventually, Zollner’s observation regarding the CA-induced inhibition of mitochon-
drial respiration was confirmed by Nagamura et al. [84], who, in turn, indicated that a
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10 µM concentration of CA completely inhibited the mitochondrial respiration in an injured
liver, thereby aggravating the symptoms of injury.

There is data that CA is able to generate ROS and induce caspase 3-mediated apop-
tosis in thymocytes [85]. For the latter, CA is more than ten times more efficient than its
precursor, 3-hydroxyanthranilic acid. According to the results of the experimental work,
the intracellular ROS generation after CA application was very rapid—taking place as early
as 15 min after the CA application, and returning to the control level after 4 h. In contrast,
ROS generation by 3-hydroxyanthranilic acid increased gradually up to 4 h. Under further
experimentation, it was found that the process of CA-mediated ROS induction was inhib-
ited by SOD, as well as catalase, or a mixture of the two. Likewise, 40% of the mitochondrial
membrane potential was disrupted within the first 15 min upon CA administration and
was kept constant afterwards.

The above data are contrary, however, to those of Joshi et al. [86,87], who revealed in
their work that, in mice, CA decreased the caspase-3 overexpression in hepatocytes and
caspae-3/7 overactivity in liver homogenates after incubation with ethanol. Thus, this
mechanism needs further verification.

Table 1. Overview of proposed molecular targets or mechanisms of action for CA. AhR—aryl
hydrocarbon receptor; CA—cinnabarinic acid; ca.—circa (about); IC50—half-maximal inhibitory
concentration; IDO—indoleamine-2,3-dioxygenase; IL22—interleukin 22; Ki—the inhibitor constant;
mGlu4—metabotropic glutamate receptor type 4; ROS—reactive oxygen species.

Molecular Target/Mechanism CA Activity
(Summary of Data Found in References) References

IDO inhibition
IC50 ≈ 2 µM [77]

Ki value at 326 nM
IC50 was equal to 0.46 µM [76]

mGlu4 receptor orthosteric agonist
100 µM CA increases [3H]Ins5 formation by ca. 35% (it is 5×
less efficacious than the full mGlu4 agonist ACPT-I); CA binds

within the glutamate-binding pocket.
[74]

AhR agonist; production of IL22
CA increases (1 µM) the production of IL22 in human and

mouse CD4+ T cells through AhR (the blocking of this
receptor prevents the IL22 increase).

[78]

Inhibition of mitochondrial respiration

Complete inhibition at 5 µM; 0.5 µM of CA leads to 50%
inhibition of state III respiration. [84]

CA is at least 20× more efficient at inhibition than
3-hydroxyanthranilic acid. [82]

ROS generation CA brings about the rapid induction of ROS generation (ca.
15 min, with return to the control level after 4 h). [85]

Apoptosis

Induction: CA holds at least 10× higher apoptosis-inducing
properties when compared with 3-hydroxyanthranilic acid.

The caspase-3 activity is upregulated in the thymocytes
within 6 h after simulation with 30 µM of CA.

[85]

Antiapoptotic properties: CA alleviates caspase-3 or
caspase-3/7 upregulation in ethanol-treated hepatocytes/liver

lysates. No direct effect of CA itself is indicated.
[86,87]

3. In Vivo Studies

Ulivieri et al. [88] assessed the levels of CA in prefrontal cortex (PFC) samples of
schizophrenic and healthy-matched control patients (for a summary of the concentrations
of CA in the tissues and body fluids, see Table 2). The CA level was reduced in the
schizophrenic patients, compared to the controls, and there was no correlation between
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the CA levels in the PFCs and the age of the patients or their sex. Neither the duration of
treatment nor the type (classical vs. atypical) or duration of antipsychotic drug regimen
showed correlation. The CA level seemed to be stable, as there was lack of correlation
between the CA content in the PFC and post-mortem intervals.

In related work [88], an intraperitoneal (ip) injection of 0.25 mg/kg of CA into exper-
imental mice caused a peak in the CA levels in the sera after 30 min, and in the mouse
cortex and cerebellum, it caused a peak after 1 h (the method used was sensitive enough
to detect the CA level in picograms/gram of tissue also in the sera and brains of control
counterparts). The level of CA was relatively stable in the cortex and cerebellum samples
up to 12 h after injection, and the blood–brain barrier permeability of CA was confirmed
immunohistologically. The level of CA increased when LPS, an inflammation inducer,
was given.

Bearing this in mind, the authors of [88] analyzed the effect of the systemic adminis-
tration of CA on psychotic-like behavior in mice. CA, given in a range of doses (0.125, 0.25,
0.5, 1, 5, or 20 mg/kg, ip), except for 20 mg/kg, significantly reduced the MK-801-induced
hyperlocomotion (mouse model of psychotic-like behavior) without any influence on the
basic animal activity. In the pre-pulse inhibition test in rats, CA was found to reverse the
inhibitory activity of MK-801 only at the lowest dose (i.e., 0.25 mg/kg) (but not at 0.125
or 0.75 mg/kg). Likewise, this dose-dependent trend was observed in the novel-object
recognition test when memory was disturbed by MK-801 administration. Of note, pre-
treatment with CA (0.25 and 20 mg/kg) reversed the social interaction disturbances in the
MK-801-treated animals. This work demonstrated that the antipsychotic activity of low
doses of CA (from 0.125 to 0.5 mg/kg) is mediated through mGlu4 receptors because the
systemic administration of CA did not prevent MK-801-induced hyperlocomotion in the
mGlu4−/− mice.

The authors of [88] also revealed that 0.5 mg/kg of CA prevented the release of
glutamate from the PFC after MK-801 administration. Such studies continued in vitro.
Herein, the CA did not inhibit NMDA receptors, though it did inhibit glutamate (through
the activation of presynaptic mGlu4 receptors) and, to a lesser extent, the neurotransmitter
gamma-aminobutyric acid (GABA) release.

This comprehensive, multidirectional research has provided new, important findings
about the role of CA [88]. Moreover, it confirmed the already existing data that CA is
brain-barrier-permeable. It also revealed the actual levels of CA in sera (mice) and brain
samples (mice and humans). Additionally, for the first time, CA was demonstrated to be
implicated in the pathophysiology of schizophrenia.

More recently, Shilov et al. [89] measured the concentration of CA and 3-hydroxyanthranilic
acid in the blood of 23 schizophrenic patients (depressive–delusional type) at two time
points: before and after the implementation of drug treatment. These individuals were
recruited when the exacerbation of the disease’s symptoms occurred. The patients, during
their treatment, were administered different antipsychotics. The PANSS (Positive and
Negative Symptom Rating Scale) was applied to assess the clinical schizophrenic symptoms,
and the HDR (Hamilton Scale) was employed to assess the depressive symptoms. The mean
concentration for CA in the blood samples before the implementation of treatment was
found to be 11.26 nmol/L, whereas the CA concentration after treatment was 8.03 nmol/L.
Furthermore, the mean concentration of 3-hydroxyanthranilic acid was 14.95 nmol/L, and
it was 20.05 nmol/L before and after treatment. The authors calculated the sum of both
metabolites (CA + 3-hydroxyanthranilic acid), as they argued that it may better reflect the
state of the kynurenine pathway. Inverse statistical significance was shown between the
sum of both metabolites and CA before treatment and the PANSS score after treatment. No
correlation was discovered between the metabolites separately, nor in their sum between
and after treatment. This study, however, possesses several limitations: (1) first of all,
the methodology for the CA measurement contains several gaps, which may make this
study difficult to replicate; (2) it is unclear when exactly the blood samples were collected
(after, e.g., 12 h, a few days, or a few months after treatment implementation); and (3) the
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correlation between specific drug treatments and CA is not provided. Taking this into
account, one can conclude that it is too early to point towards any final opinion about the
relevance of Shilov’s findings [89].

Alterations of kynurenine pathway metabolites, including CA, were investigated
in patients with autism spectrum disorder (ASD) [90]. Accordingly, the levels of CA
and stanniocalcin 2 were higher in individuals with ASD than in the controls (note that
Stc2 encodes stanniocalcin 2, a glycoprotein involved in cell metabolism, inflammation,
apoptosis, calcium homeostasis, etc.). In addition, IL22 level (regulated by AhR) was higher
in individuals with ASD than in the controls. The researchers noted a very strong positive
correlation between CA and IL22 only in individuals with ASD. In summary, this study
reveals that, in patients with ASD, higher activity of IDO is observed, and the synthesis of
metabolites is shifted towards CA, which activates AhR and its downstream target Stc2.
Undoubtedly, this comprehensive and elegant study is of significant value and provides
evidence that AhR blockage may be a target in the treatment of ASD [90].

The activity of systemically (ip) administered CA was investigated by Notartomaso
et al. [91] in preclinical models of acute inflammatory (formalin model) and neuropathic
pain (chronic constriction injury (CCI)). The authors investigated the hypothesis that CA, as
a mGlu4 agonist, has analgesic activity [92,93]. In the formalin test, low doses of CA (0.125
or 0.25 mg/kg), but not high doses (0.5 or 3 mg/kg), reduced the nocifensive behavior,
compared to the control mice, and the CA-induced effect in the formalin test was mediated
through the activation of mGlu4 receptors but not AhR.

Additionally, it was shown that an acute administration of CA (0.25 mg/kg, ip) is
analgesic in CCI mice. Of note, chronic administration did not induce analgesic activity,
which means that the development of tolerance occurred, but it also did not appear when
CA was co-administered with CH223191, an AhR antagonist. Electrophysiological studies
indicated that CA and CH223191 given together, but not singly, did, however, reduce the
activity of the nociceptive neurons.

Taken together, this paper showed for the first time the analgesic properties of CA
in only very low dosages [91]. This effect may be related (as the authors suggest) to
rapid receptor desensitization or to the recruiting of other molecules, the activity of which
counterbalances CA-induced analgesia. This study has scientific value, as the development
of tolerance to CA-mediated analgesia excludes this compound for the treatment of chronic
pain, at least when given alone.

Fazio et al. [49] investigated the effect of the systemic administration of CA (doses from
0.1 to 10 mg/kg, ip) in mice with experimentally-induced autoimmune encephalomyelitis
(EAE). When treatment with CA (10 mg/kg, ip) after immunization commenced after a
7-day delay, partial protection was observed. The same was noted when treatment with
CA was limited to 21 days post- immunization. Furthermore, the lowest and highest
doses of CA given once daily for 35 days after immunization completely suppressed
the clinical symptoms of EAE. Additional studies also demonstrated that a 35-day-long
chronic treatment regimen with CA contracted the demyelination processes in the mouse
spinal cords and minimized the accumulation of migratory cells in the mouse brains and
spinal cords. Beyond the aforementioned, the cytokine profiling of CD4+ T cells isolated
from lymph nodes or from brain-infiltrating leukocytes indicated that CA-pretreatment
+ immunized mice decreased the IFNγ and IL-17 levels compared to immunized-only
animals. In contrast, the level of TGF-β was higher in the CA-treated animals both in
the lymph nodes and brain-infiltrating leukocytes, whereas the level of anti-inflammatory
IL-10 was upregulated only in the lymph nodes, but its level did not differ between groups
in the brain-infiltrating leukocytes. The authors hypothesized that CA administration
may trigger the synthesis of IDO (induced in inflammatory conditions) and kynureninase
enzymes (which covert 3-hydroxykynurenine to the ultimate precursor of CA (i.e., 3-
hydroxyanthranilic acid)). This was confirmed utilizing purified splenocytes at 20 days
post-immunization. Moreover, the experimenters revealed that endogenous CA synthesis
requires antigen-specific stimulation. In complementing their observations, CA (10 mg/kg,
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ip) was administered to immunized mGlu4−/− mice and was seen to reduce (to some extent)
the clinical scores in mGlu4−/− mice. This suggests that the protective properties of CA are
mediated by additional mechanisms apart from mGlu4 activation.

Considering the role of AhR, which is the ligand-activated transcription factor re-
sponsible for xenobiotic metabolism, it would be useful to test whether these receptors are
implicated in CA-mediated protection in the multiple sclerosis model in mice. Collectively,
this study clearly shows the positive activity of CA towards neuroinflammation [49].

The activity of CA (5 or 10 mg/kg, ip), a key ingredient of pu-erh tea, was also
investigated in a mouse model of circadian rhythm-related obesity [94]. Herein, CA was
seen to decrease the food intake and did slow the weight gain of mice that were exposed to
circadian rhythm disturbances. In addition, it inhibited the deposition of liver fat, reduced
inflammation in the liver, and diminished the white-fat deposition in the epididymis. The
upregulation of the mGlu4 receptor was, moreover, seen in the CA-treated mice, and CA
intake had a positive effect upon the gut microbial composition, as an increase in the
Lactobacillus and Eubacterium abundance was revealed [94]. It is worth noting that Joshi
et al. [95] did not note the influence of CA administration on the body weights (12 mg/kg,
ip for 11 days) of normal (non-obese) mice. Thus, it cannot be excluded that the effect of
CA is only seen in obesity. Our research, however, indicated that a significant reduction in
the body weight gain of rats postnatally exposed to KYNA supplementation came about.
This was without changes in the total body surface and bone mineral density [96].

Joshi et al., in a series of papers, analyzed the cytoprotective effects of CA against
apoptosis induced by endoplasmic reticulum stress, oxidative stress, and alcohol insult
(acute and chronic) and in non-alcoholic fatty liver disease [86,87,95,97]. They revealed that
the CA-driven cytoprotecting activity is associated with the activation of AhR. This effect
was found to be specifically linked to the upregulation of its downstream gene Stc2. As
mentioned earlier, mice given CA for 11 days (12 mg/kg, ip) did gain weight similar to
their control counterparts [95].

The effect of CA on developing zebrafish (Danio rerio) was assessed by Majewski
et al. [98]. Herein, the incubation of fish with 30 µm of CA from 24 to 96 h post-fertilization
(hpf) induced severe morphological abnormalities: among others, notochord anomalies,
small eyes, severe heart and yolk sac oedema, and jaw underdevelopment. When given
acutely, 180 µm of CA also increased the heart rate compared to control larvae. The same
phenotype was seen when embryos were incubated in CA (concentrations of 5, 10, and
50 µm) between 24–48 hpf and 24–72 hpf. In addition, Majewski et al. [98] observed tremors
and convulsions in larvae incubated in CA from 24 to 124 hpf.

The effect of CA was also investigated in larval zebrafish by Lowe et al. [78] in the con-
text of cyp1a1 upregulation. In their experimental settings, a TL zebrafish strain was used
(compared to the Tubingen strain in Majewski et al. [98]), and the concentrations adminis-
tered were higher (100 µm, but the fish were incubated for only 6 h). Both papers [78,98],
however, lack detailed information on how the CA solution was prepared.

Compared especially to KYNA, based on the data of Majewski et al. [98], CA seems
to be teratogenic. However, this is a single study that needs replication to make a proper
conclusion, considering that, for example, the observations for L-KYN of Majewski et al. [98]
are not in agreement with those of Marszalek-Grabska et al. [99].



Cells 2024, 13, 453 10 of 17

Table 2. Content of CA in tissues and body fluids of human and experimental animals. ASD—autism spectrum disorder; CA—cinnabarinic acid; ca.—circa (about);
ip—intraperitoneally; HPLC-MS/MS—high-performance liquid chromatography–mass spectrometry; LC-MS/MS—liquid chromatography–mass spectrometry;
LPS—lipopolysaccharide; SEM—standard error of the mean; PFC—prefrontal cortex; UPLC-MS/MS—ultra-performance liquid chromatography–mass spectrometry.

Species Group Content of CA in Tissues/Body Fluids [Value in pM
Recalculated for Comparison between Studies]

Comment(s)
(If Applicable) Method for Quantification References

Human

23 adult individuals with
schizophrenia (16 males and

7 females) and
26 non-schizophrenic patients

• PFCs of healthy-matched control patients:
mean ± SEM: 35.92 ± 1.99 pg/g tissue
[119.64 ± 6.62 pM]

• Reduced levels of CA in PFCs
of schizophrenic patients vs.
controls

• No correlation between CA
levels in PFC and age of
patients or their sex

UPLC-MS/MS [88]
• PFCs of schizophrenic patients: mean ± SEM:

22.61 ± 1.65 pg/g tissue [75.31 ± 5.49 pM]

Human
23 female, adult patients with

schizophrenia

• Plasma (before treatment with antipsychotics):
mean: 11.26 nmol/L (min. 3.03 nmol/L–max.
38.31 nmol/L) [mean: 11,750 pM, min.
3160 pM–max 40,030 pM] • No statistical difference

between groups HPLC-MS/MS [89]• Plasma (after treatment with antipsychotics):
mean: 8.03 nmol/L (min. 2.49 nmol/L–max.
45.30 nmol/L) [mean: 8390 pM, min.
2600 pM–max. 47,360 pM]

Human
Adult patients with ASD (90 ASD

patients and 104 controls)

• Plasma (healthy-matched control patients): ca.
0.25 nM (mean) [250 pM]

• Detailed concentrations not
provided

• CA levels higher in ASD
patients

LC-MS/MS [90]• Plasma (ASD group): ca. 0.75 nM (mean)
[750 pM]

Sprague-Dawley adult,
male rats

Controls

• Lungs: ca. 60 pg/mg [199.85 pM] tissue
• Kidney, liver, and spleen: 7–10 pg/mg

[23.31–33.30 pM] tissue
• Brain: below detection limit
• Striatal dialysate: below detection limit

-

HPLC-MS/MS [74]

After LPS challenge

• Lungs: below detection limit
• Kidney: 133 pg/mg [443.0 pM] tissue
• Spleen: 36 pg/mg [119.91 pM] tissue
• Brain: 160 pg/mg [532.94 pM] tissue
• Striatal dialysate: below detection limit

-

C57BL/6 adult, male mice Experimentally evoked
autoimmuneencephalomyelitis • Cerebrospinal fluid: below detection limit - HPLC-MS/MS [74]
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Table 2. Cont.

Species Group Content of CA in Tissues/Body Fluids [Value in pM
Recalculated for Comparison between Studies]

Comment(s)
(If Applicable) Method for Quantification References

C57BL/6 adult, male mice

Controls
• Serum: ca. 4 ng/mL [13,320 pM]
• Cortex: ca. 20 pg/g [66.61 pM] tissue
• Cerebellum: ca. 14 pg/g [46.63 pM] tissue

• Detailed concentrations not
provided UPLC-MS/MS [88]

CA (0.25mg/kg, ip) acutely
injected

• Serum: ca. 30 ng/mL [99,920 pM] after 0.5 h, ca.
6 ng/mL [19,984 pM] after 1 h, and ca. 4 ng/mL
[13,320 pM] after 3 h post-injection

• Cortex: below 500 pg/g [1665 pM] tissue after
0.5 h, above 1000 pg/g tissue after 1 h, ca.
1000 pg/g [3330 pM] tissue after 2 h, and from 3
to 12 h post-injection at relatively stable level of
ca. 500 pg/g [1665 pM] tissue

• Cerebellum: ca. 200 pg/g [666.17 pM] tissue
after 0.5 h, a little below 600 pg/g [1998.51 pM]
tissue after 1 h, ca. 400 pg/g [1332.34 pM] tissue
from 3 to 4 h post-injection; above 200 pg/g
[666.17 pM] tissue at 12 h post-injection

Female mice (Stc2+/+,
C57BL/6 background)

Controls
• Liver: ca. 10 pg/mg [33.30 pM] tissue
• Serum: -

• Detected in serum but
impossible to specify
concentration from figure (lack
of detailed information in the
text)

HPLC-MS/MS [94]
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4. In Vitro Studies

Fazio et al. [74] analyzed the effect of CA on the viability of cultured cortical neurons
challenged with excitotoxic NMDA. Herein, CA itself in the range of the tested concen-
trations (from 10 to 300 µM) did affect the viability of the neurons either after 10 min,
or after 24 h of incubation. In contrast, in concentrations above 30 µM, it did protect
the neurons against death after the application of NMDA. There was not, however, a
concentration-dependent effect, as all doses above 30 µM protected the neurons in equal
potency. Furthermore, in the cultures prepared from mGlu4−/− mice, neuroprotection was
evident, but it was lower compared to the wild-type cultures.

To strengthen their findings, the authors of [74] infused CA (50 nmol/0.5 µL) to the
globus pallidus to establish whether CA is protective against the MPTP-induced dam-
age of the dopaminergic neurons in the nigrostriatal pathway (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) is a toxin used to induce Parkinson’s-like symptoms). In their
experimental setup, they showed that CA is neuroprotective.

There are data on the influence of antiseizure medications (ASMs) on the release of
KYNA, though this seems to be a drug-dependent activity [100–102]. Likewise, the effect
of levetiracetam and zonisamide on the release of, among others, CA was analyzed using
rat cortical astrocyte cultures [103,104]. In the latter work, Fukuyama and Okada [104]
showed that chronic incubation with inflammatory cytokine IFNγ did affect the astroglial
release of KYNA and L-KYN, whereas the CA level was below the detection limit. When 3-
hydroxykynurenine was added to the reaction mixture (medium + IFNγ, chronic incubation
for 7 days), CA was detected. A concentration-dependent effect of IFNγ was also observed:
for 100 U/mL of IFNγ, the level of CA was around 10 nM, and this IFNγ concentration
was the same as the level of xanthurenic acid but was lower than that of the QUIN level
(a little above 15 nM). Levetiracetam, a new-generation ASM, when added to a medium
with 3-hydroxykynurenine, did not affect the CA concentration itself, but when given in
combination with IFNγ, its level doubled for concentrations of 10 and 30 µM. The acute
administration of excitotoxic AMPA and adenophostin A (agonist at the IP3 receptors)
to a medium increased the CA level, but when levetiracetam was added, this effect was
reversed. Together with the data obtained by the same research group for zonismide
(another ASM) [104], one may assume that CA might be implicated in the mechanism
of action of ASMs, though more studies are needed (especially in vivo) to make any
final conclusions.

According to several studies, liquid culture filtrate obtained from Pycnoporus cinnabari-
nus [57], Trametes coccinea [105], and Pycnoporus sanguineus SYBC-L7 [52] shows antimicro-
bial activity. The presence of CA is largely responsible for this effect. In the course of such
work, the lowest maximal inhibitory concentration was obtained for bacteria from the Strep-
tococcus genus (group B, D, F, G), though CA was also effective towards the Staphylococcus
genus, Bacillus genus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and
Salmonella enteriditis [57]. In general, the inhibition was seen to be greater for Gram-positive
rather than Gram-negative bacteria [57,105]. Beyond the aforementioned, the formation of
bacterial biofilms (Bacillus cereus and Bacillus subtilis) was seen to be inhibited by CA [105].
Considering that CA occurs naturally and may be produced on preparative scale, one may
conclude it might be worth investigating CA as a new antimicrobial agent.

5. Conclusions and Future Perspectives

Compared to, e.g., KYNA, the biological role of CA is widely unknown. As an
endogenous byproduct of the kynurenine pathway, CA seems to have an important function
in several physiological circumstances. One may assume that the little interest in this
metabolite is because there are difficulties in finding it in biological material. Even in
the same papers, the authors acknowledged that it was or was not detected in body
fluids [74,95] or in samples [103,104]. Its content in serum is also much smaller than that of
KYNA (nM vs. µM concentrations) [5]. Therefore, it is not without reason that it is called
“trace” kynurenine [74,88]. One may not exclude, however, that it is not a lack of scientific
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community interest in CA but rather the technical difficulties for its measurement that
have brought about the situation wherein it is less investigated than the other kynurenine
pathway metabolites. The latest study of Gómez-Piñeiro et al. [54] also shows that CA is
unstable under physiological conditions, and that, in the presence of reductants, it readily
metabolizes to other products. Thus, this may also be another reason that its levels are
below the detection limit. The available data, however, indicate that CA seems to be well
worth investigating, though the first step is overcoming obstacles related to its measurement
in biological samples.

There are very few data in the literature regarding the biological function of CA.
Mostly, these are single papers; thus, even if of high scientific value, it is not possible to
confirm the findings, as comparative studies have not been undertaken in independent
experiments. Furthermore, there are also some papers that are contradictory. One can
assume that, at this stage of the knowledge, it is impossible to give any final conclusions
about the role of CA in the human body, though it seems that, similar to KYNA, CA may
have neuroprotective properties [49,74,88]. It is also possible that it is hepatoprotective, but
this must be confirmed by research groups other than Joshi et al. [86,87,94,96]. At this stage
of the knowledge, it is not possible to directly compare CA to KYNA, as too many gaps in
the current knowledge exist for CA (no data about its role e.g., in epilepsy, Alzheimer’s
disease, cancer, etc.), and there is only a single study demonstrating the existence of a role
in ASD and schizophrenia.

When practical methods for determining this metabolite are developed, CA’s effects
in health and disease will be an unlimited topic for research. So far, the role of CA has
been investigated in autism, schizophrenia, and pain, and these studies must be replicated.
Studies on the role of CA activity regarding other diseases, like depression, epilepsy, anxiety,
neurodegenerative diseases, etc., are warranted. Similarly, the role of CA in the context of
inflammation-related diseases might be worth investigating. Moreover, there is a lack of
data on how and whether CA affects the microbiome and gut–brain axis, and it is unclear
what food products may be a source of CA. There is a lack of knowledge on how exactly
CA synthesis relates to the synthesis of other kynurenine pathway metabolites, and this
gap has to be filled. When evidence is related to tumors, metabolic changes are noted, and
the CA activity can vary. Thus, its activity in various forms of cancer must be thoroughly
assessed. It is reasonable, therefore, to expect that the coming years might at least partially
address these issues.
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