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Abstract: Chlorine (Cl2) exposure poses a significant risk to ocular health, with the cornea being
particularly susceptible to its corrosive effects. Antioxidants, known for their ability to neutralize
reactive oxygen species (ROS) and alleviate oxidative stress, were explored as potential therapeutic
agents to counteract chlorine-induced damage. In vitro experiments using human corneal epithelial
cells showed decreased cell viability by chlorine-induced ROS production, which was reversed by
antioxidant incubation. The mitochondrial membrane potential decreased due to both low and high
doses of Cl2 exposure; however, it was recovered through antioxidants. The wound scratch assay
showed that antioxidants mitigated impaired wound healing after Cl2 exposure. In vivo and ex
vivo, after Cl2 exposure, increased corneal fluorescein staining indicates damaged corneal epithelial
and stromal layers of mice cornea. Likewise, Cl2 exposure in human ex vivo corneas led to corneal
injury characterized by epithelial fluorescein staining and epithelial erosion. However, antioxidants
protected Cl2-induced damage. These results highlight the effects of Cl2 on corneal cells using in vitro,
ex vivo, and in vivo models while also underscoring the potential of antioxidants, such as vitamin A,
vitamin C, resveratrol, and melatonin, as protective agents against acute chlorine toxicity-induced
corneal injury. Further investigation is needed to confirm the antioxidants’ capacity to alleviate
oxidative stress and enhance the corneal healing process.
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1. Introduction

The cornea, as the transparent outermost layer of the eye, is susceptible to injuries
and damage from various factors [1–7]. Corneal wound healing is a crucial process for
restoring its integrity and visual function. However, oxidative stress resulting from reactive
oxygen species (ROS) can hinder the healing process, leading to delayed recovery and
potential complications, such as photokeratoconjunctivities, photokeratitis, pingueculae
and pterygia, cataracts, glaucoma, and macular degeneration [2–10]. Corneal injuries
trigger an inflammatory response, leading to the release of ROS, which can cause cellu-
lar damage and impede the healing process [11–13]. Oxidative stress disrupts cellular
functions, delays the migration and proliferation of corneal cells, and interferes with the
extracellular matrix remodeling necessary for effective wound closure [13–15]. Antioxi-
dants are molecules that neutralize ROS, preventing cellular damage and maintaining a
healthy redox balance [16–19]. They scavenge free radicals, stabilize cell membranes, and
modulate signaling pathways involved in inflammation and tissue repair. In recent years,
research has focused on the potential benefits of antioxidants in supporting corneal wound
healing [20–24]. The enzymatic antioxidants that have been documented to be present in
the cornea include superoxide dismutases (SODs), catalase (CAT), glutathione peroxidases
(GPXs), reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) [25,26].
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Common antioxidants include vitamins C and E, superoxide dismutase (SOD), glu-
tathione, and various plant-derived compounds that also have antioxidant effects [27,28].
The therapeutic effects of antioxidants are investigated on corneal epithelial and stromal
cells exposed to oxidative stress, resulting in wound healing [20–24]. Antioxidants, such
as vitamin A, vitamin C, melatonin, NAC (N-acetylcysteine), and resveratrol, play essen-
tial roles in neutralizing harmful reactive oxygen species (ROS) and protecting cells from
oxidative damage [25]. Vitamin A, or beta-carotene, is an antioxidant and can be effective
in enhancing wound strength in rats [29]. Vitamins C, D, and E and acetylcysteine helped
corneal wound healing [30–32]. Especially, vitamin C prevents lipid peroxidation and
apoptosis in corneal endothelial cells and improves the antioxidant enzyme activity in rat
eyes [33–35]. Melatonin is a hormone that regulates the sleep–wake cycle and has strong
antioxidant properties. Research suggests that melatonin may help protect ocular tissues,
including the cornea, from oxidative damage caused by environmental factors such as UV
radiation. Melatonin ameliorates oxidative stress in granular corneal dystrophy, dry eye,
and diabetic models [36–41]. N-Acetylcysteine (NAC) exhibits various beneficial effects,
such as rescuing oxidative stress-induced angiogenesis in a mouse corneal alkali-burn
model, increasing corneal endothelial cell survival in a mouse model of Fuchs endothe-
lial corneal dystrophy, reducing oxidative stress for cytosine arabinoside in a rat model,
and promoting the long-term survival of cones in a model of retinitis pigmentosa [42–45].
Resveratrol demonstrates protective effects on human corneal epithelial cells, safeguarding
them from inflammation, oxidative stress damage, cytotoxicity induced by moxifloxacin
and benzalkonium chloride, hyperosmolar conditions, and enhancing wound healing
through the attenuation of oxidative stress-induced impairment of cell proliferation and
migration, showcasing the potential for the treatment of dry eye disease and various ocular
diseases [46–51]. Of note, some of the antioxidants noted above, such as resveratrol, may
not be strictly antioxidants and may affect other pathways other than ROS activity.

Several studies have highlighted the significance of antioxidant activities within the
cornea. Tsao et al. explored the effect of total antioxidant capacity (TAC) in aqueous
humor on corneal endothelial health, discovering that both TAC and ascorbic acid (AA)
independently safeguarded against low endothelial cell density [52]. Additionally, Higuchi
et al. conducted research into the role of antioxidants in the treatment of corneal disorders,
pinpointing selenoprotein P as a substance that imparts antioxidative effects on corneal
epithelial cells [53]. In their study, Koskela et al. delved into oxidative stress and protein
accumulation in different corneal diseases, identifying that oxidative stress and the activa-
tion of the molecular chaperone response were prevalent in keratoconus, macular corneal
dystrophy, and Fuchs endothelial corneal dystrophy [54]. Stoddard et al. evaluated the
bioavailability and effectiveness of antioxidants in human corneal limbal epithelial cells,
ascertaining that quercetin, epigallocatechin gallate, n-propyl gallate, and gallic acid all
demonstrated antioxidant activity [55]. These collective studies underscore the vital role of
antioxidants in preserving corneal health and their potential in the therapeutic treatment of
corneal disorders.

Acute chlorine toxicity on the cornea refers to the harmful effects of exposure to
chlorine gas or chlorine-containing substances on the eye’s corneal tissue [56,57]. Chlorine
is a highly reactive and corrosive chemical commonly used in industrial settings, swimming
pools, and household cleaning products [57–60]. When chlorine gas or chlorine-based
compounds come into contact with the cornea, they can cause severe damage, leading to
various ocular symptoms and potential long-term consequences [57,61,62]. Exposure to
chlorine gas can lead to symptom onset at concentrations of 1–3 ppm, which is characterized
by mucus membrane irritation. Eye irritation becomes evident at 5–15 ppm, accompanied
by moderate upper respiratory tract irritation [56]. Higher concentrations of chlorine gas,
such as 430 ppm, can result in death within 30 min, and concentrations exceeding 1000 ppm
can lead to death within just a few minutes [56]. The severity of symptoms tends to increase
with higher concentrations of chlorine gas [63]. Following chlorine exposure, the eyes may
show signs of infections, abrasions, and corrosions in the conjunctiva [64]. The symptoms
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from chlorine gas exposure can occur immediately or be delayed, appearing 24 h after
exposure [56,63]. Chlorine-related corneal injuries typically heal within one to two days
and are characterized by a burning sensation and superficial disruption of the corneal
epithelium. The cornea is highly sensitive and vulnerable to chemical exposure, and acute
chlorine toxicity on the cornea can lead to a range of symptoms reported, including tearing,
soreness, severe discomfort, conjunctiva edema, conjunctivitis, excessive tearing, blurred
vision, a sensation of having a foreign object in the eye, photophobia, corneal abrasions,
and superficial punctate keratopathy [65–68], as well as foreign body sensation in the
eye, pterygium, chronic conjunctivitis, and premature presbyopia [56,61]. The affected
eye may also become swollen, and vision may be temporarily blurred or reduced [69,70].
Chlorine exposure can cause direct injury to the corneal epithelial cells, leading to the loss
of the epithelial layer and the formation of corneal ulcers [56,71]. Chlorine, a disinfectant
used in swimming pools and tap water, can damage the corneal epithelium. As a result,
frequent swimmers may experience symptoms such as redness, itching, ocular surface
epithelial damage, and eye irritation [71]. An ophthalmic examination may reveal ciliary
injection and superficial punctate keratitis, which can be attributed to chlorine’s presence
in swimming pools [72].

Our study demonstrates that antioxidants have protective effects on corneal cells,
shielding them from oxidative damage caused by Cl2 exposure. Furthermore, these an-
tioxidants promote cell migration and accelerate wound closure, indicating their potential
to enhance the healing process of corneal injuries. Combining antioxidant treatment with
standard care or other regenerative approaches may result in synergistic effects, further
augmenting corneal wound healing. Future research should focus on (1) exploring the
underlying mechanisms of Cl2 injury to the cornea and the protective role of antioxidants
in observed changes, such as fluorescein staining, corneal thickness, and epithelial edema;
(2) evaluating antioxidants using in vivo and ex vivo models; and (3) optimizing antioxi-
dant formulations, dosages, and delivery methods to maximize their therapeutic potential.
Antioxidants show significant promise in supporting corneal wound healing by combating
oxidative stress and creating an environment conducive to tissue repair. As our understand-
ing of their mechanisms deepens and more clinical evidence emerges, antioxidant-based
therapies could become valuable tools in ophthalmology, contributing to the recovery of
corneal injuries and overall improvement of ocular health.

2. Materials and Methods
2.1. Materials

The following materials were used for this study: vitamin A (#11017, Cayman, CO,
USA), vitamin C (#A4403, Sigma-Aldrich, St. Louis, MO, USA), melatonin (#M 5250,
Sigma-Aldrich, St. Louis, MO, USA), N-Acetyl Cysteine (NAC; #A9165, Sigma-Aldrich,
St. Louis, MO, USA), chlorine (#198016, Thermo Fisher Scientific, Waltham, MA, USA), and
resveratrol (#554325, Sigma-Aldrich, St. Louis, MO, USA).

2.2. Cell Culture

Human corneal epithelial cell (HCEC) cultures were initiated from cadaver corneas
kindly provided by the Illinois (Chicago, IL, USA) and Midwest eye banks (Ann Arbor,
MI, USA) [73,74]. Human corneal epithelial cells were cultured in 10% fetal bovine serum
(FBS; # F2442, Sigma-Aldrich, St. Louis, MO, USA), 1X L-glutamine (#MT25005CI, Corning,
NY, USA), 1X NEAA (#11140050, Gibco, Bilings, MT, USA), and 1% penicillin-streptomycin
(P/S; #MT30002CI, Corning, NY, USA) in 5% CO2 at 37 ◦C [73,74].

2.3. LDH Toxicity Assay

HCECs were precisely dispensed into 96-well culture plates at a density of 3 × 104 cells
per well, utilizing a complete growth medium optimized for this cell type. Following an
incubation period of 12 h to permit cell adhesion and stabilization, the cells underwent a sin-
gle washing step with 200 µL of phosphate-buffered saline (PBS) at isotonic concentration.
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Subsequently, the cells were subjected to varying concentrations of antioxidant compounds,
which were administered in a basal Dulbecco’s Modified Eagle Medium (DMEM) and
incubated for 24 h to assess the protective efficacy against oxidative stress. In parallel, to
evaluate the cellular response to Cl2, a similar protocol was employed wherein post-wash,
HCECs were incubated with Cl2 at concentrations ranging from 1 to 3000 ppm, dissolved in
DMEM, for 24 h. Upon the completion of the exposure period, a volume of 50 µL of the cell
culture supernatant was carefully combined with an equal volume of the LDH reaction mix-
ture, prepared by the stipulated guidelines provided by the manufacturer (#C2030, Thermo
Fisher Scientific, Waltham, MA, USA). This mixture was then transferred to a 96-well
flat-bottom plate and allowed to incubate at ambient temperature for 30 min, facilitating
the development of the enzymatic reaction. The resultant chromogenic substrate conver-
sion was quantitatively measured by recording the optical density at dual wavelengths,
specifically 490 nm and 680 nm, utilizing a Cytation5 microplate reader. The reliability and
reproducibility of the data were ensured by conducting the assays in triplicate across six
independent experimental replicates, as substantiated by references [73,74].

2.4. Cell Proliferation

HCECs were cultured on a 4-well chamber slide and incubated for 12 h to promote
cell adhesion and stabilization. After this, the cells were treated with a different culture
medium for 2 h, washed, and then cultured for another 24 h to encourage proliferation.
The proliferation of HCECs was assessed by measuring DNA content using the CyQuant®

NF Cell Proliferation Assay (#C35006, Invitrogen, Waltham, MA, USA). Following a total
of 36 h of incubation, the supernatant was removed, and cells were incubated with a
1× CyQuant dye solution for fluorescence development. Fluorescence intensity, reflecting
cell proliferation, was measured with an excitation wavelength of 485 nm and an emission
wavelength of 530 nm using a Gen5 plate reader and conducted in triplicate for six samples
to ensure data reliability [74].

2.5. In Vitro Scratch Assay

HCECs were plated in 6-well culture plates at a density of 5 × 106 cells per well, using
media supplemented with 10% FBS to ensure optimal growth conditions. Following a
12-h incubation period to establish confluent monolayers, a sterile 200 µL pipette tip was
employed to introduce a standardized scratch, simulating a wound. After this wounding
procedure, monolayers were rinsed twice with 1× PBS to eliminate any detached cells. Prior
to the administration of antioxidant treatments, cells were subjected to a 30-min exposure
to Cl2, which was followed by another two 1× PBS washes to remove any residual Cl2. The
migration and closure of the scratch wound were monitored at designated time intervals.
This was accomplished by capturing sequential images of the scratch area with a high-
resolution spinning disk confocal microscope (Z1; Carl Zeiss Meditec, Jena, Germany).
Quantitative analysis of the wound healing process was facilitated by utilizing ImageJ
software to measure the area of the scratch that remained unhealed over time. To ensure
the reproducibility and accuracy of the results, these assays were conducted in triplicate
with five independent experimental replicates [74].

2.6. Mitochondria Membrane Potential Assay

The evaluation of mitochondrial membrane potential in human corneal epithelial cells
(HCECs) was conducted utilizing the JC-1 Mitochondrial Membrane Potential Assay Kit
(Catalog #ab113850, Abcam, Cambridge, MA, USA), in strict adherence to the supplier’s
protocol. HCECs were seeded into 96-well opaque culture plates at a density of 2 × 105 cells
per well and allowed to adhere and grow for 24 h. After incubation, the cells underwent
a 30-min treatment with Cl2, after which they were washed and further incubated with
antioxidants for an additional 24 h to assess the protective effects on mitochondrial integrity.
The JC-1 assay was then performed by incubating the cells with a 1 µM JC-1 staining
solution for 30 min at 37 ◦C. A parallel set of wells received dilution buffer alone, serving
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as the control condition. Post incubation, imaging was carried out in the dilution buffer
to evaluate the mitochondrial membrane potential. Fluorometric detection was executed
employing a Cytation5 plate reader, with an excitation wavelength set at 475 nm and
dual emission wavelengths of 530 ± 15 nm and 590 ± 17.5 nm to distinguish between the
monomeric and aggregated states of JC-1, respectively, indicative of the mitochondrial
membrane potential status [74].

2.7. Chlorine Treatment on Naïve Murine Eyes

All in vivo procedures were meticulously executed in strict accordance with the ARVO
Statement for the Use of Animals in Ophthalmic and Vision Research, ensuring the highest
standards of ethical conduct. The experimental protocol received full endorsement from
the University of Illinois at Chicago’s Committee on the Ethics of Animal Experiments
(UIC) and the Biosafety Committee, affirming the commitment to ethical research practices.
C57BL/6J mice, aged between six and ten weeks, were anesthetized via an intraperitoneal
administration of a ketamine–xylazine solution, at dosages of 100 mg/kg and 5 mg/kg,
respectively, as referenced in a previous publication [74]. These wild-type mice served as
the biological model for assessing ocular toxicity attributable to chlorine exposure. The
experimental regimen involved the application of graded concentrations of Cl2 (ranging
from 1 to 2000 ppm; 10 µL for 30 s) to the murine corneas, administered daily over two
weeks. Repetitive measurements were carried out in triplicates with four independent
subjects per group. Post-treatment, corneal integrity was evaluated using a 1 mg/mL
fluorescein solution (BioGlo; HUB Pharmaceuticals, Plymouth, CA, USA), which was
applied to the corneal surface for one minute. After the application, any residual staining
solution was carefully blotted away with Kimwipes. The extent of corneal injury was then
assessed by examining and capturing images of the fluorescein staining under a Nikon FS-2
slit lamp at 30X magnification. Quantitative analysis of the fluorescein staining intensity
was conducted using MetaMorph software (Molecular Devices, Version 7.8.13.0), enabling
precise data acquisition on corneal damage following chlorine exposure [74].

2.8. Ex vivo Model of Human and Murine Cornea Culture

For murine eyeballs, wild-type mice were used to take basal images of bright-field
and fluorescein (1 mg/mL) for basal and followed by treatment with chlorine injury
(100–500 ppm, 2 mL, 30–60 min) and then with antioxidants (or vehicle control) for up to
7 days (n = 12 per group). The eyes were examined and imaged with a slit lamp every
day for 3 days along with fluorescein staining visualized under a cobalt blue light. The
outcome measures in the ex vivo human corneas include (i) corneal damage after chlorine
exposure (bright-field image and fluorescein staining), (ii) histopathologic examination of
the corneal structure and corneal epithelial cells (H&E), and (iii) corneal epithelial/stromal
cell apoptosis (TUNEL staining).

Donated human corneas from an Eversight eye bank facility (Michigan, Ohio, Illinois,
New Jersey, and Connecticut) were used. For the human cornea, intact human corneas were
selected and washed with 1× PBS containing antibiotics. Human corneas were imaged with
bright-field and fluorescein staining (1 mg/mL) for basal and followed by treatment with
chlorine injury (100–500 ppm, 2 mL, 30–60 min) and then with treatment with antioxidants
(or the vehicle control) for up to 7 days (n = 12 per group). The eyes were examined and
imaged with a slit lamp every day for 3 days along with fluorescein staining visualized
under a cobalt blue light. The outcome measures in the ex vivo human corneas include
(i) corneal damage after chlorine exposure (bright-field image and fluorescein staining),
(ii) histopathologic examination of the corneal structure and corneal epithelial cells (H&E),
and (iii) corneal epithelial/stromal cell apoptosis (TUNEL staining).
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2.9. Histology

For hematoxylin and eosin (H&E) staining, cryo-sections were fixed in neutral buffered
10% formaldehyde (Sigma-Aldrich, St. Louis, MO, USA) for 20 min and followed the
protocol as previously described [73,74].

2.10. Detection of ROS (O2
− and H2O2) in Tissues

For IF staining, two cryo-sections from each group (total of 14 slides, seven different
groups) were fixed in neutral buffered 10% formaldehyde (Sigma-Aldrich, St. Louis, MO,
USA) for 20 min, following the previously described protocol [73,74]. The final concentra-
tions of DCF-DA (20 µM, Fisher, #50-187-4597) and DHE (5 µM, Cayman, #NC2189794)
were freshly prepared and applied to the slides for 30–60 min in a moisture chamber
without light. After incubation, the slides were washed twice with 1× PBS and prepared
with 1 µL of DAPI for confocal microscopy (Z1; Carl Zeiss Meditec, Jena, Germany).
DCF-DA staining was used to detect reactive oxygen species (ROS) in green fluorescence
(Ex:Em = 502/523 nm), while DHE staining was specifically used to detect superoxide
(O2

−) in red fluorescence (Ex:Em = 490/595 nm).

2.11. Statistical Analysis

Statistical analysis was performed utilizing GraphPad Prism 5 software (Version 5.01,
GraphPad Software, Inc., San Diego, CA, USA). The data are expressed as mean ± standard
deviation (SD), derived from three independent experimental runs. To ascertain the signifi-
cance of differences between groups, two-tailed nonparametric t-tests were employed, with
the analyses facilitated by both GraphPad Prism and Microsoft Excel software (Version 2019,
Microsoft Corp., Redmond, WA, USA). A P value of less than 0.05 was predetermined as
the threshold for statistical significance.

3. Results
3.1. Cytotoxicity Assay of Antioxidants and Cl2 on HCECs

In this study, we aimed to determine the optimal range of antioxidants and the
cytotoxicity concentration (CC50) of Cl2 in HCECs using a lactate dehydrogenase (LDH)
cytotoxicity assay. In order to determine the non-toxic range for the antioxidant, a range of
concentration was tested, which showed a dose-dependent decrease in cell viability, with
noticeable effects observed at the following concentrations: 0.5 µM for vitamin A, 0.4 µM
for vitamin C, 10 µM for resveratrol, 1 mM for melatonin, and 1 mM for NAC (Figure 1a–e).
Chlorine exposure demonstrated cytotoxic effects on HCECs, with a reduction in cell
viability starting at 1 ppm and approximately 50% loss of viability at 100 ppm (Figure 1f).
Based on these findings, we identified the optimal dose of antioxidants to be 100 ppm
Cl2 for our model of chlorine-mediated cell injury. This concentration strikes a balance
between antioxidant protection and chlorine-induced injury, making it suitable for further
investigation in our experimental setup.

3.2. Cell Proliferation of Antioxidants on Cl2-Treated HCECs

We investigated the impact of antioxidants on HCECs after exposure to Cl2. At
100 ppm Cl2 exposure, cell viability decreased, but treatment with antioxidants (vitamin
A, vitamin C, resveratrol, melatonin, and NAC) effectively reversed the Cl2-induced cell
damage (Figure 2a). Moreover, incubation with antioxidants alone, without Cl2 exposure,
led to a significant increase in cell proliferation compared to the untreated control (vitamin
A: 1.45 ± 0.17, vitamin C: 1.99 ± 0.26, resveratrol: 1.83 ± 0.20, melatonin: 2.59 ± 0.21, NAC:
2.55 ± 0.16 vs. control: 1.0 ± 0.1) in HCECs (Figure 2b). However, when HCECs were
exposed to 100 ppm Cl2 before antioxidant incubation, the fold change in cell proliferation
significantly decreased compared to the untreated control (vitamin A: 0.62 ± 0.08, vitamin
C: 0.93 ± 0.13, resveratrol: 0.77 ± 0.10, melatonin: 0.92 ± 0.13, NAC: 1.05 ± 0.11, Cl2:
0.12 ± 0.01 vs. control: 1.0 ± 0.1) in HCECs (Figure 2b). These results strongly suggest that
antioxidants have the potential to reverse Cl2-mediated inhibition of cell proliferation in
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HCECs. They not only enhance cell proliferation when applied alone but also counteract
the negative effects of Cl2 exposure, thus offering a promising avenue for mitigating
chlorine-induced damage and promoting cell recovery.
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Figure 2. Cell proliferation of antioxidants in Cl2-treated HCECs. (a,b) The HCECs are exposed to
100 ppm Cl2 for 30 min and are followed by treatment with antioxidants for 24 h. The results indicate
the percentage of cell proliferation vs. the control cells (untreated). Values are the mean ± SEM
(n = 6). The data were analyzed by one-way ANOVA analysis with Tukey’s post hoc analysis. A
significant difference, ### p < 0.001 was observed in the percentage of cell viability vs. untreated
cells and Cl2-treated cells. A significant difference, *** p < 0.001 was observed in the percentage of
cell viability vs. antioxidant-treated cells. Vitamin A: 100 µM, vitamin C: 300 µM, resveratrol: 5 µM,
melatonin: 100 µM, NAC: 500 µM.
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3.3. Effect of Antioxidant on Cl2-Induced ROS Production in HCECs

To assess the impact of antioxidants after Cl2 exposure on HCECs, we measured
cellular ROS levels. As depicted in Figure 3a, various concentrations of Cl2 induced a
significant four~six-fold increase in cellular ROS accumulation compared to the untreated
control (Cl2 1 ppm: 1.53 ± 0.18, 10 ppm: 1.72 ± 0.30, 100 ppm: 3.49 ± 0.36, 500 ppm:
3.04 ± 0.84, 1000 ppm: 4.63 ± 0.67, 2000 ppm: 4.89 ± 1.02, 3000 ppm: 6.14 ± 0.94 vs.
control: 0.89 ± 0.04). In contrast, treatment with antioxidants did not show a significant
difference compared to the untreated control (vitamin A: 1.01 ± 0.13, vitamin C: 1.47 ± 0.07,
resveratrol: 1.61 ± 0.04, melatonin: 1.12 ± 0.10, NAC: 0.85 ± 0.07 vs. control: 0.89 ± 0.04).
Moreover, when cells were exposed to 100 ppm Cl2, ROS levels surged by four to five times;
however, incubating antioxidants mitigated the cellular ROS accumulation to one~three-
fold compared to the Cl2-treated group. These results highlight that Cl2 exposure induces
mitochondrial damage and elevates oxidative stress, resulting in a significant increase in
cellular ROS levels (Figure 3b). However, the administration of antioxidants effectively
combats these deleterious effects, offering a potential therapeutic approach to ameliorate
oxidative stress and its detrimental consequences induced by Cl2 exposure in HCECs
(Figure 3b).

Cells 2024, 13, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 2. Cell proliferation of antioxidants in Cl2-treated HCECs. (a,b) The HCECs are exposed to 
100 ppm Cl2 for 30 min and are followed by treatment with antioxidants for 24 h. The results indicate 
the percentage of cell proliferation vs. the control cells (untreated). Values are the mean ± SEM (n = 
6). The data were analyzed by one-way ANOVA analysis with Tukey’s post hoc analysis. A signifi-
cant difference, ### p < 0.001 was observed in the percentage of cell viability vs. untreated cells and 
Cl2-treated cells. A significant difference, *** p < 0.001 was observed in the percentage of cell viability 
vs. antioxidant-treated cells. Vitamin A: 100 µM, vitamin C: 300 µM, resveratrol: 5 µM, melatonin: 
100 µM, NAC: 500 µM.  

3.3. Effect of Antioxidant on Cl2-Induced ROS Production in HCECs 
To assess the impact of antioxidants after Cl2 exposure on HCECs, we measured cel-

lular ROS levels. As depicted in Figure 3a, various concentrations of Cl2 induced a signifi-
cant four~six-fold increase in cellular ROS accumulation compared to the untreated con-
trol (Cl2 1 ppm: 1.53 ± 0.18, 10 ppm: 1.72 ± 0.30, 100 ppm: 3.49 ± 0.36, 500 ppm: 3.04 ± 0.84, 
1000 ppm: 4.63 ± 0.67, 2000 ppm: 4.89 ± 1.02, 3000 ppm: 6.14 ± 0.94 vs. control: 0.89 ± 0.04). 
In contrast, treatment with antioxidants did not show a significant difference compared 
to the untreated control (vitamin A: 1.01 ± 0.13, vitamin C: 1.47 ± 0.07, resveratrol: 1.61 ± 
0.04, melatonin: 1.12 ± 0.10, NAC: 0.85 ± 0.07 vs. control: 0.89 ± 0.04). Moreover, when cells 
were exposed to 100 ppm Cl2, ROS levels surged by four to five times; however, incubating 
antioxidants mitigated the cellular ROS accumulation to one~three-fold compared to the 
Cl2-treated group. These results highlight that Cl2 exposure induces mitochondrial dam-
age and elevates oxidative stress, resulting in a significant increase in cellular ROS levels 
(Figure 3b). However, the administration of antioxidants effectively combats these delete-
rious effects, offering a potential therapeutic approach to ameliorate oxidative stress and 
its detrimental consequences induced by Cl2 exposure in HCECs (Figure 3b). 

 
Figure 3. Effect of antioxidants on Cl2-induced ROS production in HCECs. (a,b) The HCECs were 
pretreated with Cl2 for 30 min followed by 24 h of antioxidant treatment. The results indicate the 
fold change of ROS level vs. the control cells (untreated). Values are the mean ± SEM (n = 6). A 

Figure 3. Effect of antioxidants on Cl2-induced ROS production in HCECs. (a,b) The HCECs were
pretreated with Cl2 for 30 min followed by 24 h of antioxidant treatment. The results indicate the fold
change of ROS level vs. the control cells (untreated). Values are the mean ± SEM (n = 6). A significant
difference, *** p < 0.001 was observed in the fold change of ROS vs. untreated cells and Cl2-treated
cells. ### p < 0.001 was observed in the fold change of ROS vs. untreated cells and antioxidant-treated
cells. Vitamin A: 100 µM, vitamin C: 300 µM, resveratrol: 5 µM, melatonin: 100 µM, NAC: 500 µM.

3.4. Mitochondrial Membrane Potential in HCECs

To assess the effects of antioxidants on maintaining high mitochondrial membrane
potential (MMP) after Cl2 exposure, HCECs were treated with antioxidants following Cl2
exposure. As MMP is a critical indicator of mitochondrial activity, the use of antioxidants
appears to preserve mitochondrial function in the presence of Cl2. As depicted, exposure
to 100 ppm Cl2 for 30 min resulted in a significant decrease in the percentage of MMP
compared to the control group (100 ppm: 28.59% vs. control: 100%). However, when
antioxidants were incubated after Cl2 exposure, the decline in MMP induced by Cl2 was
ameliorated compared to the Cl2-exposed group (Figure 4). These findings collectively
indicate that Cl2 exposure impairs mitochondrial function, leading to a decrease In MMP.
However, antioxidant therapy effectively restores the compromised mitochondrial func-
tion induced by Cl2 exposure, highlighting the potential of antioxidants in preserving
mitochondrial activity and mitigating the adverse effects of Cl2 on HCECs.
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Figure 4. Mitochondrial membrane potential in HCECs. Cells are exposed to 100 ppm Cl2 for
30 min prior to treating antioxidants. The results indicate the percentage of mitochondrial membrane
potential vs. the control cells (untreated). Values are the mean ± SEM (n = 6). A significant difference,
### p < 0.001 was observed in the percentage of cell viability vs. untreated cells. A significant
difference, *** p < 0.001 was observed in the percentage of cell viability vs. Cl2-treated cells. Vitamin
A: 100 µM, vitamin C: 300 µM, resveratrol: 5 µM, melatonin: 100 µM, NAC: 500 µM.

3.5. Wound-Healing Assay to Detect Cell Migration of HCECs

To investigate whether antioxidants can promote wound healing in HCECs delayed by
Cl2 exposure, we incubated the optimal doses of antioxidants (vitamin A: 100 µM, vitamin
C: 300 µM, resveratrol: 5 µM, melatonin: 100 µM, NAC: 500 µM) after Cl2 exposure. As
depicted in Figure 5, Cl2 exposure resulted in cell damage and delayed wound healing,
as evidenced by the reduced percentage of wound closure (Cl2: 16.6 ± 1.78% vs. control
group: 35.4 ± 9.96%). However, when vitamin C and NAC were incubated after Cl2
exposure, they significantly promoted wound healing compared to the control group
(vitamin C: 68.8 ± 13.09%, NAC: 60.6 ± 14.61%). In contrast, vitamin A, resveratrol, and
melatonin did not show a significant improvement in wound healing compared to the
control group (vitamin A: 12.6 ± 4.20%, resveratrol: 16 ± 4.14%, melatonin: 17 ± 4.02%).
These findings indicate that antioxidant therapy, particularly with vitamin C and NAC, can
effectively counteract the delay in cornea cell wound healing caused by Cl2 exposure. These
antioxidants demonstrate the potential to promote wound closure and may hold promise
as therapeutic agents to facilitate the recovery of corneal tissue after Cl2-induced damage.
Further investigations are warranted to understand the specific mechanisms underlying
the wound healing-promoting effects of these antioxidants in HCECs.
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Figure 5. Wound-healing assay to detect cell migration of HCECs. (a,b) Wound scratch in HCECs
exposed to 100 ppm Cl2 for 30 min prior to treating antioxidants. (a) Representative images showing
scratch wound assay in HCLE cells. White dot: wound area. (b) Graph showing wound healing rate
for different conditions in epithelial scratch wounds (n = 5/group) at 30 h. *** p < 0.001 was observed
in the cell mobility (µm) vs. untreated cells and Cl2-treated cells. Va: vitamin A, Vc: vitamin C, Res:
resveratrol, Mel: melatonin, vitamin A: 100 µM, vitamin C: 300 µM, resveratrol: 5 µM, melatonin:
100 µM, NAC: 500 µM.



Cells 2024, 13, 458 10 of 19

3.6. In Vivo Evaluation of Cl2 Impact on Mice Eyes

Next, we performed experiments in a murine model to determine whether Cl2 ex-
posure can cause corneal epitheliopathy in vivo. We applied freshly prepared Cl2 and
exposure to naïve murine corneas for 1 min per topical application per day for up to
2 weeks. The fluorescein staining was greatly increased at 1 week and 2 weeks compared
to day 0 (Figure 6a). Subsequently, Cl2 exposure induced damage to the central cornea
and stromal layer (asterisk) in murine corneas (Figure 6b). Cl2 exposure at 1000 ppm
and 2000 ppm resulted in significantly higher corneal fluorescein staining after 1 week
compared to baseline (1000 ppm: 1.56-fold, 2000 ppm: 2.23-fold, vs. control). Starting from
2 weeks, Cl2 exposure at 10 ppm to 2000 ppm showed a significant increase in corneal
fluorescein staining compared to the control group at 2 weeks (10 ppm: 1.9-fold, 100 ppm:
1.79-fold, 500 ppm:1.92-fold, 1000 ppm: 1.4-fold, 2000 ppm: 2.1-fold, vs. control) (Figure 6c).
This result indicated that Cl2 exposure can cause dose-dependent corneal epitheliopathy
in vivo.
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Figure 6. In vivo evaluation of chlorine’s impact on mice eyes using corneal fluorescein staining. Mice
corneas were applied to various doses of Cl2 (1, 10, 100, 500, 1000, and 2000 ppm; 10 µL, 30 s) once a
day for 2 weeks. (a) Representative images of murine corneas showing fluorescein staining with Cl2
treatment. (b) H&E staining of various doses of Cl2-treated murine corneas. E: epithelium, S: stroma.
*: damaged area. (c) Graph showing the intensity fold change of corneal fluorescein staining after
application of Cl2 treatment (n = 4/group) for 2 weeks. Values are the mean ± SEM (n = 4). The
results indicate that corneal fluorescein staining was greatly increased in a dose-dependent manner
compared to the control group (PBS-treated). A significant difference, *** p < 0.001 was observed in
the fold change of fluorescein staining vs. the control groups (PBS-treated on 1 week or 2 weeks).
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3.7. Ex Vivo Evaluation of Cl2 Effects

In parallel experiments, we investigated whether the effect of Cl2 exposure on naïve
murine cornea was determined by an ex vivo model. Significantly greater corneal fluores-
cein staining was observed on day 2 following the application of 500 ppm Cl2 compared
to day 0 (Cl2: 1.71-fold vs. PBS: 1.09-fold) (Figure 7a,b). H&E and microscopic analysis
of murine eyes showed corneal epithelial loss and stromal edema upon Cl2 exposure
compared with the control (asterisk, Cl2: 20.99 ± 11.16 µm vs. PBS: 60.67 ± 14.23 µm)
(Figures 7c,d and S1a,b). Therefore, Cl2 exposure to the eye causes severe ocular toxicity,
corneal epithelial damage, and abnormal stroma structure ex vivo. As shown in Figure 7e–h,
antioxidant-treated groups showed less corneal fluorescein staining (PBS: 1.27-fold, Cl2:
14.64-fold, Cl2 + vitamin A: 5.23-fold, Cl2 + vitamin C: 1.35-fold, Cl2 + resveratrol: 1.91-fold,
Cl2 + melatonin: 5.89-fold, Cl2 + NAC: 1.27-fold on day 2) and prevented corneal epithe-
lial loss compared to the Cl2-exposed group (PBS: 80.00 ± 2.00 µm, Cl2: 14.67 ± 5.51 µm,
Cl2 + vitamin A: 71.67 ± 15.28 µm, Cl2 + vitamin C: 73.33 ± 33.39 µm, Cl2 + resveratrol:
66.00 ± 1.73 µm, Cl2 + melatonin: 77.33 ± 4.04 µm, Cl2 + NAC: 84.00 ± 8.54 µm on day 2).
In parallel in vitro experiments, ROS and superoxide were measured to determine the effect
of antioxidants after Cl2 exposure on the murine cornea. Fluorescence microscopy images
showed increasing ROS and superoxide generation after Cl2 exposure, while antioxidant
treatment ameliorated compared to the Cl2-exposed group (Figures 7i and S1c).
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1x PBS for 2 days. (a) Representative images of murine whole eyeballs showing fluorescein staining
with or without Cl2 treatment. (b) Graph showing the intensity fold change of corneal fluorescein
staining after application of Cl2 treatment (n = 12/group) for 2 days. Values are the mean ± SEM
(n = 11). The results indicate that corneas with 500 ppm Cl2 became opaque and hazy with more
fluorescein staining of the cornea and conjunctiva than the PBS-treated group. (c) H&E staining
on murine whole eyeballs after application of PBS or chlorine 500 ppm for 2 days. E: epithelium,
S: stroma. *: damaged area. (d) Murine cornea thickness after 500 ppm Cl2 exposure. *** p < 0.001 was
observed in the cornea thickness vs. the control group (PBS treatment). Values are the mean ± SEM
(PBS: n = 11, Cl2: n = 12). (e) Representative images of murine whole eyeballs showed fluorescein
staining. (f) Graph showing the intensity fold change of corneal fluorescein staining after application
of antioxidants (n = 4/group) for 2 days. *** p < 0.001 was observed in the corneal fluorescein staining
vs. the control group (PBS-treated on day 2). ### p < 0.001 was observed in the corneal fluorescein
staining vs. Cl2-treated group on day 2. (g) H&E staining on murine whole eyeballs with antioxidants
after application of Cl2 500 ppm for 2 days. E: epithelium, S: stroma. *: damaged area. Vitamin A
(Va): 100 µM, vitamin C (Vc): 300 µM, resveratrol (Res): 5 µM, melatonin (Mel): 100 µM, and NAC:
500 µM for 2 days. (h) Murine cornea thickness. *** p < 0.001 was observed in the cornea thickness
vs. the control group (PBS-treated). (i) Relative fold changes of immunofluorescence intensity from
Figure S1c. *** p < 0.001 was observed in the ROS and superoxide groups vs. the control group
(PBS-treated). # p < 0.05, ## p < 0.01, ### p < 0.001 were observed in the ROS and superoxide groups
vs. the Cl2 treatment group.

To investigate the effects of Cl2 on human cornea ex vivo, we selected intact hu-
man corneas for Cl2 exposure. As shown in Figure 8, 500 ppm Cl2 exposure was not
shown to change corneal fluorescein staining compared to the PBS control group at day
1 (1.03 ± 0.01 vs. 0.98 ± 0.01). Interestingly, Cl2 exposure significantly increased corneal
fluorescein staining compared to the PBS control group at day 2 (1.45 ± 0.18 vs. 1.07 ± 0.18)
(Figures 8b and S2). Subsequently, Cl2 exposure induced damage to the central cornea
(asterisk), more so than the peripheral cornea or corneal–limbus area in human corneas
(Figure 8c). Moreover, H&E and microscopic analysis showed that Cl2 exposure resulted
in a 1.2~1.6-fold increase in human corneal thickness compared with the control corneas
(Figures 8d and S3). In a parallel experiment, antioxidants were treated after Cl2 expo-
sure decreased corneal fluorescein staining compared to the PBS control group on day 2
(Figure 8e,f) (PBS: 1.40-fold, Cl2: 2.56-fold, Cl2 + vitamin A: 1.03-fold, Cl2 + vitamin C:
1.50-fold, Cl2 + resveratrol: 1.00-fold, Cl2 + melatonin: 1.27-fold, Cl2 + NAC: 0.78-fold). As
a result, Cl2 exposure to the cornea showed (1) a rough surface of the epithelial layer on the
corneal surface, (2) a loose epithelial layer (corneal epithelial erosion), (3) separation of the
epithelial–stromal layer, (4) and corneal edema; however, (5) antioxidant treatment protects
Cl2-induced epithelial–stromal damage.
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Figure 8. Ex vivo evaluation of Cl2 effects on human corneas. (a–d) Human corneas were exposed to
500 ppm Cl2 for 3 days. (a) Representative images of human corneas showing fluorescein staining with
or without Cl2 treatment. (b) Graph showing the intensity fold change of human cornea fluorescein
staining after Cl2 exposure (n = 12/group) for 3 days. *** p < 0.001 was observed in the fold change of
fluorescein staining vs. the control group (PBS). The results indicate that corneas exposure to 500 ppm
Cl2 showed higher levels of fluorescein staining on both the cornea and conjunctival compared to
the PBS-exposed group. (c) H&E staining of Cl2-treated human corneas. Black star: damaged area,
E: epithelium, S: stroma. (d) Human cornea thickness after 500 ppm Cl2 exposure. ** p < 0.05 was
observed in the cornea thickness vs. the control group (PBS). Values are the mean ± SEM (PBS:
n = 12, Cl2: n = 12). (e) Representative images of human corneas showed fluorescein staining by Cl2
treatment and followed by antioxidants (Va, Vc, Res, Mel, and NAC). (f) Graph showing the intensity
fold change of corneal fluorescein staining after application of antioxidants (n = 4/group) for 2 days.
*** p < 0.001 was observed in the corneal fluorescein staining vs. the control group (PBS treatment
on day 2). # p < 0.05, ### p < 0.001 were observed in the corneal fluorescein staining vs. Cl2-treated
group on day 2.

4. Discussion

In this study, we tested the effects of Cl2 in in vitro (human corneal epithelial cells),
ex vivo (mouse eyeballs and human corneas), and in vivo mouse models. The main
findings of our study are as follows: Cl2 exposure significantly (1) decreased cell viability,
(2) increased ROS generation, (3) decreased MMP, and (4) delayed in vitro wound healing.
However, known antioxidants (vitamin A, vitamin C, resveratrol, melatonin, and NAC)
could reverse Cl2-mediated damages. Moreover, ex vivo and in vivo studies showed that
Cl2 exposure showed (5) corneal epithelial damage, (6) separation of the epithelial–stromal
layer, and (7) corneal edema. Therefore, we proposed that antioxidants have therapeutic
potential to protect against Cl2 eye injury and could be used in the development of targeted
ocular therapies.
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Previous studies have established the toxic effects of chlorine gas exposure. Cl2 gas, a
highly reactive and toxic substance, is classified as a pulmonary irritant. It finds widespread
use in various industries and household applications, including water treatment, disin-
fection, and cleaning products [59,60,66]. Exposure to chlorine gas, being water-soluble,
can result in a range of health issues, contingent upon the dose and duration of expo-
sure [57,59,60]. Acute exposure to high doses of Cl2 gas may cause dyspnea, violent
cough, nausea, vomiting, lightheadedness, headache, chest pain, abdominal discomfort,
and corneal burns. Moreover, even low doses of Cl2 gas can lead to chest pain, cough, sore
throat, and hemoptysis [59,60,66].

We have previously reported that nitrogen mustard similarly induced ROS, change
in MMP, and delay in wound healing in corneal epithelial cells, which was mitigated
by the mesenchymal stem cell secretome [74,75]. Our current findings revealed that Cl2
decreased cell viability (Figure 1f) and cell proliferation (Figure 2), increased intracellular
ROS generation (Figure 3), decreased MMP in HCECs (Figure 4), and delayed wound
healing (Figure 5). However, the optimized dose of antioxidants (vitamin A, vitamin
C, resveratrol, and melatonin) incubation showed significantly reversed Cl2-mediated
cellular damages, such as increased cell viability and cell proliferation, downregulated ROS
accumulation, and stabilized MMP levels. While we did not investigate the mechanisms
underlying the protective effects of antioxidants in our current study, considering our
current focus on the therapeutic potential of antioxidants on Cl2 exposure, it will be of
great interest to investigate the Cl2-involved mechanism by dose and exposure duration in
the future.

Our in vitro similarly showed that Cl2 exposure delayed corneal wound healing
(Figure 5) and increased corneal fluorescein staining in an in vivo model (Figure 6). Interest-
ingly, more than 10 ppm Cl2 gradually increased corneal fluorescein staining over a period
of two weeks (Figure 6a,c), which indicates a more long-lasting effect. These results suggest
that continuous Cl2 exposure causes ocular surface epithelial damage and likely deeper lay-
ers of the epithelium, including the more basal cells, which include stem/progenitor cells.
Only vitamin C and NA incubation after Cl2 exposure promotes wound healing in vitro
(Figure 5), and other tested antioxidants did not have the same effect on wound healing.
It is interesting to note that both vitamin C and NAC are mostly known as antioxidants,
while the tested chemicals (vitamin A, melatonin, resveratrol) are also known to affect
other pathways. Future studies are needed to determine the effects of antioxidants and the
specific mechanisms after Cl2 injury.

In murine corneas, Cl2 exposure significantly increased epithelial edema (Figure 7c,d).
The effect of antioxidants after Cl2 exposure in murine corneas in vivo will be studied in
the future. Also, our previous study demonstrated that induced loss of membrane integrity
of surface epithelium and corneal stromal matrix by nitrogen mustard exposure resulted
in epithelial and stromal inflammation and apoptosis [74]. In our study, we employed
both in vivo and ex vivo models using human and mouse corneas. To evaluate in vitro
data, we conducted ex vivo experiments using both human cornea and mouse cornea.
Cl2 injury increased mouse corneal fluorescein staining (epithelial damage); however,
the antioxidant treatment showed significantly less staining than the Cl2-treated group
(Figure 7e,f). In correlation with staining data, H&E staining data suggested that Cl2 injury
significantly damaged the corneal epithelial layer, but antioxidant (Va, Vc, Res, Mel, and
NAC) treatment prevented Cl2-induced corneal epithelial damage (Figure 7g,h). According
to the data, there is a correlation between ROS accumulation in human corneal epithelial
cells (Figure 3b) and the effect of antioxidants on MMP (Figure 4). IF staining data further
supports the impact of antioxidants on Cl2-induced ROS and superoxide detection in
in vivo tissues (Figures 7i and S1c). The provided data confirms that staining with ROS
and superoxide can ascertain the injury of murine corneal epithelium and the therapeutic
effect of antioxidants.

In parallel experiments, murine eyeballs and donated intact human corneas were
used to determine the effects of Cl2 in ex vivo conditions. The results showed that corneas
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exposed to Cl2 exhibited increased fluorescein staining on both the cornea and conjunctiva
areas (Figure 8a,b). Additionally, H&E staining revealed damaged areas in the Cl2-treated
human corneas, specifically in the epithelium and stroma. Furthermore, the corneas ex-
posed to 500 ppm Cl2 showed increased epithelial edema compared to the control group
(Figure 8c,d). Statistical analysis indicated significant differences in fluorescein staining
intensity and cornea thickness between the Cl2-exposed group and the control group
(Figure 8d). More interestingly, antioxidant-treated groups (Va, Vc, Res, Mel, and NAC) de-
creased fluorescein staining intensity means preventing human corneal epithelial damage
compared to Cl2-treated human corneas (Figure 8e). It suggests that antioxidants can pro-
tect against chlorine exposure to mouse corneas. These samples can be indirectly assessed
for antioxidant effects through oxidative stress and superoxide staining [74]. Direct assess-
ment can be achieved using the Trolox Equivalent Antioxidant Capacity method [52,76,77].
Furthermore, we hypothesize that Cl2-induced ROS triggers mitochondrial dysfunction.
To investigate this, we propose using cellular oxygen consumption rate (OCR) and extracel-
lular acidification rate (ECAR) as functional assays. These tools will allow us to evaluate
the capacity of antioxidants to mitigate potential mitochondrial dysfunction caused by
Cl2-induced ROS. Based on the findings, further investigations and future plans could
include as follows: (1) extending the exposure time beyond 3 days to evaluate the long-
term impact of Cl2 on human corneal tissues; (2) conducting experiments with varying
concentrations of Cl2 to assess the dose-dependent effects on human corneas; (3) exploring
the underlying mechanisms of Cl2 injury on the corner and the protection mechanism of
antioxidants responsible for the observed changes in fluorescein staining, corneal thickness,
and epithelial edema; (4) evaluation of antioxidants in the in vivo and ex vivo models
(relating to oxidative stress/superoxide), MMP, Trolox Equivalent Antioxidant Capacity,
cellular oxygen consumption rates and extracellular acidification rates, (5) influence of Cl2
on the corneal limbal stem cells using 2 mm or limbus-to-limbus corneal wound model
with an especially low dose of Cl2 treatment; and (6) assessing the effectiveness of potential
therapeutic agents or treatments aimed at mitigating Cl2-induced corneal damage. It is
essential to continue research in this area to enhance our understanding of Cl2-induced
corneal toxicity and develop strategies to protect and treat affected individuals effectively.

In summary, our study demonstrates the protective role of antioxidants in preventing
Cl2-induced corneal injury. This protection is associated with enhanced corneal epithelial
cell migration, proliferation, and maintenance of mitochondrial dynamic balance in human
cornea cells. Furthermore, we successfully replicated Cl2-induced corneal injury in both
murine eyeballs and donated human corneas using ex vivo models. However, to gain a
comprehensive understanding of the effects of antioxidants on Cl2-induced injury in the ex
vivo model, further studies are warranted.

5. Conclusions

Our study sheds light on the potential benefits of antioxidant therapy in countering
acute chlorine-induced corneal injury. These findings hold promise for developing effective
treatments to safeguard ocular health and mitigate the harmful effects of Cl2 exposure to
the cornea.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells13050458/s1, Figure S1: H&E staining on Cl2-exposed murine
eyeball. (a,b) H&E staining of Cl2-exposed murine eyeballs for 3 days. (c) IF staining of ROS (DCF-
DA: Green), superoxide (DHE: Red), and DAPI (Blue). Scale bar, 50 µm; Figure S2: Fluorescein
staining on the human cornea after Cl2 exposure. (a,b) Representative images of human corneas
showing fluorescein staining with or without 500ppm Cl2 treatment for 3 days. BF: Bright field,
Flu: Fluorescein; Figure S3: H&E staining on Cl2-exposed human corneas. (a,b) H&E staining of
Cl2-treated human corneas. E: Epithelium, S: Stroma, En: Endothelium.
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