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Abstract: Despite a long history of research, neurodegenerative diseases and malignant brain tumor
gliomas are both considered incurable, facing challenges in the development of treatments. Recent
evidence suggests that RNA modifications, previously considered as static components of intracellular
RNAs, are in fact dynamically regulated across various RNA species in cells and play a critical role
in major biological processes in the nervous system. Innovations in next-generation sequencing
have enabled the accurate detection of modifications on bases and sugars within various RNA
molecules. These RNA modifications influence the stability and transportation of RNA, and crucially
affect its translation. This review delves into existing knowledge on RNA modifications to offer a
comprehensive inventory of these modifications across different RNA species. The detailed regulatory
functions and roles of RNA modifications within the nervous system are discussed with a focus
on neurodegenerative diseases and gliomas. This article presents a comprehensive overview of the
fundamental mechanisms and emerging roles of RNA modifications in these diseases, which can
facilitate the creation of innovative diagnostics and therapeutics for these conditions.

Keywords: RNA modifications; neurodegeneration; glioma

1. Introduction

Epigenetic modifications play crucial roles in the development, function, and plasticity
of the nervous system. These modifications involve DNA methylation, histone modifi-
cations, chromatin remodeling, and RNA modifications. Epigenetic dysregulation has
been linked to neurodegenerative diseases, brain tumors, and other various neurological
disorders. Understanding the roles of epigenetic modifications in the nervous system
is essential for gaining insights into normal brain function, neurological disorders, and
potential therapeutic interventions.

Among all epigenetic modifications, RNA modifications are generally considered
distinct from classical modifications involving DNA and histones [1]. Recently, more
studies have been reported on “epitranscriptomics”, which refers to a molecular biology
field that focuses on the biochemical modifications of RNA molecules and their effect on
gene expression and various cellular functions [2]. Epitranscriptomics research aims to
understand the distribution patterns, biogenesis mechanisms, and regulatory functions of
modified RNA molecules, as well as the interactome, evolutional conservation, and novel
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reader proteins. It has become evident that the information carried by RNA molecules is
not static and can be dynamically modified by adding, removing, or modifying chemical
groups [3]. The link between atypical RNA modifications and a range of neurological
disorders highlights the significance of these chemical modifications in understanding the
underlying mechanisms of these diseases. Regulating RNA modifications can provide new
opportunities for therapies, as they offer a new area of biology to explore. In this review,
we will outline the RNA modifications, including non-coding RNAs, and uncover their
distinct functions and the consequential effects on cellular and physiological processes in
the pathogenesis of neurologic disorders (Figure 1).
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Figure 1. RNA modifications in various neurological diseases. Epitranscriptomic RNA modifications
in both mRNA and different non-coding RNAs are involved in multiple types of neurologic disorders.
Genetic analysis and animal model studies have revealed that various RNA modifications and their
machineries have critical roles in the etiology of neurodegenerative diseases and gliomas. mRNA:
messenger RNA; rRNA: ribosomal RNA; lncRNA: long non-coding RNA; tRNA: transfer RNA;
circRNA: circular RNA; UTR: untranslated region; A-to-I editing: adenosine to inosine RNA editing.

2. Modifications on mRNAs, rRNAs, and Non-Coding RNAs

Although numerous RNA modifications have been identified including messenger
RNAs (mRNAs), ribosomal RNAs (rRNAs), and non-coding RNAs, only a handful of them
have undergone thorough investigation within the nervous system. Some of the well-
established RNA modifications are N6-methyladenosine (the methylation of adenosine at
position 6, m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), pseudouridine,
and RNA editing. These modifications have been linked to various processes in the brain,
including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural
regeneration, neurodegeneration, and brain tumorigenesis.
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2.1. N6-Methyladenosine (m6A)

Since the 1970s when m6A modification was first identified [4], m6A became the
most extensively researched and prevalent RNA modification in human cells [5]. With the
advancement of identifying and detecting transcriptome-wide m6A distribution at single-
base resolution [6,7], we now know that m6A modifications are crucial in various biological
processes, including gene expression regulation, RNA processing, and RNA stability.
These modifications are installed by methyltransferase complexes and can be reversed by
demethylases, allowing them to have a dynamic and reversible nature. m6A marks have
been discovered across different RNA repertoires: mRNAs, rRNAs, transfer RNAs (tRNAs),
circular RNAs (circRNAs), and micro RNAs (miRNAs). Specifically for mRNAs, most m6A
marks are situated at the start of the final exons, in the 3′-untranslated region (UTR), or
near to the stop codons [8,9]. For long non-coding RNAs (lncRNAs), high-throughput
methods revealed that human m6A marks were mapped to certain well-characterized
lncRNAs, including X-inactive specific transcript (XIST) and metastasis-associated lung
adenocarcinoma transcript 1 (MALAT-1) [10–12]. Writer complexes like Methyltransferase-
like 3 and 14 (METTL3 and METTL14), Wilms tumor 1-associated protein (WTAP), Zinc
finger CCCH domain-containing protein 13 (ZC3H13), RNA-binding motif protein 15/15B
(RBM15/15B), and Vir-like m6A methyltransferase-associated protein (VIRMA) mediate
the methylation of adenosine residues at position 6 [13–17]. METTL3 and METTL14
are heterodimers that form the core complex responsible for methyltransferase activity,
stabilized by the association of another complex formed by WTAP, RBM15, ZC3H13, and
VIRMA called the methylation-associated complex. METTL16 which is also one of the
components of the m6A writer complexes, along with WTAP, is known to engage with
specific lncRNAs, such as MALAT-1 [10]. YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,
IGF2BP1, IGF2BP2, and IGF2BP3 have been identified as reader proteins that detect the
m6A methylation marks. For instance, YTHDC1 facilitates the nuclear export of methylated
mRNAs to the cytoplasm by specifically binding with m6A. Suppressing YTHDC1 leads
to the nuclear buildup of m6A-modified mRNA, causing these transcripts to accumulate
within the nucleus and become scarce in the cytoplasm [18]. In addition, it has been
reported that m6A modifications in circRNAs promote efficient protein translation in a
cap-independent fashion through YTHDF3 and the translation initiation factors eIF4G2 and
eIF3A [19]. This m6A-driven translation by circRNAs can be enhanced by METTL3 and
METTL14. Meanwhile, enzymes such as FTO and ALKBH5 act as erasers for removing m6A
marks. m6A modifications can either increase or decrease mRNA stability, depending on
the specific reader proteins that bind them. Functionally, m6A participates in nearly every
stage of the mRNA life cycle, affecting splicing, other nuclear processing, and degradation
within the cytoplasm [20].

m6A modifications are known to impact a range of brain functions and development,
including neurogenesis, spinogenesis, learning and memory, dendritic structure, axon
regeneration, and brain development. Some of the neurologic disease phenotypes are a
consequence of disrupted m6A pathways, attributed to either disease-specific mutations
or alterations in the levels of various m6A modulators. The m6A marks located in the
3′-UTR regions of mRNAs are believed to play significant mechanistic roles in the onset
of age-related disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and
Amyotrophic lateral sclerosis (ALS), as they regulate the translation of associated transcripts.
In Table 1, we provide an overview of various RNA modifications, including m6A marks,
alongside detection methods, and their connections to diverse RNA metabolic activities
associated with neurological diseases.
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Table 1. The role of RNA modifications on diverse RNA metabolic activities and their association
with neurological diseases.

Neurodegen
Erative

Diseases
RNA

Modifications
The Role in

RNA
Metabolism

Reader/Writer/
Eraser Mechanism Detection

Neurodeg
enerative
diseases

PD

m6A

Trasnlation Eraser: FTO

In neurons affected by disease,
FTO is produced and

accumulates in the axons,
leading to enhanced

demethylation of m6A and
increased expression of

NMDAR1, which is followed
by neuronal cell death.

AD Translation Writer: METTL3
Eraser: FTO

mRNA methylation regulates
the expression of transcripts

related to AD

AD Pseudouridine mRNA stability,
translation Writer: PUS1

Unknown. Only the reduction
of pseudouridine in AD cortex

has been reported.

AD, PD, ALS RNA editing Transport/
Translation Writer: ADAR2

The pre-mRNA of the AMPA
receptor is modified by

ADAR2 to control its activity.
A decrease in ADAR2 levels

leads to Iess editing, which in
turn is associated with

functional impairments of the
AMPA receptor under

pathological conditions.

Glioma

m6A

Transport,
localization,
translation, and
splicing

Writers: METTL3,
METTL14, WTAP,
KIAA1429/
VIRMA, RBM15,
and ZC3H13
Erasers: FTC and
ALKBH5
Readers:
YTHDF1/F3,
YTHDC1,
YTHDC2,
HNRNPA2/B1,
HNRNPC,
IGF2BP1/2/3,

Writers: Affect the stability,
transport, localization,
translation, and splicing of
RNA, thereby contributing to
gene expression regulation.
Erasers: Demethylate
modified adenosine residues,
altering RNA molecules’ fate
and regulating their
expression patterns and
functions.
Readers: Modify the stability,
localization, and translation
efficiency of RNA, thereby
regulating its function and
intracellular dynamics and
fine-tuning gene expression.

LC-MS/MS,
MeRIP-Seq,
qRT-PCR,
IP-MS,

m5C Stability and
translation

Writers: DNMT2
and NSUN
Readers: ALYREF
and YBX1

Writers: Affect the stability,
transport, localization,
translation, and splicing of
RNA, thereby contributing to
gene expression regulation.
Readers: Modify the stability,
localization, and translation
eficiency of RNA, thereby
regulating its function and
intracellular dynamics and
fine-tuning gene expression.

LC-MS/MS,
RNA-BisSeq

A-to-I editing
Coding
potential and
splicing

ADAR1 and
ADAR2

LC-MS/MS,
DAR
enzymes

m6A: N6-Methyladenosine; m5C: 5-Methylcytosine; A-to-I editing: adenosine to inosine RNA editing; AD:
Alzheimer’s Disease; PD: Parkinson’s Disease; ALS: Amyotrophic Lateral Sclerosis; METTL3: Methyltransferase
Like 3; METTL14: Methyltransferase Like 14; WTAP: Wilms’ Tumor 1-Associating Protein; RBM15: RNA Binding
Motif Protein 15; ZC3H13: Zinc Finger CCCH-Type Containing 13; KIAA1429/VIRMA: Vir Like m6A Methyltrans-
ferase Associated; SAM: S-adenosylmethionine; FTO: Fat Mass and Obesity-Associated Protein; ALKBH5: AlkB
Homolog 5; YTHDF: YTH Domain Family; YTHDC: YTH Domain Containing; HNRNP: Heterogeneous Nuclear
Ribonucleoprotein; IGF2BP: Insulin-like Growth Factor 2 mRNA-Binding Proteins; eIF3: Eukaryotic Translation
Initiation Factor 3; ADAR: adenosine deaminase acting on RNA; PUS: pseudouridine synthase; DNMT: DNA
methyltransferase; NSUN: NOP2/SUN RNA methyltransferase; YBX1: Y-box binding protein1; LC-MS/MS: Liq-
uid chromatography–tandem mass spectrometry; MeRIP-Seq: Methylated RNA immunoprecipitation sequencing;
RNA-BisSeq: RNA bisulfite sequencing; qRT-PCR: quantitative Real-Time PCR; IP-MS: immunoprecipitation
coupled with mass spectrometry.
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2.2. N1-Methyladenosine (m1A)

Methylation occurring at the N1 position of adenosine represents another example
of dynamic modifications of RNA within mammalian systems [21]. This modification
is abundant, prevalent, and conserved across both prokaryotic and eukaryotic RNAs as
an internal post-transcriptional alteration, particularly prominent in the RNAs of higher
eukaryotic cells [22,23]. This modification halts translation elongation, which is the process
of translating the genetic code into a polypeptide chain. It also hinders the incorrect
incorporation of nucleotides during reverse transcription (RT) by impeding the formation
of Watson–Crick base pairs [24]. While m1A methylations have been reported in the 5′-UTR
regions and coding sequences of mRNAs, they have been primarily identified in rRNAs
and tRNAs, altering their structure and influencing their capacity for protein binding,
stability, and functionality. The most abundant and representative m1A writer in the
cytosol is the heterotetrameric tRNA methyltransferase TRMT6/61A, which incorporates
a GUUCRA tRNA-like motif with a t-loop structure into specific mRNAs [25]. On the
other hand, ALKBH3 and ALKBH1 serve as erasers for m1A, with ALKBH3 responsible for
demethylating the m1A mark on mRNAs [26,27]. In addition, reports indicate that YTHDF2
not only serves as the reader for m6A but can also specifically detect m1A-modified
sequences and bind to endogenous m1A-modified transcripts with a low affinity [28]. These
findings suggest that YTHDF2 could play a more expansive role in RNA modifications
beyond its established function as an m6A reader. Modifications of m1A in mRNA are
primarily linked to the regulation of mRNA translation and decay, suggesting crucial roles
in ensuring proper brain development and function. However, studies on the correlation
between m1A marks and neurological disorders are still limited.

2.3. 5-Methylcytosine (m5C)

m5C modifications have been identified across a spectrum of RNA species, includ-
ing rRNAs, tRNAs, and mRNAs, as well as small nuclear RNAs (snRNAs), vault RNAs,
enhancer RNAs, lncRNAs, and miRNAs. These modifications are crucial in regulating
RNA stability, transcription, transportation, and translation. They have been associated
with gene expression and metabolism. For example, early studies have demonstrated
that m5C modifications affect the interactions of lncRNAs, such as MALAT1, antisense
non-coding RNA in the INK4 locus (ANRIL), nuclear paraspeckle assembly transcript 1
(NEAT1), growth arrest-specific transcript 5 (GAS5), ribonuclease P RNA component H1
(RPPH1), Pvt1 oncogene non-protein coding (PVT1), SNHG12, Telomerase RNA compo-
nent (TERC), and XIST with chromatin-associated protein complexes [29,30]. In human
cells, the NOL1/NOP2/SUN domain-containing protein family, specifically NOP2/SUN
RNA methyltransferase (NSUN) 1 through NSUN7, along with the DNA methyltrans-
ferase (DNMT) homolog DNMT2, are responsible for generating m5C marks on RNA
molecules [31]. NSUN1, NSUN2, and NSUN5 especially exhibit conservation across eu-
karyotes, while the remaining family members are exclusive to higher eukaryotes. In terms
of functionality, NSUN1 and NSUN5 are involved in methylating cytosine C5 of rRNAs in
the cytosol, while NSUN2, NSUN6, and DNMT2 are responsible for methylating cytosolic
tRNAs. Additionally, NSUN2, NSUN3, and NSUN4 perform methylation at cytosine C5
within mitochondrial RNAs [32,33]. The mRNA export adaptor protein ALYREF and Y-box
binding protein1 (YBX1) bind and recognize the m5C modifications and regulate the nucleo-
cytoplasmic transport and stability of mRNA molecules [34,35]. The modifications of RNAs
through m5C can be reversed by α-ketoglutarate (α-KG)-dependent dioxygenases, like
ten-eleven translocation (TET)1 and TET2, which actively demethylate these marks [36].

A major significant role of m5C RNA methylation is that m5C RNA modifications
affect the stability of eukaryotic rRNA by impacting the folding of crucial ribosomal regions,
consequently controlling translation [37]. In addition, the modification at the m5C position
can influence the aminoacylation step in translation, thereby impacting the overall accuracy
of the translation process [38,39]. Notably, the impact of m5C modification on mRNA
translation differs based on m5C placement. It hampers translation efficiency if it occurs
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within the 5′-UTR or coding sequence (CDS). However, m5C modification in the 3′-UTR,
when mediated by NSUN2, has been found to increase translation efficiency [40–43]. The
essential functional roles fulfilled by m5C modifications suggest that the disrupted expres-
sion of these genes could contribute to diverse neuronal conditions. For instance, a study
that involved conditionally knocking out NSUN2 in the prefrontal cortex of mice resulted in
bidirectional behavioral changes associated with depression [44]. The deficiency of NSUN2
led to modifications in almost 1500 proteins within the prefrontal cortex, accompanied
by reduced translation efficiency linked to a glycine-codon defect. This, in turn, caused a
disruption in synaptic communication among pyramidal neurons in the prefrontal cortex.
Another example is the interruption of NSUN2’s tRNA methylation activity which can
cause an accumulation of tRNA fragments at the 5′ ends, interfering with the formation of
upper layer neurons and negatively impacting brain development in mice [45].

2.4. Pseudouridine

Pseudouridine, the isomer of uridine known as 5-ribosyl uracil or Ψ, is less abundant
in mRNA; instead, it is more frequently detected in non-coding RNAs such as rRNAs,
snRNAs, and tRNAs. Regardless of the abundance among mRNAs, pseudouridine can still
influence the secondary structure of these molecules. For example, pseudouridine residues
were found in MALAT1 at the positions of U5160, U5590, and U3374 [46,47]. However,
the functions of these chemical alterations and their influence on MALAT1 activity remain
unclear, requiring more comprehensive research to understand them. Two primary mecha-
nisms for RNA pseudouridylation have been identified. First is the pseudouridylation that
is independent of guide RNA and relies on pseudouridine synthase (PUS) enzymes directly
catalyzing the transformation of uridine into Ψ within their target sequences (Table 1). On
the other hand, pseudouridylation that is dependent on guide RNA involves H/ACA-
box small nucleolar RNAs (snoRNAs) binding to target RNAs through sequence-specific
interactions [48–50]. Codons containing Ψ have been demonstrated to exert a modest
influence on ribosomes by incorporating specific amino acids. Additionally, stop codons
containing pseudouridine (Ψ) have been found to guide the suppression of translation
termination [51–53]. Furthermore, the existence of Ψ in numerous RNAs alters their inter-
actions with RNA-binding proteins (RBPs) that participate in nuclear RNA processing, as
well as the localization or stability of cytosolic RNA [48,49].

2.5. Adenosine to Inosine RNA Editing (A-to-I Editing)

RNA editing, a post-transcriptional modification, involves converting specific nu-
cleotides into RNA molecules. This includes adenosine-to-inosine (A-to-I) editing, preva-
lent in vertebrates, with numerous such sites discovered in mice and humans. This editing
process is orchestrated by the adenosine deaminase acting on RNA (ADAR) protein fam-
ily. The adenosine deaminase that acts on tRNA (ADAT) conducts this conversion for
tRNAs. The change from adenosine to inosine is due to the deamination of the amino group
at adenosine’s C6 position, altering the RNA’s informational content and potentially its
secondary structure [54,55]. In addition, A-to-I RNA editing is known to contribute signifi-
cantly to the diversity of the epitranscriptome and the proteome in various cancers [56,57].
RNA editing plays a crucial role in modulating gene expression, particularly by altering
miRNA expression, maturation, and stability [58–60]. This regulatory mechanism involves
the activity of specific enzymes from the adenosine/cytidine deaminase family, which
trigger single nucleotide transformation in primary miRNAs. Such modifications can sub-
stantially affect the miRNA’s stability and its ability to mature and target specific mRNAs,
ultimately influencing miRNA-guided gene expression regulation. Additionally, RNA
editing modifies the primary structure of wild-type mature miRNAs, thereby altering their
gene-regulatory functions.

RNA editing, particularly A-to-I editing, is an extensive process in humans, with
estimates suggesting that up to 85% of pre-mRNAs are subject to this modification [61–63].
This editing process predominantly occurs within introns and untranslated regions (UTRs)
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of genes encoding proteins and is reportedly involved with neural development and various
neurological disorders. For example, RNA editing at the I/V site of the potassium channel
Kv1.1, mediated by ADAR2, has been associated with epilepsy [64]. Episodic ataxia type
1, a condition characterized by seizures, ataxia, and myokymia, has been reported to be
caused by mutations in the gene KCNA1, which codes for Kv1.1. In addition, ADAR2’s
role in editing the RNA of glutamate receptors is also associated with psychiatric diseases,
including schizophrenia [65] (Table 1).

2.6. Other Modifications

An extensive array of RNA modifications has been discovered, particularly in tRNAs,
which includes m5C, 3-methylcytidine (m3C), 1-methyl-guanosine (m1G), N2-methylguanosine
(m2G), N7-methylguanosine (m7G), N2,N2-dimethylguanosine (m22G), N1-methylpseudou
ridine (m1J), 2-methyladenosine (2 mA), 5-formyl-20-O-methylcytidine (f5Cm), 3-(3-amino-3-
carboxypropyl) uridine (acp3U), 5-methyluridine (5 mU), 5-methoxycarbonylmethyluridine
(mcm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), dihydrouridine, queuosine (Q),
galactosylqueuosine (gal Q), mannosyl-queuosine (manQ), N6-threonylcarbamoyladenosine
(t6A), N6-methyl-N6-threonylcarbamoyladenosine (m6t6A), 2-methylthio-N6-threonylcarb
amoyladenosine (ms2t6A), N4-acetylcytidine (ac4C), N6-isopentenyladenosine(i6A), perox-
ywybutosine (o2yW), and wybutosine (yW) [66,67]. These modifications are categorized
by their position into two principal types: some that are located in the anticodon loop
and others found elsewhere. The modifications occurring within the anticodon loop can
influence translation by altering the base pairing between the codons in mRNAs and the
tRNA that carries amino acids [68]. Modifications situated outside of the anticodon loop
primarily influence the secondary structure of tRNAs.

Modifications in rRNA are relatively sparse, with just 2% of nucleotides undergoing
changes. Among these, 2′-O-methylation (2′-OMe), where a methyl group is added to the 2′

hydroxyl of ribose, is the most common [69]. These 2′-OMe modifications can occur at the
first nucleotide transcribed (denoted as m7GpppNmN-) or the second (m7GpppNmNm-).
It has been shown that 2′-OMe modifications enhance the stability of RNA–RNA hybrid
duplexes [70].

2.7. Detection and Quantification of RNA Modifications

To elucidate the dynamics of a broad spectrum of RNA modifications, including m6A,
m1A, m5C, A-to-I editing, and modifications in tRNA, various sophisticated techniques are
employed. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) is pivotal for
identifying and quantifying these modifications by leveraging the distinct mass changes in
modified nucleotides [8,71]. Methylated RNA immunoprecipitation sequencing (MeRIP-
Seq) specifically maps the genome-wide distribution of m6A, capturing m6A-modified
RNA fragments [9]. RNA bisulfite sequencing (RNA-BisSeq) differentiates m5C from
unmodified cytosine [29], while Ψ-seq specifically labels pseudouridine for precise local-
ization [47]. Additionally, A-to-I RNA editing, mediated by ADAR enzymes, is identified
through sequencing technologies that detect inosine as guanosine, due to its base-pairing
properties [72]. The complexity of tRNA modifications, critical for the stability, structure,
and function of tRNA, is revealed through methods such as LC-MS/MS and specialized
sequencing techniques [73].

The regulatory roles of m6A methylation enzymes, including writers, readers, and
erasers, are clarified by unveiling the regulation of gene expressions through quantitative
Real-Time PCR (qRT-PCR) measuring mRNA levels. This is further investigated through
immunoprecipitation coupled with mass spectrometry (IP-MS) and gene editing using
CRISPR/Cas9 for gene knockout or knockdown, providing insights into the composition
and interactions of these protein complexes. IP-MS elucidates the composition and interac-
tions of these protein complexes [14]. Moreover, next-generation sequencing (NGS)-based
detection techniques, such as MeRIP-Seq and Cross-linking and immunoprecipitation
sequencing (CLIP-seq), alongside nanopore direct RNA sequencing, offer comprehensive
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methods for analyzing the regulation of RNA by m6A modifications, A-to-I editing patterns,
and tRNA modifications, enriching our understanding of RNA biology in disease [71].

3. RNA Modifications in Neurodegenerative Diseases
3.1. RNA Modifications in Alzheimer’s Disease (AD)

One of the most abundant RNA modifications in the brain is m6A, and most of the
recent studies on RNA modifications indicate that the loss of m6A methylation of RNA
could promote AD development. Utilizing m6A-sequencing in combination with high-
throughput LC–MS/MS, Shafik et al. revealed a substantial reduction in the expression
level of METTL3, along with decreased m6A levels, in 5xFAD mice compared to control
groups [74]. This result was consistent with other groups’ studies where notable reductions
in both neuronal m6A methylation and METTL3 expression have been observed in human
AD brains compared to those without the condition, as demonstrated by immunoblot
analysis [75]. For circRNA, high-throughput sequencing has revealed significant changes
in circRNA m6A methylation in APP/PS1 AD mice compared to control groups [76].
This result was consistent with another group’s study where METTL3-dependent m6A-
modified circular RNA, circRIMS2, was significantly upregulated in APP/PS1 AD mice,
which mediated synaptic and memory impairments by activating the ubiquitination of the
GluN2B subunit of the NMDA receptor [77]. Silencing METTL3 or hindering the GluN2B
ubiquitination by a short membrane-permeable peptide significantly rescued synaptic
impairment in APP/PS1 AD mice. On the other hand, METTL3 knockdown in the mouse
hippocampus has been associated with several negative outcomes, including memory loss,
neurodegeneration, spine loss, and gliosis [75]. In terms of mechanism, the lack of METTL3
slows down the mRNA degradation of m6A-modified cell cycle genes like Cyclin D1
and Cyclin D2. This effect was observed in cultivated primary neurons, which resulted in
impaired cell cycle control [75]. Furthermore, a recent investigation into the gene expression
patterns regulated by m6A in post-mortem brains from AD patients revealed the abnormal
expression of METTL3 and the RNA binding motif protein 15B in the hippocampus of
individuals with AD. The study indicated that the accumulation of METTL3 in insoluble
fractions exhibited a positive correlation with Tau levels in hippocampal lysates. This
suggests that disruptions in m6A signaling might contribute to neuronal dysfunction in
AD [78]. It is also found that the demethylase FTO triggers mTOR signaling and eventually
activates Tau phosphorylation in AD [79]. Notably, the neuron-specific knockout of the
gene FTO has been demonstrated to alleviate cognitive impairments in 3xTg AD mice [79].
Moreover, a genetic variant within the FTO locus was significantly linked to Alzheimer’s
in the NIA-LOAD study [80,81]. The decreased expression of FTO in the cortex and
amygdala of Alzheimer’s patients compared to healthy individuals indicates the functional
significance of FTO in AD [80,81]. This is further substantiated by a prospective study
indicating that individuals with the AA genotype in the FTO gene face an elevated risk of
developing AD and other types of dementia [82].

Other reports demonstrate alterations in small RNA modifications in AD pa-
tients compared to healthy individuals. LC–MS/MS analysis showed an increase in
m7G, 2′-O-methylcytidine (Cm), and 2′-O-methylguanosine, while m22G and N2,N2,7-
trimethylguanosine (m2,2,7G) exhibited significant decreases in the miRNA fraction from
the cortex of AD brains [83]. Interestingly, within small RNA fractions of rRNA-derived
small RNAs, tRNA-derived small RNAs, Y RNA-derived small RNAs, and other unan-
notated RNAs, elevated levels of modifications such as Cm, 2′-O-methyluridine (Um),
and m7G were observed in comparison to controls. Conversely, modifications such as
pseudouridine, m1G, and m2,2,7G were diminished [83]. Additionally, microfluidic high-
throughput PCR-based next-generation sequencing has discovered a significant reduction
in A-to-I RNA editing levels in AD patients as compared to control samples [84]. In the
pre-frontal cortex of individuals with AD, RNA editing of the GluA2 subunit of the AMPA
receptor leads to alterations in intracellular Ca2+ levels, which are associated with neuronal
dysfunction and neurodegeneration stemming from increased Ca2+ permeability [85]. In
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healthy individuals, less than 0.1% of all GluA2 RNA molecules are unedited in the pre-
frontal cortex, contrasting with 1.0% in AD patients. Another study observed reduced RNA
editing at the glutamine/arginine (Q/R) site of the Glu2 subunit in the caudate nucleus
and hippocampus of sporadic AD patients who carry the Apo E4 allele [86]. The presence
of the ApoE E4 allele, a known genetic risk factor for AD, is suggested to affect the AMPA
receptor dynamics and glutamate regulation in the hippocampus [87–89]. Comprehensive
analysis from the ROSMAP, MayoRNAseq, and MSBB studies identified millions of RNA
editing sites across nine brain regions, with 108,010 edits to facilitate and 26,168 edits to
impede the progression of AD [90].

3.2. RNA Modifications in Parkinson’s Disease (PD)

Individuals with PD display incapacitating motor impairments characterized by rest-
ing tremors, bradykinesia (reduced movement speed), muscle stiffness, and postural
instability, commonly recognized as PD’s four cardinal manifestations. The emergence of
these symptoms is attributed to the degeneration of dopaminergic neurons in the substan-
tia nigra region of the brain. Some researchers have performed comprehensive genetic
analyses, including genome-wide association, differential gene expression, and expression
quantitative trait locus analyses, which have identified five m6A SNPs associated with
altered gene expressions related to PD [91]. In one study, m6A methylation was reduced
and FTO was highly expressed in PC12 cells, a cellular model of PD [92]. The overexpres-
sion of FTO in dopaminergic neurons decreases mRNA m6A modification and upregulates
ionotropic glutamate receptor 1 (NMDAR1). This escalation contributes to oxidative stress,
an increase in calcium influx, and ultimately, it accelerates the degeneration or cell death of
these dopaminergic neurons [92]. In another study, METTL3, METTL14, and YTHDF2 were
significantly downregulated in PD patient blood mononuclear cells with METTL14 being
the main factor involved in the abnormal m6A modification of α-synuclein mRNA [93].
Mettl14 targets and regulates the expression of the α-synuclein gene by binding an m6A
motif in the coding region which eventually modifies α-synuclein mRNA and weakens its
stability. Spearman correlation analysis showed METTL14 levels inversely correlated with
plasma α-synuclein concentrations and motor function of PD patients [93]. Furthermore,
the advancement in RNA sequencing capabilities has facilitated the detailed exploration
of RNA editing occurrences across the whole transcriptome, offering deeper insights into
A-to-I editing in various diseases. A comprehensive transcriptome study linked PD to
alterations in Alu insertions, which are the main substrates for the ADAR protein fam-
ily [94]. A compelling and innovative concept has recently been suggested for leveraging
the inherent editing activity of endogenous ADAR2 to correct a disease-causing mutation in
PINK1 associated with PD [95]. This mutation, a G-to-A substitution, leads to a premature
stop codon that truncates the PINK1 protein, resulting in the truncation of the protein’s
C-terminus [95]. By designing guide RNAs that direct ADAR2 to target and edit the spe-
cific mRNA, researchers were able to restore PINK1/Parkin-mediated mitophagy in cell
models [95].

3.3. RNA Modifications in Amyotrophic Lateral Sclerosis (ALS)

ALS, one of the prevalent neurodegenerative diseases, is marked by a progressive
decline in muscle strength and atrophy, leading to both upper and lower motor neuron
dysfunction. Many studies exploring the pathogenesis of ALS, where RNA modifications
play a role, have demonstrated the involvement of A-to-I RNA editing. ADAR2, an RNA
editing enzyme, is mislocated in cases of ALS/FTD caused by C9orf72 repeat expansion [96].
In mice with a conditional knockout of ADAR2, the Q/R site on GluA2, which is crucial for
the proper functioning of the AMPA receptors in motor neurons, remains unedited, leading
to gradual motor neuron degeneration [97,98]. Interestingly, ADAR2 is uniquely reduced in
the motor neurons of ALS patients among all the ADAR family [99]. This led to abnormal
Ca2+ influx through AMPA receptors in neurons, resulting in motor neuron degeneration,
which is a characteristic feature of ALS [100–102]. Furthermore, TAR DNA-binding protein
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43 (TDP-43), a nuclear RNA-binding protein implicated in both familial and sporadic
forms of ALS, is specifically expressed in motor neurons that lack ADAR2. This suggests
that unedited GluA2 at the Q/R locus is pathogenic in ALS [103]. Some reports suggest
that the entry of Ca2+ through AMPA receptors that include unedited GluA2 results in
calpain activation, which initiates TDP-43 pathology and deficits in nucleocytoplasmic
transport, alongside causing excitotoxicity [104,105]. In other studies, the presence of Q/R
site-unedited GluA2 followed by the downregulation of ADAR2 has been observed in ALS
patients with mutation in fused in sarcoma (FUSP525L mutation) with alterations of several
circRNA expression levels [106,107].

4. RNA Modifications in Glioma

Gliomas account for nearly 80% of malignant brain tumors in adults [108]. They are
broadly defined but generally are known to develop from the support cells of the brain
called glia. The glial cells of the brain that most commonly undergo gliomagenesis are
astrocytes, oligodendrocytes, and ependymal cells. Even with the standard of care, which
includes a combination of surgery, radiation, and chemotherapy, gliomas recur at a high
rate, which leads to a low overall survival (OS) for patients. The 2021 WHO classification
implemented a new grading system for gliomas that integrates histopathological features
and molecular diagnostic criteria to classify CNS tumors into more distinct subtypes further,
improving approaches to patient care [109]. Although this improves diagnosis and allows
for more targeted therapeutic approaches, patient outcomes remain poor, necessitating
further molecular characterizations of these tumors to inspire novel treatments.

Epi-transcriptomics has been shown to be involved in the progression and malignancy
of various cancer types, including gliomas [110]. m6A RNA methylation is the most
heavily studied form of RNA modification. Various studies have shown that m6A RNA
modification could inhibit or promote tumor progression depending on factors such as
whether the target gene is an oncogene or a tumor suppressor and which components of
the m6A methylation regulators are at play. In this section of the review, we explore the
various ways that m6A methylation and its regulators, known as “Writers”, “Erasers”,
and “Readers”, play roles in the emergence and progression of gliomas and the potential
therapeutic approaches that target m6A methylation and its regulators.

4.1. m6A Methylation Regulators “Writers” in Glioma Pathogenesis and Treatment Resistance

METTL3 is a key component of the m6A methyltransferase complex, also comprising
METTL14, and is crucial in the m6A methylation of nuclear RNA. It binds specifically
to S-adenosyl methionine (SAM), facilitating m6A methylation, while METTL14 plays a
supportive role despite its lack of a catalytic site [14,111]. Research on METTL3’s func-
tion in glioma has produced varied and sometimes conflicting results. Cui et al.’s initial
studies showed that METTL3 knockdown results in increased growth, self-renewal, and
tumorigenesis in glioma stem cells (GSCs), which are critical for the growth, invasion,
and drug resistance in glioblastoma [112]. Conversely, other research indicates that silenc-
ing METTL3 or enhancing its mutated version suppresses GSC growth and proliferation.
METTL3 downregulation reduced m6A methylation of serine- and arginine-rich splicing
factors (SASFs), leading to YTHDC1-dependent nonsense-mediated decay of SASFs mRNA
and lowered protein levels. Additionally, METTL3 influences the splicing of BCL-X and
NCOR2, which play roles in cancer cell death and motility [113]. In contrast, Visvanathan
et al. observed that overexpressing METTL3 correlates with enhanced GSC stemness
and reduced differentiation, with the knockout of METTL3 or METTL14 increasing GSC
sensitivity to gamma-irradiation [114]. These discrepancies may be due to different m6A
methylation target genes and the specific “readers” recognizing these modifications.

METTL3 is involved in the methylation of non-coding RNAs, including lncRNAs and
circRNAs, which are critical in glioma initiation and progression. One study demonstrated
that METTL3-mediated methylation of LINC00839, regulated by YTHDF2, enhances its
expression in GSC lines. This stabilization activates the Wnt/β-Catenin signaling pathway,
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increasing radioresistance and GSC proliferation [115]. Additionally, METTL3-induced
m6A methylation of LINC01003 was found to regulate the focal adhesion kinase (FAK)
pathway, promoting glioma cell proliferation and migration [116]. For circRNAs, Wu and
colleagues found that METTL3′s m6A modification process increases the stability and
expression of circDLC1 [117]. This elevation aids circDLC1 in its competitive binding with
miR-671-5p, which in turn supports the transcription of Catenin Beta Interacting Protein 1
(CTNNBIP1) and ultimately inhibits the excessive growth of glioma cells.

METTL3-mediated m6A methylation is associated with treatment resistance in gliomas.
Shi et al. reported that METTL3 methylation is elevated in glioblastoma tissues resistant
to temozolomide (TMZ), with METTL3 overexpression increasing the stability of DNA
repair enzymes, suggesting a mechanism for TMZ resistance [118]. Additionally, it has
been shown that METTL3-mediated methylation indirectly fosters TMZ resistance by stabi-
lizing Oxidized Low-Density Lipoprotein Receptor 1 (OLR1), a receptor involved in lipid
metabolism and cellular signaling, and by activating the Wnt/β-Catenin pathway [119].

miR-1208 targets METTL3’s 3′UTR region, diminishing NUP214 levels, and inhibiting
glioma cell proliferation [120]. Knockdown of the histone methyltransferase SETD2, which
influences m6A modification, results in decreased levels of METTL3/14 and WTAP, reduc-
ing glioma cell proliferation and migration [121]. The resistance of glioma cells to mTOR
inhibitors is attributed to m6A methylation at IRES sites, enhancing the translation of
oncogenes, a process disrupted by METTL3/14 knockout [122]. Under fear stress, increased
METTL3 expression stabilizes FSP1 through m6A methylation and inhibits ferroptosis in
glioma cells, indicating a role in stress responses [123].

Another central component of the m6A methyltransferase complex is WTAP that has
been implicated in various aspects of glioma progression and treatment response. One
study found that Flotilin-1 (FLOT1), upregulated in gliomas and associated with advanced
progression and poor prognosis, is stabilized by m6A methylation, with WTAP acting as
the writer. The silencing of FLOT1 led to reduced glioma cell proliferation, highlighting the
significance of WTAP in glioma biology [124]. Additionally, WTAP has been strongly linked
to microsatellite instability, indicative of a compromised DNA mismatch repair system.
Together with other genes like TRMT6, DNMT1, and DNMT3B, WTAP can predict overall
survival in glioma patients and is correlated with poor post-operative outcomes [125].
Increased WTAP expression in glioblastoma compared to normal tissue further underscores
its role in glioma pathogenesis [126].

WTAP also plays a role in the regulation of cell proliferation, migration, and apoptosis.
A study demonstrated that miR-29a, which is typically underexpressed in GSCs, can inhibit
the Quaking gene isoform 6 (QKI-6) and subsequently reduce WTAP expression. This
inhibition leads to decreased activity in key pathways like phosphoinositide 3-kinase/AKT
and extracellular signal-related kinase, reducing cell proliferation and invasion while pro-
moting apoptosis [127]. Furthermore, WTAP expression levels have been closely correlated
with tumor grading levels [128].

The modulation of WTAP expression can directly impact glioma tumorigenicity.
Knockdown and overexpression studies have shown that WTAP can regulate epidermal
growth factor receptor, influencing tumorigenicity in glioma. This was further confirmed
in xenograft models [129].

Other m6A writers in glioma involve KIAA1429, RBM15, and ZC3H13. KIAA1429,
also known as VIRMA, is consistently upregulated in glioblastoma and negatively corre-
lated with the response to anti-cancer drugs, suggesting its role in drug resistance and
tumor progression [130]. RBM15 is implicated in the proneural to mesenchymal transi-
tion (PMT) in GSCs. Studies have shown that neuronal activation can lead to changes in
GSC behavior via miR-184-3p mediated inhibition of RBM15 expression, thus impacting
radioresistance and progression. RBM15 knockdown led to decreased m6A modification
and DLG3 mRNA levels, which in turn increased p-STAT3, a key signaling molecule in
PMT [131]. Additionally, RBM15 expression has been shown to have prognostic value
in glioma, particularly in predicting overall survival in patients with low-grade glioma
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(LGG) [132,133]. ZC3H13 plays a role in glioblastoma progression through its interaction
with the tumor microenvironment. Under hypoxic conditions, ZC3H13 expression in
microglia is influenced by neuron-derived exosomes, leading to changes in microglial polar-
ization and subsequently affecting glioblastoma progression [134]. A prognostic model has
indicated that ZC3H13 levels are positively associated with glioblastoma prognosis, sug-
gesting its potential as a tumor suppressor [126]. Furthermore, the knockdown of ZC3H13
has been linked to increased TMZ resistance in Rb1 mutant glioblastoma cells [135]. In
advancing glioma treatment, investigating m6A RNA methylation’s role in GSC biology,
especially regarding stem cell maintenance and drug resistance, is a promising avenue.
Such research would entail studying the impact of altering m6A writers such as METTL3,
WTAP, VIRMA, RBM15, and ZC3H13 on GSCs. Employing CRISPR-Cas9 gene editing or
RNA interference, modifications in m6A writers could be analyzed for their effects on GSC
characteristics, including proliferation, differentiation, and survival under chemotherapy
and radiotherapy. Although small molecule inhibitors of these writers have been designed
and found to have promising results in other cancers, such as acute myeloid leukemia,
they have not been heavily investigated in gliomas. These investigations are expected to
uncover new molecular pathways affected by m6A modifications, leading to novel thera-
peutic targets that could effectively prevent glioma recurrence and contribute to improved
glioma treatments.

4.2. m6A Methylation Regulators “Erasers” in Glioma Pathogenesis and Treatment Resistance

The role of erasers in m6A methylation, particularly in the context of glioma, is vital
for understanding their influence on tumor progression and therapeutic resistance. Particu-
larly, the erasers FTO and ALKBH5 exhibit a range of activities impacting various aspects
of glioma biology. FTO, known for its role in fat consumption and overall metabolic rate
regulation [136], also acts as a demethylase for m6A, affecting pre-mRNAs’ alternative
splicing and 3′-end processing [137]. FTO’s influence extends to mitochondrial functions,
affecting the expression of genes like SDHA and regulating the STAT3/FTO axis [138].
Prognostic studies suggest that FTO can predict poor outcomes in glioma patients, and
inhibitors targeting FTO have shown promise in reducing tumorigenicity and aggressive-
ness in glioma models [139–142]. FTO expression is also linked to the decreased apoptosis
and increased proliferation of glioma cells [143], and its inhibition suppresses GSC growth
and self-renewal [112]. Intriguingly, FTO knockdown affects the nuclear localization of
FOXO3a, influencing the expression of target genes like BIM, BNIP3, and BCL-6 [144].

FOXM1 is a transcription factor essential for tumorigenicity and invasion [145]. Si-
lencing ALKBH5 suppresses FOXM1 and GSC proliferation, and its inhibitors have shown
effectiveness in decreasing glioma cell proliferation [146,147]. ALKBH5 overexpression
in glioblastoma stem cells contributes to increased resistance to radiation and enhanced
invasive capabilities, and its activity is regulated by EGFR signaling, impacting ferroptosis
through m6A modulation [148,149]. ALKBH5 also promotes PYCR2 expression, influ-
encing glioma cell proliferation, migration, and PMT [150]. The regulation of ALKBH5
by USP36 underscores its role in glioblastoma progression and sensitivity to TMZ [151].
Its involvement in the proliferation, migration, and invasion of glioma cells has been
well-established [152,153], and inhibitors targeting ALKBH5 reduce glioma cell migration
and invasiveness [154]. Additionally, ALKBH5 influences immune responses in glioma,
affecting cytokine expression and Programmed Death-Ligand 1 (PD-L1) protein levels [155].
The hypoxia-induced activity of ALKBH5 stabilizes transcripts like NEAT1, facilitating
tumor-associated macrophage recruitment and immunosuppression, and enhances glioma
cell growth by activating pathways like PPP [156,157]. In the context of TMZ resistance,
ALKBH5 demethylates transcripts like NANOG, contributing to the development of resis-
tance, and regulates TMZ sensitivity by interacting with transcripts like SOX2 [158,159].

Given the roles of FTO and ALKBH5 in modulating cell death in glioma, focusing
on how these m6A erasers influence apoptosis and ferroptosis, especially in GSCs, could
be valuable. Exploring the interplay between apoptosis inhibition in FTO and ferroptosis
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resistance in ALKBH5, particularly under radiotherapy, using gene editing techniques,
offers promising insights. Such research could pave the way for innovative treatments
aimed at overcoming radio-resistance and curbing GSC proliferation, ultimately improving
the efficacy of glioma therapies. Moreover, further investigation is needed for inhibitors of
these erasers to be fully established as promising treatment options.

4.3. m6A Methylation Regulators “Readers” in Glioma Pathogenesis and Treatment Resistance

In the intricate network of glioma pathogenesis, the YTHDF family, consisting of
YTHDF1, YTHDF2, and YTHDF3, and YTHDC1 and YTHDC2, as members of the YTH
domain-containing family, play significant roles in the prognosis and molecular mecha-
nisms underlying glioma [158]. The YTHDC1 protein is more nuclear-focused, influencing
mRNA splicing and export, whereas the YTHDC2 and YTHDF proteins are primarily
involved in controlling the stability, degradation, and translation of m6A-modified mRNAs
in the cytoplasm [160–163].

YTHDF1 is involved in various mechanisms that contribute to glioma resistance and
progression. For instance, it stabilizes OLR1 mRNA, influencing the OLR1-mediated
Wnt/β-Catenin pathway activation, which is linked to TMZ resistance in glioma [119].
Additionally, YTHDF1 plays a role in RNA editing, as it binds and promotes the translation
of m6A-modified ADAR1, a molecule implicated in glioma progression [164]. YTHDF1’s
expression, increased by C-myc overexpression, leads to higher levels of FDX1, a protein
associated with several cancer signaling pathways [159]. Moreover, the protein Musashi-1,
overexpressed in glioblastoma, upregulates YTHDF1, thereby sensitizing glioblastoma
cells to TMZ and inhibiting their proliferation [165]. YTHDF2 is particularly significant
in maintaining oncogene expression in glioblastoma stem cells. GSCs express YTHDF2
preferentially, and its targeting can inhibit cell growth and viability, suggesting the potential
of the YTHDF2-MYC-IGFBP3 axis as a therapeutic target [156]. Furthermore, YTHDF2’s role
extends to immune regulation, where its deficiency impairs the stability of ZDHHC3 mRNA,
affecting PD-L1 expression and degradation in glioma [148]. YTHDF2 is also involved in key
signaling pathways, including the receptor tyrosine kinase MET pathway, which is essential
for glioblastoma stem cell renewal and tumorigenicity [166]. Its expression correlates
with various immune cells in low-grade gliomas, and it has been shown to enhance
TMZ resistance in glioblastoma [167,168]. Additionally, YTHDF2 promotes glioblastoma
cell proliferation and tumorigenesis, largely through the downregulation of LXRα and
HIVEP2 [169]. YTHDF3 has emerged as a potential target for treating Osimertinib-resistant
glioblastoma cells. Research indicates that silencing YTHDF3 increases the sensitivity of
these cells to Osimertinib, affecting their migratory and sphere-forming abilities [157].
Moreover, YTHDF3’s role in mTOR inhibitor resistance involves the methylation of IRES-
mediated mRNA translation, highlighting its importance in resistance mechanisms [122].

On the other hand, YTHDC1 has been determined to be a prognostic marker for
overall survival in patients with low-grade glioma (LGG) [133]. It plays a role in the reg-
ulation of key molecules and pathways that influence glioma cell behavior. For instance,
YTHDC1 interacts with the circRNAs from the EPHB4 gene, which is implicated in glioma.
METTL3-mediated m6A methylation of CircEPHB4 leads to its recognition by YTHDC1,
which then localizes the transcript to the cytoplasm. This localization facilitates the stabi-
lization of SOX2 mRNA, promoting the transcription of PHLDB2, a molecule associated
with epithelial–mesenchymal transformation in various cancers. This mechanism under-
scores the role of YTHDC1 in enhancing stemness in glioma spheres, as evidenced by the
increased expression of stemness marker proteins and the promotion of cell proliferation,
invasion, and migration [170–172]. Additionally, YTHDC1 influences glioma cell prolif-
eration through its impact on VPS25, a protein upregulated in gliomas. Knockdown of
YTHDC1 leads to decreased VPS25 levels and reduced cell proliferation [173]. Furthermore,
YTHDC1 is implicated in the non-sense mediated mRNA decay (NMD) of SASFs, a process
dependent on the m6A methylation status of these factors [113]. YTHDC2, similarly, is
crucial in the context of LGG. It is overexpressed in these tumors and correlates with patient
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prognosis, where higher levels of YTHDC2 are associated with poorer outcomes [174].
Moreover, YTHDC2 has been identified as an independent negative prognostic indicator
for overall survival in gliomas. This finding, derived from Cox regression multivariate
analysis, suggests that YTHDC2 levels could be a significant marker in evaluating the
progression and potential outcomes of glioma treatments [175]. YTHDC1 and YTHDC2 are
integral components in the molecular landscape of glioma, influencing various aspects of
tumor biology. Their roles in RNA processing, interaction with circRNAs, and impact on
key signaling pathways underscore their potential as prognostic biomarkers and as targets
for therapeutic intervention in glioma.

HNRNPC and HNRNPA2B1 are extensively expressed m6A regulators in the tu-
mor microenvironment, suggesting their importance in a variety of tumor-relevant cell
types [176]. HNRNPC shows significant expression in glioblastoma, serving as an essential
splicing factor. Higher expression levels in glioblastoma tissues compared to normal tissues
are associated with a poorer prognosis in high-risk patients. Additionally, HNRNPC ex-
pression positively correlates with PD-L1, highlighting its prognostic significance and role
in immune modulation [166]. HNRNPC interacts with long non-coding RNA DDX11 anti-
sense RNA 1 (DDX11-AS1) to promote the Wnt/β-Catenin and AKT pathways, influencing
the epithelial–mesenchymal transition (EMT) and glioma cell migration. Knockdown of
HNRNPC disrupts these pathways and hinders EMT. Furthermore, HNRNPC regulates
microRNA-21 (miR-21) expression, thereby affecting glioblastoma progression via Pro-
grammed Cell Death 4 (PDCD4) [177,178]. HNRNPA2B1 is identified as an independent
prognostic factor for glioma. HNRNPA2B1 promotes GSC self-renewal and tumorigenesis
by modulating cholesterol biosynthesis, notably through the stabilization of SREBP2 mRNA.
This stabilization boosts the expression of HMGCR and LDLR mRNA, key components in
cholesterol biosynthesis and reuptake. Combining HNRNPA2B1 suppression with choles-
terol metabolism drugs yields potent inhibitory effects on glioma cells [179]. HNRNPA2B1
also plays a role where circular RNA from the NEIL3 gene (known as circNEIL3) is packed
into exosomes and transferred to tumor-associated macrophages within the tumor mi-
croenvironment [180]. This transfer promotes the suppression of the immune response by
stabilizing IGF2BP3, thereby facilitating glioma progression. HNRNPA2B1 modulates cell
cycle dynamics, apoptosis, and treatment responses, particularly to β-asarone. Knockdown
of HNRNPA2B1 reduces cell proliferation and increases apoptosis, affecting signaling
pathways such as AKT and STAT3. This modulation alters the expression of proteins like
B-cell lymphoma-2 (Bcl-2), CyclinD1, and PCNA, underscoring the role of HNRNPA2B1 in
glioma cell proliferation and its therapeutic potential [181–183].

The Insulin-like Growth Factor 2 mRNA-Binding Proteins (IGF2BP) family, comprising
IGF2BP1, IGF2BP2, and IGF2BP3, plays a crucial role in glioma development and response
to treatment. IGF2BP1 is upregulated in mesenchymal glioblastoma compared to proneural
glioblastoma, correlating with poor patient outcomes. Its overexpression in proneural
glioblastoma increases cell stemness, while its knockdown in mesenchymal glioblastoma
leads to decreased proliferation and sphere formation. IGF2BP1 specifically binds m6A
on YAP mRNA to stabilize it, increasing protein expression and activating the YAP/TAZ
complex involved in the Hippo signaling pathway. This indicates a feed-forward loop
enhancing tumorigenicity and stemness, particularly in mesenchymal glioblastoma [184].
Furthermore, IGF2BP1 is targeted by various non-coding RNAs and microRNAs, such as
LINC00689, PCAT6, Lnc-THOR, and miR-4500, which regulate its expression and thus
impact glioma progression and apoptosis [185–190]. IGF2BP2’s involvement in glioma
includes interactions with various RNA elements and transcription factors. For instance,
it participates in vascular mimicry through its interaction with HOTAIRM1 [191] and
engages in the LINC00265/miR-let-7d-5p/IFI30/ZNF384/IGF2BP2 axis to regulate EMT
and stemness [192]. The protein complex formed between HOXD-AS2 and IGF2BP2 is
associated with poorer prognosis in glioma, with STAT3 playing a role in this feedback
loop [193]. Additionally, IGF2BP2 stabilizes transcripts like NUP214 and FLOT1, influenc-
ing glioma progression and TMZ resistance [120,124,194–198]. In glioma endothelial cells,
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IGF2BP3, in combination with METTL3, stabilizes CPEB2, maintaining the blood–tumor
barrier and thereby influencing drug delivery [199]. It is also targeted by YTHDF2, influ-
encing oncogene expression in GSCs [164]. Compared to other IGF2BPs, IGF2BP3 shows a
higher correlation with stemness markers and immune infiltration in gliomas. Knockdown
studies in glioma cells reveal that IGF2BP3 is integral to cell proliferation, invasion, and
migration [200].

Another important m6A reader is eukaryotic initiation factor 3 (eIF3), which is cru-
cial in the initiation of mRNA translation and exhibits significant implications in gliomas.
eIF3 is unique in its ability to recognize m6A modifications on the 5′UTR of mRNA. This
recognition allows for the initiation of mRNA translation independent of the conventional
5′ 7-methylguanosine (m7G) cap recognition by eukaryotic initiation factor 4E (eIF4E).
eIF3 recruits the 43S preinitiation complex, which includes the 40S ribosomal subunit and
eIF1A, eIF1, eIF2, and eIF3, initiating the translation of m6A-modified mRNA [201]. In
U251 glioma cells, the knockdown of eIF3 subunit e led to an increase in mRNAs related to
the p53 pathway, such as FAS and GADD45α, and a decrease in mRNAs related to survival
and DNA replication/repair, such as UBE2V1, FGF11, CDC45, and JAK3. Furthermore,
silencing of the eIF3 subunit e resulted in increased radiosensitivity in LN18 and U251
glioblastoma cell lines, suggesting a potential therapeutic avenue [202]. Targeting the
eIF3 subunit c in U87 cells via siRNA led to suppressed cell proliferation, reduced colony
formation, arrested cell cycle progression at the G0/G1 phase, promoted apoptosis, and
prevented tumorsphere formation in xenograft models. Similar effects were observed in
U251 cells, where knockdown of the eIF3 subunit c decreased proliferation and increased
apoptosis [203,204]. Studies targeting the eIF3 subunit b in U87 cells and subunit d in
both U87 and U251 cells showed that the knockdown of these subunits impeded glioma
cell growth and proliferation, indicating their crucial role in glioma cell survival [205,206].
While not directly related to m6A methylation reading, the various subunits of eIF3 have
potential prognostic value in gliomas. The expression levels of these subunits correlate
with the severity and progression of the disease, suggesting their usefulness as biomark-
ers for glioma prognosis [207]. eIF3, particularly its various subunits, plays a significant
role in the molecular mechanisms of glioma, influencing cell proliferation, survival, and
response to treatments such as radiotherapy. The ability of eIF3 to initiate translation of
m6A-modified mRNA independent of the m7G cap adds another layer of complexity to its
role in glioma biology, presenting potential targets for therapeutic intervention. Targeting
m6A reader proteins, like eIF3, to enhance radiotherapy sensitivity and modulate YTHDF,
YTHDC, and HNRNP proteins to counteract chemotherapeutic resistance represents future
research avenues to improve glioma treatment efficacy. Additionally, investigating the
IGF2BP family’s influence on stemness and immune evasion could lead to novel interven-
tions. The development of biomarkers to quantify these proteins’ expression will facilitate
personalized treatment approaches.

4.4. Other RNA Modifications in Glioma Pathogenesis and Treatment Resistance

Knowledge of other RNA modifications in glioma pathogenesis is still limited. Some
reports have demonstrated the influence of RNA m5C modifications on glioma’s biological
characteristics, including proliferation, differentiation, migration, and malignancy [208].
Regulators of m5C, including NOP2, NSUN4, NSUN5, and NSUN7, have been linked to
poor prognosis, while NSUN6 is associated with better outcomes [209]. In the glioblastoma
cell line U87, NSUN2 has been shown to facilitate cell migration through the enhancement
of mRNA cytosine methylation [210]. Compared to healthy tissue, glioma specimens show
varied expression of m5C regulators, including DNMTs, NSUNs, TETs, YTHDF2, ALYREF,
and YBX1 [211].

A-to-I editing is another significant RNA modification in glioma. It involves the re-
editing of the glutamate receptor subunit B at the Q/R site, crucial for receptor functionality
in the central nervous system [212]. Low-activity ADAR2, prevalent in gliomas, leads to
reduced RNA editing of the GluA2 subunit at the Q/R site [213,214]. Similarly, ADAR3, a
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brain-specific adenosine deaminase, plays a comparable role in gliomas [215]. Decreased
ADAR3 expression correlates with glioma progression, and A-to-I editing has been exten-
sively linked to glioblastoma cell proliferation, migration, and invasion [216–218]. In terms
of treatment resistance, experimental findings have revealed that increased expression of
ADAR3 enhances the resistance to TMZ [219]. This expression alteration affects 641 genes,
primarily regulated by NF-κB signaling pathways. Additionally, GSCs are central to A-to-I
RNA editing in glioblastoma, with ADARs influencing GSC self-renewal and stem-like
traits, potentially affecting the response to TMZ.

The role of other RNA modifications, such as m7G RNA methylation, in glioma, is
still being unraveled. Research has indicated that out of 31 m7G methylation regulators
studied, 17 exhibited higher expression levels in gliomas [220]. Moreover, an imbalance in
m1A regulators is closely related to glioma onset and progression [220,221]. The inhibition
of TRMT6, an m1A methyltransferase, impairs glioma cell proliferation, migration, and
invasion (Figure 2).
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RBM15, ZC3H13, and KIAA1429/VIRMA, collectively form the methyltransferase complex in the
nucleus, utilizing SAM as a methyl donor to catalyze mRNA methylation. Conversely, ‘erasers’
such as FTO and ALKBH5 demethylate m6A-mRNA, reversing the modifications introduced by the
writers. Within the cytoplasm, ‘readers’ such as YTHDFs, YTHDC2, HNRNPC, and the IGF2BP family
recognize and bind to m6A-mRNA, affecting its stability, nuclear export, splicing, and translation.
The involvement of IGF2BPs indicates their role in stabilizing m6A-mRNA, which is crucial for
regulating gene expression that is vital for glioma progression. Furthermore, proteins like HNRNPs
and eIF3 are implicated in splicing and translation, underscoring the complexity and importance of
the m6A modification system in glioma pathogenesis. METTL3: Methyltransferase Like 3; METTL14:
Methyltransferase Like 14; WTAP: Wilms’ Tumor 1-Associating Protein; RBM15: RNA Binding Motif
Protein 15; ZC3H13: Zinc Finger CCCH-Type Containing 13; KIAA1429/VIRMA: Vir Like m6A
Methyltransferase Associated; SAM: S-adenosylmethionine; FTO: Fat Mass and Obesity-Associated
Protein; ALKBH5: AlkB Homolog 5; YTHDF: YTH Domain Family; YTHDC: YTH Domain Con-
taining; HNRNP: Heterogeneous Nuclear Ribonucleoprotein; IGF2BP: Insulin-like Growth Factor 2
mRNA-Binding Proteins; eIF3: Eukaryotic Translation Initiation Factor 3.
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5. Conclusions

In summary, the rapidly advancing field of epitranscriptomics, particularly RNA mod-
ifications, has gained significant attention as a novel focus in understanding and potentially
targeting neurological diseases. This review has highlighted the essential role of RNA mod-
ification in various diseases, emphasizing its impact on mRNA stability, translation, and the
control of protein levels in disease-associated pathways. Specifically, m6A modification in
glial cells is crucial for the onset and progression of neurological diseases like Alzheimer’s
disease and glioma. However, despite the current focus on DNA methylation, histone
modifications, and chromatin rearrangement in neurological diseases, the critical biological
functions of RNA modification have been relatively underexplored and warrant further in-
vestigation. Additionally, while m6A modification is increasingly studied in various fields,
a significant number of enzymes responsible for these modifications—known as writers,
erasers, and readers—remain unidentified. This holds significant pertinence when consid-
ering neurodegenerative diseases like Parkinson’s disease (PD), where m6A-modification
genes have been identified, but their association with the disease needs more comprehen-
sive study. Therefore, future efforts should delve deeper into the role of RNA modifications
in the nervous system, which could reveal new molecular targets for pharmacological and
clinical therapy development for uncurable neurological diseases.
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