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Abstract: In vitro-generated blastocyst-like structures are of great importance since they recapitulate
specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as
increasing scalability and accessibility compared to the use of natural embryos. Here, we combine
cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically
similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting
the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-
200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad
hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain
and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like
cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently,
transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied
to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200′s
ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of
the donor’s cell age. Overall, the approach here described represents a novel strategy for the creation
of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri-
and early post-implantation mechanisms.
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1. Introduction

Understanding the main mechanisms underlying the specific events taking place
during the early phase of embryogenesis represents a “critical step” towards developing
novel treatments for infertility and developmental disorders. In addition, the study of
the peri-implantation period in humans should be useful to better characterize the role of
heritable epigenetics and may help in the production of terminally functional differentiated
cells to be used in regenerative medicine [1]. Nonetheless, the use of human embryos is
hindered by in vivo environment inaccessibility as well as by material paucity and the
ethical and legal issues involved [2]. To overcome these limitations, several attempts have
been directed towards the generation of in vitro models able to mimic embryogenesis, and,
in recent years, a set of novel stem cell-based embryo models, defined blastoids [3–10],
have seen the light [2]. Blastoids represent ideal tools to complement research on natural
embryos since they contain both embryonic and extraembryonic cell types and can partially
mimic early embryonic development in vitro. Furthermore, they can be generated in high
quantities with similar genetic makeups and are amenable to experimental manipulation,
including genetic screens, thus providing promising alternatives to the use of human
embryos [2,11].
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To date, different approaches based on the self-aggregation of various stem cell types
have been described for the production of embryo-like structures [3–10]. In this con-
text, we have recently reported the possibility of generating 3D multicellular spherical
structures that are remarkably similar to natural embryos. We start with easily obtain-
able terminally differentiated cells and combine the use of epigenetic cues to erase the
original cell phenotype [12,13] and mechanical stimuli to ease cell aggregation and en-
courage pluripotency [14,15]. The epigenetic modifier used in that experiment was the
well-known eraser agent 5-azacytidine (5-aza-CR), which is able to induce both direct
and indirect demethylating events [12]. Interestingly, it has been demonstrated that its
direct effect is driven by the ten-eleven translocation (TET) family enzymes, which, in
turn, activate the family of miR-200 [16,17]. Indeed, the latter is involved in the removal
of epigenetic blocks and in the re-activation of previously silenced genes during cellular
reprogramming [18–21], thus promoting pluripotency and helping fibroblasts to over-
come the mesenchymal–epithelial transition (MET) barrier [22]. In addition, it has been
recently demonstrated that the use of miR-200s ameliorates senescence in aged cells [16,17],
which, however, maintain their phenotype, thus undergoing “partial reprogramming”, also
defined as “age reprogramming” [23].

Based on this observation, in the present work, we investigate whether the combina-
tion of miR-200 with mechanical cues would allow successful “developmental reprogram-
ming”, with cell de-differentiation to a high plasticity state and the generation of blastoid
structures, starting from easily accessible terminally differentiated fibroblasts isolated
from young and aged individuals (Figure 1). To this purpose, cells belonging to the two
experimental groups were transfected with miR-200s to induce a high plasticity state. Sub-
sequently, miR200-reprogrammed young and aged cells were either driven towards the TR
lineage by using an ad hoc induction protocol [24] or encapsulated into polytetrafluoroethy-
lene (PTFE) micro-bioreactors to support tridimensional cell aggregation and encourage
pluripotency [14,15,25]. Lastly, the generated TR-like cells and ICM-like spheroids were
co-cultured in the same micro-bioreactor and then transferred to microwells to encourage
differentiation and favor blastoid generation [14].
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Figure 1. Scheme illustrating blastoid generation from young and aged skin fibroblasts using miR-
200s and mechanical cues.

2. Materials and Methods

All reagents were obtained from Thermo Fisher Scientific (Milan, Italy), unless other-
wise indicated.
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2.1. Ethical Statement

Human cell lines (GM02674, GM00495, GM08402, GM01706, GM00731, AG09602)
were purchased from the NIGMS Human Genetic Cell Repository at the Coriell Institute
for Medical Research (Camden, NJ, USA). This study did not involve human participants;
therefore, ethical approval was not required.

2.2. Culture of Human Skin Fibroblasts

Fibroblasts obtained from 3 young individuals (29–32 years old) and from 3 aged
donors (82–96 years old) were grown in a fibroblast standard culture medium (FCM) con-
sisting of Eagle’s minimum essential medium supplemented with 15% not heat-inactivated
fetal bovine serum (FBS), 2 mM glutamine (Sigma-Aldrich, Milan, Italy), and a 1% antibi-
otic/antimycotic solution (Sigma-Aldrich, Milan, Italy). Cells were cultured in 5% CO2 at
37 ◦C and passaged twice a week at ratios of 1:3 (young) and 1:2 (aged). All experiments
were carried out using all 6 human fibroblast cell lines at passages between 6 and 8 at least
three times in triplicate.

2.3. Fibroblast Transfection with Synthetic miR-200s

Fibroblasts isolated from young and aged individuals were seeded into 4-well multi-
dishes (Nunc, Milan, Italy) pre-treated with 0.1% gelatin (Sigma-Aldrich, Milan, Italy) at
a density of 2.1 x 104 cells/cm2. At 24 h after seeding, the FCM was removed, cells were
washed in PBS and transfected with 100 nM of miR-200b/c (predesigned mirVANA Mimics)
using RNAi-MAX in Opti-MEMTM medium, following the manufacturer’s instructions,
and incubated for 48 h in 5% CO2 at 37 ◦C. Concentrations and times of exposure were
selected according to our previous work [16].

2.4. Generation of TR-like Cells

At the end of synthetic miR-200b/c treatment, cells were incubated in embryonic
stem cell (ESC) medium consisting of DMEM-low glucose: HAM’S F10 (1:1), 5% FBS, 10%
K.O. serum, 2 mM glutamine (Sigma-Aldrich, Milan, Italy), 0.1 mM β-mercaptoethanol
(Sigma-Aldrich, Milan, Italy), nucleoside mix, 1% non-essential amino acids, 1000 IU/mL
ES-growth factor (LIF, Chemicon, Milan, Italy), and 5 ng/mL b-FGF (R&D System, Milan,
Italy) [26] for 3 h in 5% CO2 at 37 ◦C. TR induction was then induced by culturing cells in
mouse embryonic fibroblast (MEF)-conditioned medium [24] supplemented with 10 ng/mL
bone morphogenetic protein 4 (BMP4, Sigma-Aldrich, Milan, Italy), 1 µM activin/nodal
signaling inhibitor (A83-01, Sigma-Aldrich), and 0.1 µM basic fibroblast growth factor
(FGF2)-signaling inhibitor (PD173074, Sigma-Aldrich, Milan, Italy) [24,26,27] at 37 ◦C in
low O2 condition (5% O2, 5% CO2, 90% N2 atmosphere) for 11 days. The culture medium
was changed every other day.

2.5. Production of ICM-like Spheroids

At the end of synthetic miR-200b/c treatment, cells were resuspended in ESC medium
and encapsulated in PTFE (Sigma-Aldrich, Milan, Italy) micro-bioreactors for 24 h [15]. A
PTFE powder bed with a particle size of 1 µm (Sigma-Aldrich, Milan, Italy, 430935) was
prepared inside a culture dish (Sarstedt, Milan, Italy), and 1 × 104 cells/30 µL of ESC
medium was dispensed on it. Micro-bioreactors were generated by gently rotating in a
circular motion the petri dish, transferred to a new petri dish, and cultured in 5% CO2 at
37 ◦C using a humidified chamber to avoid dehydration.

2.6. Creation of Blastoids

Blastoids were generated by assembling TR-like cells and ICM-like spheroids, as
previously described [14]. More in detail, the TR-like cells differentiated for 11 days were
detached from culture dishes and resuspended in G1-PLUS medium (Vitrolife, Massa, Italy)
at 3 × 104 cells/30 µL concentration. In parallel, ICM-like spheroids were collected from the
micro-bioreactors and transferred into a drop of G1-PLUS medium (Vitrolife, Massa, Italy).
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A 40 µL drop containing 3 × 104 TR-like cells (30 µL) and one single ICM-like spheroid
(10 µL) was dispensed onto a PTFE powder bed to create new micro-bioreactors that were
cultured for 2 days at 37 ◦C in 5% CO2. The generated blastoids were collected and cultured
into non-adherent microwells (AggreWellTM, Stemcell Technologies, Basel, Switzerland) in
G2-PLUS medium (Vitrolife, Massa, Italy). After 24 h, 105 PODS Activin A (Cell Guidance
Systems, Cambridge, UK) were added to 150 µL of G2-PLUS medium (Vitrolife, Massa,
Italy), and blastoids were maintained for an additional 4 days in 5% CO2 at 37 ◦C.

2.7. Morphological and Morphometric Evaluations

Cell morphology was monitored daily using an Eclipse TE200 inverted microscope
(Nikon, Firenze, Italy), connected to a Digital Sight camera (Nikon, Firenze, Italy). ICM-like
spheroid and blastoid morphometric evaluations were carried out by acquiring pictures
with NIS-Elements Software (Version 4.6; Nikon, Firenze, Italy). Spheroid diameters were
then measured using ImageJ software (ImageJ software version 1.53j).

2.8. Gene Expression Analysis

RNA was extracted using the TaqManGene Expression Cells-to-CT kit following the
manufacturer’s instructions. DNase I (1:100) was added to the lysis solution. Quantitative
real-time PCR was carried out using predesigned gene-specific primers and probe sets
(TaqManGene Expression Assays, Table 1). The GAPDH and ACTB genes were selected
as reference genes. Target gene analysis was carried out using the CFX96 Real-Time PCR
detection system (Bio-Rad Laboratories, Milan, Italy) and the CFX Manager software
(Bio-Rad Laboratories version 3.1).

Table 1. List of primers used for quantitative PCR analysis.

GENE DESCRIPTION CAT.N.

ACTB Actin, beta Hs01060665_g1
CGA Glycoprotein hormones, alpha polypeptide Hs00985275_g1
CGB Chorionic gonadotropin beta Hs03407524_uH

CYP11A1 Cytochrome P450 family 11, subfamily A, member 1 Hs00167984_m1
ESRRB Estrogen-related receptor beta Hs01584024_m1

GAPDH Glyceraldehyde-3-phosphate dehydrogenase Hs02786624_g1
GCM1 Glial cells missing homolog 1 Hs00172692_m1

HSD17B1 Hydroxysteroid 17-beta dehydrogenase 1 Hs00166219_g1
KRT19 Keratin 19 Hs00761767_s1

NANOG Nanog homeobox Hs02387400_g1
OCT4 POU class 5 homeobox 1 Hs04260367_gH
PGF Placental growth factor Hs00182176_m1

REX1 ZFP42 zinc finger protein Hs01938187_s1
SOX2 SRY-Box transcription factor 2 Hs04234836_s1

2.9. Blastoid Cell Separation

Single blastoids were separately analyzed. More in detail, each blastoid was disso-
ciated to a single cell suspension by a double enzymatic digestion with collagenase IV
(300 U/mL, Sigma-Aldrich, Milan, Italy) for 30 min and trypsin–EDTA solution (Sigma-
Aldrich, Milan, Italy) for 20 min, followed by mechanical dissociation by pipetting. Cell
suspension was filtered with a 30 µm nylon mesh (Pre-Separation Filters, 30 µm, # 130-041-
407, Miltenyi Biotec, Bologna, Italy) and centrifuged at 300× g for 5 min. Supernatants were
disposed of, and trophoblast cell surface antigen 2 (TROP2)+ cells were isolated using the
magnetic-activated cell sorting (MACS, Miltenyi Biotec, Bologna, Italy) protocol, following
the manufacturer’s instructions. TROP2− cells were isolated by applying the same protocol
and collecting the flow-through. The two cell populations obtained were subjected to gene
expression analysis.
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2.10. Immunocytochemical Analysis

Cells and blastoids were fixed in 4% paraformaldehyde for 20 min, rinsed in PBS,
permeabilized with 0.5% Triton X-100 (Sigma-Aldrich, Milan, Italy) for 30 min, and incu-
bated with a blocking solution containing 10% goat serum (Sigma-Aldrich, Milan, Italy) for
30 min. ICM-like spheroids were dissociated and attached to slides using a cytocentrifuge,
Cytospin 4 (Thermo Shandon, Milan, Italy), before immunocytochemical staining. Primary
antibodies for OCT4 (1:200, Chemicon, Milan, Italy, ab3209), KRT19 (1:200, Abcam, Cam-
bridge, UK, ab76539), and CDX2 (1:50, Santa Cruz Biotechnology, Milan, Italy, sc-166830)
were incubated overnight at +4 ◦C. Samples were then washed with PBS and incubated
with the appropriate secondary antibodies (Alexa Fluor) for 45 min at room temperature
using a 1:250 dilution. Nuclei were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI, Sigma-Aldrich, Milan, Italy). At the end of the immunostaining procedure, cells
were analyzed under an Eclipse E600 microscope (Nikon, Firenze, Italy) equipped with a
digital camera (Nikon, Firenze, Italy); blastoids were transferred, mounted to glass slides,
and visualized under an Eclipse E600 microscope (Nikon, Firenze, Italy) equipped with a
digital camera (Nikon, Firenze, italy). Images were acquired using NIS-Elements Software
(Version 4.6; Nikon).

2.11. Statistical Analysis

Statistical analysis was carried out using the Student’s t-test (SPSS 19.1; IBM). Results
were reported as mean ± standard deviation (SD). Differences of p ≤ 0.05 were considered
significant and were indicated with different superscripts.

3. Results
3.1. Induction of High Plasticity Using miR-200-Mediated Reprogramming

After miR-200 transfection, fibroblasts isolated from both young and aged individuals
displayed considerable phenotype changes. The typical elongated shape, detectable in
control fibroblasts (T0, Figure 2A), switched to a stem-cell-like morphology. Cells became
smaller with larger nuclei, granular and vacuolated cytoplasm, and rearranged in a reticular
pattern, tending to form distinguishable aggregates (miR-200, Figure 2A). This was accom-
panied by the onset of the main pluripotency-related genes, namely OCT4, NANOG, REX1,
and SOX2, which were not expressed in control fibroblasts (T0, Figure 2B). It is interesting
to note that the transcription levels of all the genes analyzed were statistically comparable
between the two experimental groups (young and aged, Figure 2B). These molecular data
were also supported by immunocytochemical analysis, demonstrating OCT4 positivity in
both young and aged cells transfected with miR-200 (young miR200 and aged miR200,
Figure 2C).

3.2. Generation of TR-like Cells from miR-200-Reprogrammed Cells

After 11 days of TR induction, both young and aged cells showed a tight adherent ep-
ithelial morphology, exhibiting a round or ellipsoid shape, round nuclei, and well-defined
borders, regardless of the donor age (young and aged, Figure 3A). Consistent with the
acquisition of the typical TR-like phenotype, cells actively expressed the mature TR-related
markers, namely GCM1, KRT19, PGF, CYP11A1, CGA, ESRRB, CGB, and HSD17B1, which
were absent in control fibroblasts (T0, Figure 3B). Interestingly, the expression values de-
tected in TR-like cells were comparable in young and aged cells (miR-200, Figure 3B).
Immunocytochemical studies confirmed the molecular results and showed KRT19 im-
munopositivity in both young and aged cells transfected with miR200 and differentiated
towards the trophectoderm lineage (Figure 3C).
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Figure 2. Induction of high plasticity through miR-200-mediated reprogramming: (A) After miR-
200b/c transfection, fibroblasts isolated from young and aged individuals lost their typical elongated
shape (T0) and became smaller in size with granular, vacuolated cytoplasm, larger nuclei, and
formed distinguishable aggregates (miR-200) (scale bars: 100 µm). (B) Transcription levels for the
pluripotent-related genes OCT4, NANOG, REX1, and SOX2 in young (green bars) and aged (red bars)
untreated fibroblasts (T0) and in fibroblasts transfected with miR-200 (miR-200). Gene expression is
presented with the highest expression set to 1 and all others relative to this. Different superscripts
indicate significant differences (p < 0.05). (C) Immunostainings show immunopositivity of miR-200-
reprogrammed young and aged cells for the pluripotency-related marker OCT4. Nuclei are stained
blue (scale bars: 100 µm).
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Figure 3. Generation of TR-like cells from miR-200-reprogrammed cells: (A) At day 11 of trophoblast
induction, young and aged cells acquired a tight adherent epithelial morphology, exhibiting a round
or ellipsoid shape with round nuclei and well-defined borders (scale bars: 100 µm). (B) Transcription
levels for TR-related genes (GCM1, KRT19, PGF, CYP11A1, CGA, ESRRB, CGB, HSD17B1) in un-
treated young (green bars) and aged (red bars) fibroblasts (T0) and at day 11 of trophoblast induction
(miR200). Gene expression levels are reported, with the highest expression set to 1 and all others
relative to this. Different superscripts indicate significant differences (p < 0.05). (C) Immunostainings
show young and aged cell positivity for the TR marker KRT19 (red). Nuclei are stained blue (scale
bars: 100 µm).

3.3. Creation of ICM-like Spheroids from miR-200-Reprogrammed Cells

After miR-200 transfection, young and aged cells, encapsulated in PTFE micro-bioreactors,
aggregated in 3D spherical structures (young and aged, Figure 4A). Consistently, the
generated ICM-like structures actively express the main pluripotency-related genes OCT4,
NANOG, REX1, and SOX2, originally absent in untreated cells (T0, Figure 4B). This was
also confirmed by the OCT4 immunopositivity of cells isolated from young and aged ICMs
(young and aged, Figure 4C).
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Figure 4. Creation of ICM-like spheroids from miR-200-reprogrammed cells: (A) Young and aged
fibroblasts transfected with miR-200 and encapsulated in PTFE micro-bioreactors form 3D spherical
structures (scale bars: 100 µm). (B) Expression levels for the pluripotent-related genes OCT4, NANOG,
REX1, and SOX2 in young (green bars) and aged (red bars) untreated fibroblasts (T0) and in fibroblasts
transfected with miR-200 and encapsulated in PTFE micro-bioreactors (miR.200). Gene transcription
values are reported with the highest expression set to 1 and all others relative to this. Different
superscripts denote significant differences (p < 0.05). (C) Immunostainings show immunopositivity
of cells isolated from young and aged ICMs for the pluripotency-related marker OCT4. Nuclei are
stained blue (scale bars: 100 µm).

3.4. Creation of Blastoids by Assembling TR-like Cells and ICM-like Spheroids Obtained from
miR-200-Reprogrammed Cells

After 2 days of co-culture into PTFE micro-bioreactors, TR-like cells and ICM-like
spheroids self-organized into single 3D spheroids (young and aged, Figure 5A), and, at
the end of a 7-day culture period in microwells, they generated blastoids with a uniform
round shape (young and aged, Figure 5B) and a size ranging from 100 to 200 µm, regardless
of the donor age (young and aged, Figure 5C). Morphometric evaluation demonstrated
that 79.67 ± 10.23% of the 3D spherical structures obtained using young cells displayed
a diameter of 151–200 µm and 20.33 ± 7.25% of 100–150 µm (young, Figure 5C). Sim-
ilarly, 84.39 ± 12.56% of blastoids generated with cells isolated from aged individuals
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showed a diameter of 151–200 µm and 15.61 ± 6.45% of 100–150 µm (aged, Figure 5C).
Immunostaining highlighted CDX2+ cells confined to the outer layer of the generated
blastoids, while OCT4+ cells were localized in the inner compartment (Figure 5D). Fur-
thermore, molecular analyses indicated that TROP2− cells were shown to actively express
the pluripotency-related genes OCT4, NANOG, REX1, and SOX2, while TROP2+ cells
transcribed the TR-related markers GCM1, KRT19, PGF, CYP11A1, CGA, ESRRB, CGB, and
HSD17B1 (Figure 5E).
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Figure 5. Generation of blastoids by assembling TR-like cells and ICM-like spheroids obtained from
miR-200-reprogrammed cells: (A,B) Representative images of young and aged blastoids cultured
in PTFE ((A) scale bars: 100 µm) and in micro-wells ((B) scale bars: 100 µm). (C) Rates of young
(green bars) and aged (red bars) blastoids showing diameters ranging from 100 to 150 µm and
from 151 to 200 µm. Superscripts a,b indicate significant differences (p < 0.05). (D) Representative
immunostaining of young and aged blastoids showing CDX2+ cells (red) localized to the outer
layer of the spheroids and OCT4+ cells (green) in the inner compartment. Nuclei are stained blue
(scale bars: 100 µm). (E) Transcription levels for pluripotency- (OCT4, NANOG, REX1, SOX2) and
TR-related genes (GCM1, KRT19, PGF, CYP11A1, CGA, ESRRB, CGB, HSD17B1) in TROP2+ and
TROP2- young (green bars) and aged (red bars) cells. Gene transcription is indicated with the highest
expression set to 1 and all others relative to this.
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4. Discussion

The successful generation of in vitro blastocyst-like structures starting from embryonic
stem cells (ESCs), induced pluripotent stem cells (iPSCs), or epigenetically erased cells has
been recently demonstrated [5,7,10,14,28–30]. In the present manuscript, we describe a new
approach that combines miR-200-mediated reprogramming ability with mechanical stimuli
to create in vitro 3D spherical structures that are phenotypically similar to natural embryos.
To our knowledge, this strategy has not been applied before for the creation of blastocyst-
like structures. In addition to its novelty, this method offers the advantage of easily
accessible cells as starting material and avoids the use of any retroviral and/or lentiviral
vectors, as well as the insertion of transgenes. The significant improvement offered by the
protocol described is also represented by the ease of performance that involves a simple
transfection of miR-200s to induce a high permissivity state in adult dermal fibroblasts,
obtained either from young or aged donors. Significant changes are evident in both groups,
with the acquisition of morphological and molecular features distinctive of pluripotent cells.
In particular, the typical fibroblast elongated shape changes to a round or oval one, and
cells decrease in size, with granular, vacuolated cytoplasm rearranging in distinguishable
aggregates, regardless of the cell donor’s age. All these aspects closely resemble the typical
round morphology previously described for human ESCs [31] and iPSCs [32], which
form compact colonies with distinct borders and well-defined edges [31–34]. Consistent
with what was recently demonstrated in cells reprogrammed with miR-200s [16], both
young and aged transfected fibroblasts show larger nuclei with less cytoplasm, a feature
generally associated with the relaxed and accessible chromatin structure typically described
in high-plasticity cells [35–38]. All this indicates miR-200′s ability to encourage properties
previously observed in both native and induced pluripotent cells. The switch towards a
pluripotent phenotype is also corroborated by the molecular studies that demonstrate the
onset of OCT4, NANOG, REX1, and SOX2 transcription. These observations confirm and
further expand previous studies demonstrating that miR-200 overexpression results in ESC
self-renewal and the induction of Nanog transcription while inhibiting embryoid body
formation and repressing the expression of ectoderm-, endoderm-, and mesoderm-related
markers [39,40]. This is coherent with the miR-200 family’s ability to remove epigenetic
blocks and help fibroblasts overcome the MET barrier during cellular reprogramming [22].

Interestingly, the development of 3D culture systems that support robust long-term
and feeder-free self-renewal of pluripotent cells has been recently described and demon-
strated to boost and stabilize high plasticity [15,25,41,42]. In line with these findings,
encapsulation of miR-200-reprogrammed cells in PTFE micro-bioreactors coax cells to
assemble in multicellular 3D spheroids reminiscent of ICM-like morphology and steadily
transcribing for the main pluripotency-related genes.

On the other hand, taking advantage of the acquired high plasticity state, miR-200-
reprogrammed cells can be driven towards the TR lineage using an ad hoc induction
protocol that favors the acquisition of a tight adherent epithelial morphology with a round
shape and well-defined borders in both young and aged cells. This is consistent with
previous observations that described the differentiation of human iPSCs and epigeneti-
cally converted cells towards the TR lineage with the same induction cocktail, containing
BMP4, activin/nodal-, and FGF2-signaling inhibitors [24,27,43–52], and confirms that, when
present at adequate concentrations, these molecules are able to coax cells unidirectionally
into the TR phenotype [27,49,53,54]. The activation of the molecular pathways distinctive
of the newly acquired differentiation is also demonstrated by the active transcription of
mature TR-related markers, such as GCM1, KRT19, PGF, CYP11A1, CGA, ESRRB, CGB,
and HSD17B1, as well as by KRT19 immunopositivity which was detected in all TR-like
cells, regardless of the donor’s age.

Assembly of ICM-like spheroids and TR-like cells in a confined common micro-
environment allows the generation of single 3D spherical structures, formed by the two
cell components, and encourages the generation of blastoids that display a uniform round
shape and diameters statistically comparable in young and aged cells. It is interesting to
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note that around 80% of the generated structures exhibit a diameter ranging from 151 to
200 µm that well fits with the average reported values of natural blastocysts. We think
this is an important point since, together with morphological similarity, measurements
are considered a key aspect among the parameters and criteria currently used to define
human blastoid models [5,14]. In addition, the localization of cells within the spheroids,
demonstrated by the immunostaining studies showing CDX2+ cells localized externally,
surrounding the generated blastoids, and OCT4+ cells closely assembled within them,
further indicate that the newly formed spheroids display a cell lineage segregation similar
to natural blastocysts and that this feature is maintained both in young as well as in aged
blastoids. This is further confirmed by the molecular data obtained after sorting blastoid-
derived cells with the surface marker TROP2, which highlights a transcription pattern
distinctive of the two coexisting components, the TR and the ICM.

The approach presented in this manuscript offers the possibility of easily obtaining
artificial blastoids that can find useful application in the study of peri- and early post-
implantation mechanisms as well as for the further understanding of early developmental
processes. It also offers the advantages of scalability, accessibility, limited variables, and
direct manipulation. In the future, these newly generated structures could also be useful
in identifying therapeutic targets as well as supporting preclinical modeling, offering an
ethical alternative to the use of natural ones.
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