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Abstract: Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs)
with increased proliferative potential that move into tissues and ultimately differentiate into a
specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated
cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial
stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea
and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population
of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where
they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the
mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial
cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea
and whether TACs could represent a population of cells with progenitor-like capabilities within the
cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the
most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate
into SCs.

Keywords: dedifferentiation; transit-amplifying cells (TACs); limbal epithelial stem cells (LESCs);
stem cells; progenitors; cornea; centrifugal movement

1. Introduction

Stem cells were first identified in the bone marrow, which are now known as hematopoi-
etic stem cells [1–8]. Since then, a number of stem cells have been identified in various
tissues throughout the body, where they are able to maintain homeostasis and regenerate
tissues after damage [9–12]. A vital property of stem cells is the capability to undergo asym-
metric division, producing a stem cell that maintains the stem cell pool and another cell
that moves out of the stem cell niche and differentiates into a specialized cell type. A critical
step in this process is the intermediary state between the stem cell and the differentiated
cell, which is the transit-amplifying cell (TAC). Thus, TACs represent the transition state
between an undifferentiated cell and a cell that is committed to a certain lineage [13]. Stem
cells are deemed quiescent cells; however, TACs are characterized by rapid proliferation
to generate new cells that are required to maintain/regenerate the tissue [13,14]. Over the
years, substantial focus has been dedicated to identifying stem cells within tissues and
characterizing the stem cell niche; however, significantly less focus has been dedicated to
the TACs. Understanding the mechanisms that govern the transition of TACs from the
stem cell state to the differentiated state is crucial for understanding how stem cells main-
tain tissue homeostasis and regenerate tissues after injury, and it is crucial for developing
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stem cell-based therapies. Furthermore, recent studies have suggested that TACs could
represent a reversible state between stem cells and differentiated cells; thus, understanding
the mechanisms that govern the potential dedifferentiation of TACs into stem cells would
significantly advance the field of regenerative medicine.

The cornea is the outer most part of the eye, which serves as a protective barrier against
continuous environmental insults; however, despite this, it must remain transparent to
allow the passage of light into the eye for vision. A vital property of the cornea that allows
it to maintain transparency throughout life is the existence of stem cell populations within
the limbal region, including the limbal epithelial stem cells (LESCs). LESCs reside in the
transition zone between the transparent cornea and the conjunctival epithelium [15], in a
specific niche called the limbal stem cell niche (LSCN). The LSCN is comprised of cellular
elements, such as mesenchymal cells, immune cells, melanocytes, nerve and vascular
cells; extracellular matrix (ECM) components, including hyaluronan (HA); and signaling
molecules [16]. The importance of LESCs for maintaining a healthy cornea is evidenced by
the consequence of the loss of LESCs, which leads to limbal stem cell deficiency (LSCD), a
condition characterized by conjunctivalization of the cornea, chronic epithelial erosions,
chronic inflammation, neovascularization, and severe pain [17]. Recently, various studies
have reported that progenitor cells exist in the central cornea that could also participate
in corneal epithelial regeneration [18–20]. Given that TACs represent a transition state
between stem cells and differentiated cells, and as they exist in the cornea, they could
represent the progenitor-like cell population that has been suggested to exist within the
cornea. Furthermore, TACs have high proliferative activities and extensive cell population
expansion capabilities [21]. Although much is known about LESCs and their role in corneal
homeostasis and repair, relatively little is known about the TACs. Herein, this review
will focus on recent advances in our understanding of TACs, particularly in the cornea.
Specifically, we have summarized the evidence in support of the existence of progenitor-like
cells in the cornea and discussed the possibility of these progenitor-like cells being TACs,
and whether these TACs with progenitor-like properties are able to dedifferentiate into
SCs under certain circumstances. To gain further insights into the dynamics of TACs in the
cornea, we also discussed the mechanisms by which the transition between SCs and TACs
is capable of maintaining homeostasis and regeneration in other tissues.

2. Maintenance of Corneal Epithelia during Homeostasis and Following Wounding: The
Role of LESCs and TACs

The corneal epithelium is formed of a stratified epithelium that is continuously
renewed throughout life, with an estimated turnover rate of one week for humans [22].
Up until the discovery of adult stem cells, the corneal epithelium was believed to be a
tissue capable of self-renewal [23]. In the 1960s, Hanna and O’Brien showed that basal
corneal epithelial cells divide and move vertically through the epithelial layers and
eventually slough off within 3.5–7 days, based on 3H-TdR labeling in mice and rats [24],
suggesting the proliferation of basal epithelial cells maintains the corneal epithelium.
By 1983, a model of cell movement, popularly known as the ‘XYZ hypothesis’, was
proposed by Thoft and Friend [25]. The ‘XYZ hypothesis’ states that if the proliferation
of basal epithelial cells is X, the contribution to the cell mass of the centripetal movement
of peripheral cells is Y, and the epithelial cell loss from the surface is Z, then corneal
epithelial maintenance can be defined as: X + Y = Z, thereby proposing that to maintain
homeostasis, the epithelial cell loss must be balanced by cells moving in from the limbal
region and by the proliferation of basal epithelial cells. Originally, this model did not
directly consider the contribution of LESCs to corneal epithelial maintenance, but it
provided the framework for developing the LESC hypothesis proposed in 1986 [26]. We
now know that the Y component of the original XYZ model represents the TACs that
move into the cornea from the limbus. In 2012, Mort et al. suggested the XYZ hypothesis
be redefined as: XTAC + YSC = ZL, where XTAC is the proliferation of the basal corneal
epithelial (believed to be the TACs), YSC is the new TACs that move into the cornea, and
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ZL is the epithelial cell loss from the surface [23]. Upon injury, there is an increased Z,
which requires an increase in basal cell proliferation (X) and/or increased centripetal
cell movement (Y) in order to resurface the corneal epithelium [25].

LESCs undergo asymmetric division, wherein one daughter cell remains as an LESC
and is retained within the limbal stem cell pool, while the other differentiates into TACs
(with high but limited proliferative activity), detaches from the LSCN, and moves cen-
tripetally into the cornea [15] (Figure 1A). As TACs move into the cornea, they progressively
lose their proliferative potential, and ultimately, differentiate into differentiated corneal
epithelial cells [27]. Based on their location and proliferative capacity, TACs are divided into
early or young TACs and late or mature TACs. Early/young TACs exist in the limbal region
and peripheral cornea and have considerable proliferative capacity, whereas late/mature
TACs exist in the central cornea and undergo limited (1–2) rounds of division. These
findings also indicate that under homeostasis, a TAC does not use all its replicative capacity
prior to becoming a post-mitotic differentiated cell. However, upon injury/wounding,
TACs undergo increased amplification divisions to repair the defect, to the extent that they
deplete their proliferative potential [21]. Lehrer et al. also showed that during homeostasis,
TACs have a relatively long cell cycle time of about 72 h and replicate at least twice [21].
But in response to a corneal injury, these TACs reduce their cell-cycle time, undergoing
additional cell divisions. Interestingly, these cell-cycle changes occur concomitantly with
changes in the distribution of cells that express putative LESCs and/or early TAC markers.
For example, CCAAT/enhancer binding protein (C/EBPδ), polycomb complex protein-
Bmi1 and the N-terminal truncated form of p63α (∆Np63α)-positive basal limbal epithelial
cells during normal homeostasis are considered quiescent LESCs (qLESCs). However,
following corneal injury, some of these cells lose C/EBPδ and Bmi1 expression while main-
taining ∆Np63α expression, as they proliferate and move into the cornea, suggesting that
some qLESCs become active LESCs (aLESCs) and early TACs [28]. On the other hand,
in the case of larger wounds, integrin α9-expressing TACs primarily move to repair the
wound, causing a depletion of integrin α9-expressing basal limbal epithelial cells [29].
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Figure 1. Corneal epithelial regeneration during homeostasis (A) and limbal injury (B). During
homeostasis (A), a limbal epithelial stem cell (LESC) undergoes asymmetric division to produce a
transient-amplifying cell (TAC) and another LESC. The TACs move centripetally through the periph-
eral cornea toward the central cornea to replenish the corneal epithelial cells that slough off, while
the LESC remains within the limbal stem cell niche (LSCN). According to the XYZ hypothesis [25],
corneal homeostasis is maintained by balancing the epithelial cell loss by cells moving in from the
limbal region and by the proliferation of basal epithelial cells. Thus, if the proliferation of basal
epithelial cells is X, the contribution to the cell mass of the centripetal movement of peripheral cells is
Y, and the epithelial cell loss from the surface is Z, then corneal epithelial maintenance can be defined
as: X + Y = Z. However, in the case of limbal injury, leading to loss of LESCs (B), studies have shown
that TACs and corneal epithelial cells can move centrifugally toward limbus to resurface the limbal
epithelium. Some groups have speculated that a subset of these cells that move centrifugally from
the cornea into the limbus, possibly the TACs, can potentially dedifferentiate into LESC-like cells.

3. Evidence of the Existence of Progenitor-like Cells in the Peripheral Cornea

Recent studies have indicated that upon depletion of a stem cell pool, in some tissues,
stem cells can be regenerated by the dedifferentiation of differentiated cells into stem-
cell-like cells [30,31]. Substantial data have emerged to show that this phenomenon also
occurs in the cornea, with studies demonstrating that upon injury to the limbal region
that depletes the limbal epithelial stem cell population, corneal epithelial cells can move
centrifugally to repopulate the limbal region [32]. Furthermore, the corneal epithelial cells
that move into the limbal region, dedifferentiate, and attain an expression profile similar
to that of LESCs [32] (Figure 1B). This phenomenon was first suggested by Majo et al.
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in 2008, identifying that following the depletion of epithelial cells within the limbal rim,
central cornea grafts transplanted onto the limbal region exhibit a remarkable ability to
repopulate the limbal region and maintain a transparent cornea over extended periods [19].
This controversial study showed that the cornea remains transparent following complete
depletion of the limbal stem cell population by cauterization, suggesting that LESCs are not
necessary for maintaining the corneal epithelium during homeostasis [19]. Li and colleagues
then demonstrated that BrdU label-retaining cells that express putative limbal epithelial
stem cell markers exist in both the limbal region and cornea, suggesting progenitor-like
cells to exist in the corneal epithelium of mice [33]. Nasser et al. recently demonstrated that
following a full limbal debridement wound, epithelial cells within the peripheral cornea
move centrifugally to repopulate the limbal region. Furthermore, within the limbal region,
these corneal epithelial cells proceed to stratify, and within 10 days following wounding,
a subset of the basal cells within the limbal region proceed to express the putative LESC
marker K15 using a transient ‘on-off’ GFP reporter for K15 promoter activity and maintain
this K15 expression pattern for up to at least 4 months [34]. Importantly, in this study, a
debridement wound was used to deplete the limbal epithelial stem cells, thus maintaining
the underlying stromal niche intact [34]. However, when the limbal region is depleted via
an alkali burn confined to the limbal region, the corneal epithelial cells do not proceed
to express putative LESC markers as they move into the limbal compartment, indicating
that LSCN factors regulate this dedifferentiation process [34]. Nasser et al. demonstrated
that corneal epithelial cells that repopulate the limbal epithelium prevent goblet cells
from moving into the cornea, thereby preventing conjunctivalization [34]. Furthermore,
if both the limbal epithelium and the corneal epithelium are removed via debridement,
conjunctival cells move into the limbal region and resurface the cornea, and the cornea
turns opaque and vascularized [35]. The conjunctival cells that move into the limbal region
do not proceed to express putative LESC markers, indicating conjunctival cells are not
reprogrammed into LESC-like cells after entering the limbal compartment. Instead, when
conjunctival cells bypass the limbus in pathological conditions such as LSCD, they result
in goblet cell metaplasia, which is correlated with the presence of neovascularization [36].
However, in the absence of neovascularization, the corneal epithelial can repair the injured
surface [36].

The peripheral cornea epithelium has also been shown to exhibit significant prolifera-
tive capability in responding to injuries, forming an epithelial cell population pressure that
can drive the resurfacing of a central debridement wound [37]. In fact, studies have found
comparable proliferative and migration rates between central (0.06 ± 0.01 mm/h) and
peripheral corneal epithelial cells (0.07 ± 0.03 mm/h) as they resurface peripheral wounds,
irrespective of the limbal epithelium removal within the initial 12 h post-wounding. This
further indicates that corneal epithelial cells have proliferative potential that can drive the
resurfacing of a corneal epithelial injury without the involvement of LESCs [20]. In fact,
we have previously shown that the cornea can heal small debridement wounds without
the involvement LESCs [38]. Goodell and colleagues first demonstrated that a subset of
mouse hematopoietic stem cells presented the unique ability to efflux the DNA-binding
dye Hoechst 33342, primarily based on their high expression of ABC (ATP-binding cassette)
transporters that could actively pump the dye out of the cell [39]. Based on this assay,
a subpopulation of cells existed within the hematopoietic stem cells pools that could be
cell-sorted based on their low-fluorescence staining pattern, which presented long-term
multi-lineage reconstitution abilities, and these cells were described as a side popula-
tion. This side population has since been identified in other tissues, including mammary
glands [40,41], liver [42,43], and lungs [44,45]. A side population of cells that can efflux fluo-
rescent dyes was also identified in the human and rabbit limbal epithelium that express the
LESC marker ABCG2; however, a side population was not identified in the cornea [46,47].
In the rat model, a side population was identified in both the limbal region and cornea,
which was isolated by fluorescence-activated cell sorting (FACS); however, only the limbal
side population presented the expression of putative stem cell markers [32].



Cells 2024, 13, 748 6 of 29

As mentioned above, the LESC niche was found to be a critical factor for triggering
the dedifferentiation of corneal epithelial cells into LESCs [34]. Thus, the capability of
the corneal epithelial cells to dedifferentiate into stem-cell-like cells is reliant on factors
within the limbal stem cell niche [11]. Therefore, studies are currently underway to
identify the key factors within the LSCN that can trigger the dedifferentiation of corneal
epithelial cells into LESCs. Studies have demonstrated that exosomes produced by
keratocytes [48], miRNA [49], biomechanical properties of ECM [50] and certain ECM
components [51,52] can regulate the fate of the corneal epithelial cells. Furthermore, we
have identified that HA, a key component of the LSCN, is critical for maintaining murine
and human LESCs in the stem cell state, both in vivo and in vitro [52–54]. The basement
membrane (BM), a highly specialized acellular layer of extracellular matrix that underlies
and interacts with basal epithelial cells, and that regulates their anchoring, migration
and differentiation, is another important component of the LSCN [55,56]. Regional
differences in the composition of the BM affect cellular activity [57–59]. The limbus-
specific BM provides a unique microenvironment for the maintenance, self-renewal,
activation, and proliferation of LESCs. BM components that are uniformly expressed
throughout all the ocular surface epithelia include type IV collagen α5 and α6 chains,
collagen types VII, XV, XVII, and XVIII, laminin-111, laminin-332, laminin chains α3,
β3, and γ2, fibronectin, matrilin-2 and 4, and perlecan. The limbal and conjunctival
epithelium BMs share many similarities, including type IV collagen α1 and α2 chains,
laminin α5, β2, and γ1 chains, nidogen-1 and -2, and thrombospondin-4. Components
exclusively present in the limbal BM include laminin α1, α2, β1 chains, laminin γ3
chain, agrin, BM40/SPARC, and tenascin-C. Interestingly, these components co-localize
with ABCG2/p63/K19-positive and K3/Cx43/desmoglein/integrin-alpha2-negative
cell clusters, comprising putative stem and early progenitor cells in the basal epithelium
of the limbal palisades. In the corneal–limbal transition zone, XVI collagen, fibulin-2,
tenascin-C/R, vitronectin, bamacan, chondroitin sulfate, and versican are present, all
of which co-localize with putative late progenitor cells in the basal epithelium [55,58].
Thus, the BM provide a unique microenvironment for LESCs [57,60–62]. Taken together,
the characterization of the LSCN opens new pharmaceutical avenues using ‘stemness-
promoting’ factors to increase or restore the LECSs following injuries [54,63–65].

Although the presence of progenitor cells within the murine cornea is currently widely
accepted, whether or not these cells exist in the human cornea remains to be established.
Studies have shown that in a human corneal organotypic culture model, cells from the
corneal epithelium can repopulate the limbal epithelium following a excimer laser-assisted
corneal epithelium removal, similar to what was observed with the murine model [20].
However, this study did not verify whether the corneal epithelial cells that move into
the limbal region proceed to express LESC markers, which would indicate a potential
dedifferentiation process took place [20]. Curiously, some patients who are diagnosed
with total LSCD have been shown to maintain a healthy cornea for up to 12 years after
diagnosis [18]. This indicates that LESCs are not necessary for maintaining corneal home-
ostasis, and potentially, that the human cornea could present progenitor-like cells that
can contribute toward maintaining a healthy corneal epithelium during homeostasis, as
seen in the murine model. Chang et al. (2011) compared the stem cell properties of the
cells isolated from central and limbal epithelium of the human cornea and found that both
the cells have stem cell properties; however, the central corneal cells lose their stem cell
properties with age [66]. Furthermore, cells with colony formation capabilities, indicative
of progenitor-like potential, have been identified within the cornea of various mammalian
species, including humans [32].

Taken together, the collective evidence strongly suggests the presence of ‘stem-cell-like’
cells within the peripheral and central cornea of the murine cornea. Therefore, based on
these studies, the current hypothesis is that a group of ‘stem-cell like’ cells exist within the
peripheral or central cornea, characterized by their ability to maintain the corneal epithe-
lium during homeostasis and exhibit increased proliferative potential upon injuries [67].
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Furthermore, upon limbal injuries that spare the LSCN, these cells can move centrifu-
gally to repopulate LESCs via a dedifferentiation process. Although the existence of these
progenitor-like cells within the cornea is well established, the identity and location of these
cells within the cornea remains unknown.

4. TACs: The Potential Progenitor-like Cells within the Peripheral Cornea

Although substantial research supports the hypothesis that stem-cell-like or progenitor-
like cells exist within the cornea during homeostasis, these cells remain to be identified and
isolated from the cornea. Currently, it remains to be established whether there is a separate
independent stem cell pool within the cornea, or whether the progenitor-like cells that exist
within the cornea are simply TACs derived from LESCs that retain some stem-cell-like
properties and are capable of moving back into the limbal region and dedifferentiating into
LESCs (Figure 1B).

Recent studies based on label-retaining techniques and scRNAseq indicate that not
all LESCs are equal, and instead, two main populations of LESCs have been postulated to
exist within the limbal epithelium [68]. A more quiescent LESC population (qLSCs) exists
in the ‘outer’ limbus that is believed to serve as a reservoir of LESCs, and a more active
population of LESCs (aLSCs) exists in the ‘inner’ limbus that supplies TACs to renew and
maintain the cornea during homeostasis [68]. The aLSC population is believed to produce
TACs with limited replication potential, capable of undergoing only 3–4 cell divisions,
while the qLESCs are triggered to proliferate following corneal injury and are essential
for contributing toward corneal regeneration [68]. As TACs are produced, they move
centripetally into the cornea, providing a continuous source of young cells. TACs, unlike
SCs, are characterized by their rapid cycling, which contributes toward the replenishment
of epithelial cell populations as they move toward the central cornea [13,21]. Studies have
indicated that different populations of TACs exist in the different zones of the cornea [21,69].
Furthermore, the proliferative capability of TACs has been shown to vary based on their
location within the cornea [21,70]. Lehrer and colleagues demonstrated that TACs in the
peripheral cornea of mice can replicate at least twice before terminal differentiation, whereas
TACs in the central cornea are only able to divide once [21]. In the corneal epithelium, a
hierarchy of TACs seems to exist, with division capacity gradually decreasing from the
peripheral to central cornea [21]. Also, in both the human and rodent models, p63 signaling
was found to be the most intense in the limbal region and to gradually decrease toward the
central cornea [20]. Recently, scRNAseq-based analysis of TACs has revealed the existence
of three TAC clusters in the mouse cornea, categorized by the differentiation stage based on
their proliferative marker gene expression profile [70]. These are named early TACs (in the
outer limbus), highly proliferative TACs (inner limbus) and mature TACs (cornea). Thus, it
is possible that some of the cells from these varied TAC and/or LESC populations appear
to be corneal epithelial progenitor cells [71].

Other studies have suggested that the progenitor-like cells present within the cornea
are remnants of SCs from fetal/developmental stages. This idea originates from studies
by Chang et al. (2011), wherein they showed that although central corneal epithelial
cells do have stem-cell-like properties like LESCs, their stemness decreases with age [66].
Furthermore, studies in rats have shown that during development, ‘stem-like’ cells reside
throughout the basal layer of the corneal epithelium; however, they become restricted
to the limbus postnatally [72]. A similar post-natal loss of stem cells from the central
cornea has been observed in mosaic mouse corneas, wherein the transition to the LESC-
maintained corneal epithelium occurs between postnatal weeks 5 and 8 and the pattern is
not fully mature until 10 weeks [73,74]. Tanifuji-Terai et al. (2006) have suggested that the
mouse corneal epithelium may not be fully mature until 3–6 months after birth [75]. Thus,
the identified corneal epithelial progenitor-like cells could be SCs remaining from early
developmental stages. Furthermore, Mort et al. [23] suggested that in younger individuals,
stem-like cells in the cornea could be SCs that persisted from fetal stages [75], while in older
individuals, the progenitor-like cells could be the early TACs derived from LESCs [23].
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5. Markers of Corneal TACs

One possible approach to establishing the identity of the progenitor-like cells within
the cornea would be to use LESC/TAC-specific markers. Over the years, there has been a
great effort by many groups to identify specific markers of LESCs and TACs. To date, many
positive and negative markers have been identified for LESCs and TACs. However, the
suitability and specificity of many of these markers are highly controversial, with many
conflicting reports [76]. Importantly, there is currently no well-accepted set of markers that
can distinguish between LESCs and early TACs. During homeostasis, LESCs have been
proposed to possess certain defining features, such as a slow turnover rate, expression of
certain proteins, expression of a specialized niche, clonogenicity, proliferative potential, and
characteristic morphology [27], but many of these are characteristic of TACs too. Hence,
specific molecular markers and characteristics that can unequivocally differentiate between
LESCs and TACs are still needed. Some of the suggested biomarkers of LESCs and/or
TACs (reviewed in [77]) are listed in Table 1.

Table 1. Proposed putative markers of LESCs and TACs.

Cell Type Putative Marker Species Reference(s)

LESC
(negative markers)

Cytokeratin 3 (CK3) Rabbit [26]

Cytokeratin 12 (CK12) Human [78,79]

Connexin 43 Human [78,79]

Involucrin Human [78]

E-cadherin Human [78]

NGF receptor (p75NTR) Human [78]

Nestin Human [79]

LESC
(positive markers)

N-terminal truncated form of p63α (∆Np63α) Human [80]

CCAAT-enhancer-binding protein δ (C/EBP δ) Human [28]

Polycomb complex protein-Bmi1 Human [81]

ATP-binding cassette sub-family B member 5 (ABCB5) Human, mouse [82]

ATP-binding cassette super-family G member 2 (ABCG2) Human, rabbit, rat [32,47,78,79,83,84]

Nerve growth factor (NGF) and its receptors tropomyosin
receptor kinase A (TrkA) Human [85]

GDNF family receptor alpha-1 (GFRα-1) Human [86]

Musashi-1 Human [87]

Notch-1 Human [88]

Integrin α9 Human, mouse [78,89,90]

Cytokeratin 15 (CK15) Human, mouse [91]

Cytokeratin 14 (CK14) Mouse [92]

Cytokeratin 19 (CK19) Human, mouse [91,92]

Wnt family member 4 (Wnt-4) Human [93]

SRY-box transcription Factor 9 (Sox9) Human [94,95]

Alpha-actinin-1 (Actn1) Mouse [94]

Frizzled class receptor 7 (Fzd7) Human, mouse [94,96]

Cytokeratin 17 (CK17) Mouse [94]

N- and P-cadherin Human [97]

Vimentin Human [79]
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Table 1. Cont.

Cell Type Putative Marker Species Reference(s)

TAC markers

α9β1 integrins Mouse [98,99]

Basal cell adhesion molecule (BCAM) Human, mouse [100]

α-enolase Human, rabbit [99,101]

Connexin-43 Human [78,79,99]

Cytokeratin 19 (CK19) Human [99]

Although, over past decade or so, a handful of markers were identified for LESCs
and TACs [79,81,102,103], in recent years, with the advent of RNA sequencing (scR-
NAseq), various novel LESC and TACs markers have been proposed. Given that many
reviews have nicely summarized the putative markers of TACs and LESCs based on
earlier studies [79,81,102,103], herein, we have focused on the more recently proposed
markers based on scRNAseq, summarized in Table 2.

Using scRNAseq, three TAC clusters in the mouse cornea were identified and cate-
gorized by the differentiation stage based on their proliferative marker gene expression
profile [70]. An early TAC cluster, designated as TAC I, expressed high levels of Ki-67
(Mki67)high/baculoviral IAP repeat containing 5 (Birc5)high/CK15mod/activating tran-
scription factor 3 (Atf3)high/metallothionein 1 (Mt1)high expression, with one of the top
differentially expressed gene (DEG) being the uracil DNA glycosylase (UNG) gene. A
highly proliferative TAC cluster, designated as TAC II, identified primarily in the inner
limbus, was shown to express a moderate level of CK15 with kinetochore-localized
astrin/SPAG5-binding protein (Knstrn) as a top DEG. Finally, a mature TAC popula-
tion, designated as TAC III, was identified in the cornea with high expression levels
of PDZ-binding kinase (PBK). This corroborated earlier studies in humans that sug-
gested PBK as a marker of TACs in the cornea, but not in the limbus. Furthermore, a
unique cell cluster (containing 3.21% of the total of 16,360 limbal basal cells of human
donor cornea) were identified as TACs in another study based on the expression of
proliferation marker genes and a less differentiated progenitor status [104]. Out of the
top 50 DEGs identified for TACs by scRNAseq, about 86% are cell cycle-dependent,
suggesting the cell cycle-dependent genes may serve as signature markers of TACs [104].
Centromere protein F (CENPF), nucleolar and spindle-associated protein 1 (NUSAP1),
ubiquitin-conjugating enzyme E2C (UBE2C), and cell division cycle 20 (CDC20) have
all been identified as potential markers of human TACs, with UBE2C and CDC20 being
suggested as the most specific markers since they represent the mitotic exit checkpoint
genes [104]. Furthermore, the glycoprotein hormone subunit alpha 2 (GPHA2) was
found to regulate the undifferentiated state of a population of cells identified as human
limbal progenitor cells (LPCs) and thus could be used as a human LESC marker [105].
In another scRNAseq-based study in mice, high expression of thioredoxin-interacting
protein (Txnip) and PBK was identified in the stem cell/early TAC and mature TAC
populations, respectively, and they were proposed as novel regulators of stem cell and
early TA cell quiescence [106]. Another study identified MKI67, survivin (BIRC5) and
H2A histone family member X (H2AFX)-positive cells with differential expression of
CD109 as highly proliferative TACs in human corneas, which had exclusive expres-
sion of cyclin-dependent kinase 2 (CKS2), stathmin-1 (STMN1), and UBE2C, which can
be taken as their markers [107]. Finally, scRNAseq analysis of human iPSC-derived
corneal organoids at 1, 2, 3, and 4 months of development identified that early TACs
express CENPF, UBE2C, and NUSAP1 [108]. Many of these proposed markers that are
based on scRNAseq analysis still need to be validated in different species and using
combinatorial approaches in order for the research community to reach a consensus
on reliable, exclusive, and universal markers of TACs and LESCs. Di and colleagues
recently summarized the potential markers of human LESCs that were recently identified
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by scRNAseq as tumor protein 63 (TP63) and C-C motif chemokine ligand 20 (CCL20)
for limbal stem/progenitor cells (LSPCs) with high stemness; GPHA2 and keratin 6B
(KRT6B) for LSPCs with high differentiation; tetraspanin-7 (TSPAN7), SRY-box transcrip-
tion factor 17 (SOX17), selectin E (SELE), endothelial cell surface-expressed chemotaxis
and apoptosis regulator (ECSCR), receptor activity modifying protein 3 (RAMP3), ri-
bonuclease A family member 1 (RNASE1), Niemann-Pick disease type C1 (NPCD1),
nicotinamide N-methyltransferase (NNMT), solute carrier family 2 member 3 (SLC2A3),
Krüppel-like factor 2 (KLF2), pyruvate dehydrogenase kinase 4 (PDK4) for LESCs [109]
(37342216). Similarly, in mice, Gpha2, Cd63, interferon-induced transmembrane protein 3
(Ifitm3) for qLSCs and Atf3, suppressor of cytokine signaling 3 (Socs3), Mt1, PR domain
zinc finger protein 1 (Prdm1) for aLSCs have been proposed [109].

Table 2. Proposed markers of LESCs and corneal TACs based on scRNAseq.

Cell Type Marker Location/Species Reference(s)

Early TACs (TAC I)

Ki-67 (Mki67)high/baculoviral IAP
repeat-containing 5
(Birc5)high/CK15mod/activating transcription
factor 3 (Atf3)high/metallothionein 1 (Mt1)high

expression with uracil DNA glycosylase (UNG)
as top differentially expressed gene (DEG)

Human (outer limbus)

[70]

Highly proliferative TACs (TAC II)
Moderate K15 expression with
kinetochore-localized astrin/SPAG5-binding
protein (Knstrn) as a top DEG

Human (inner limbus)

Mature TACs (TAC III) High expression levels of PDZ-binding
kinase (PBK) Human (cornea)

TACs

Centromere protein F (CENPF), nucleolar and
spindle-associated protein 1 (NUSAP1),
ubiquitin-conjugating enzyme E2C (UBE2C),
and cell division cycle 20 (CDC20)

Human [104]

Early TACs Thioredoxin-interacting protein (Txnip) Mouse
[106]

Mature TACs PDZ binding kinase (PBK) Mouse

Highly proliferative TACs Cyclin-dependent kinase 2 (CKS2),
stathmin-1 (STMN1), and UBE2C Human [107]

Early TACs CENPF, UBE2C, and NUSAP1 Human (iPSC-derived
corneal organoids) [108]

Limbal stem/progenitor cells
(LSPCs) with high stemness

tumor protein 63 (TP63) and C–C motif
chemokine ligand 20 (CCL20) Human

[109]

LSPCs with high differentiation GPHA2 and keratin 6B (KRT6B) Human

LESCs

Tetraspanin-7 (TSPAN7), SRY-box transcription
factor 17 (SOX17), selectin E (SELE), endothelial
cell surface-expressed chemotaxis and apoptosis
regulator (ECSCR), receptor activity modifying
protein 3 (RAMP3), ribonuclease A family
member 1 (RNASE1), Niemann-Pick disease type
C1 (NPCD1), nicotinamide N-methyltransferase
(NNMT), solute carrier family 2 member 3
(SLC2A3), Krüppel-like factor 2 (KLF2),
pyruvate dehydrogenase kinase 4 (PDK4)

Human

qLSCs Gpha2, Cd63, interferon-induced transmembrane
protein 3 (Ifitm3) Mouse

aLSCs Atf3, suppressor of cytokine signaling 3 (Socs3),
Mt1, PR domain zinc finger protein 1 (Prdm1) Mouse
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6. TACs in Other Organs: A Secondary Source of Information

The mechanisms by which adult SCs and TACs maintain homeostasis and regener-
ation have been studied in a number of other tissues, such as the skin, gastro-intestinal
tract (including teeth, liver, pancreas, and salivary glands), respiratory tract, skeletal and
cardiac muscles, nervous system, pituitary gland, kidney, breast, prostate, endometrium,
mesenchyme, and bone marrow [110]. Herein, we discuss how TACs function to maintain
tissue homeostasis and enable regeneration of other tissues, with the goal of understanding
the potential roles and mechanisms of regulation of TACs in the cornea and identifying
whether reversible transition/dedifferentiation of TACs and SCs has been observed in other
tissues/organs.

6.1. Hair Follicles

Hair follicles (HFs) are considered a complex mini-organ and thus can serve as an
ideal model for studying SCs and TACs [111]. HFs contain a diverse pool of SCs, such
as epithelial stem cells, mesenchymal stem cells and melanocyte stem cells, which are
located in different anatomical compartments, namely, the infundibulum, isthmus and
lower follicle (bulge, germ and dermal papilla), respectively. To maintain healthy hair,
the HF undergoes cycles in three stages, the anagen stage that involves the downward
growth of the HF as it develops a new hair, the catagen stage that involves regression
of the HF to a mature HF, and the telogen stage that is a resting stage. During telogen,
two distinct populations of HF-SCs exist: the bulge SCs within the bulge region and
hair germ SCs. The bulge SCs are more quiescent and cycle infrequently (quiescent SCs),
while the germ SCs are sensitive to activation (primed SCs). During telogen, both SC
populations are quiescent; however, as the HF transitions from telogen to anagen, the
germ SCs are activated to proliferate, forming TACs that further differentiate to produce
a new pool of matrix progenitor cells and downstream components, including the hair
shaft, companion layer and inner root sheath [112]. The bulge SCs are also activated, giving
rise to a downward-growing outer root sheath. The fate of the TACs is regulated by the
dermal papilla. At the end of anagen, hair matrix proliferation ceases and most of the cells
undergo apoptosis as the HF cycles into catagen. During catagen, the outer root sheath of
the lower HF undergoes apoptosis and the keratinocytes of the upper outer root sheath
collapses around the hair club (terminal structure of hair) and forms the bulge region and
the secondary germ [113].

The bulge SCs were the first population of HF-SCs discovered in the 1990s [114] and
have been shown to be Krt15+ and to give rise to all the lower epithelial cell lineages of the
HF, i.e., outer root sheath cells, matrix cells, the companion layer, three layers of inner root
sheath cells, the hair cuticle, the cortex and medulla. In the bulge, melanocyte stem cells
derived from the neural crest also reside, supplying melanocytes to the hair matrix during
each hair cycle. The melanocyte SCs and progenitor stem cells express two of the melanin-
synthesizing enzymes, dopachrome tautomerase (Dct) and oxygenase tyrosinase-related
protein 1 (Trp1), but they lack tyrosinase (Tyr), whereas in the anagen phase, the progenitors
differentiate into mature melanocytes that express all three required enzymes (Trp1, Dct
and Tyr). Differentiated melanocytes then migrate to anagen hair bulbs and make pigments
in newly formed hair [115]. Hair germ SCs differ from bulge SCs in their proliferation
potential and do not express Krt15 and CD34 but do express high levels of P-cadherin. The
mesenchymal components of the HF, i.e., the dermal sheath, also contain SCs called dermal
sheath mesenchymal stem cells or HF dermal stem cells that are capable of self-renewal
and regeneration of the dermal sheath compartment after catagen [116]. The HF-associated
sebaceous glands also contain Lrig1+ SCs and SCD1+ proliferative progenitor cells that
differentiate into sebocytes [117]. The markers of different SCs within the HF components
include CD200 (human), CD34, K19, Sox9, Lgr5, Hopx, Nfatc, Tcf, Lhx2 and Gli1 for the
bulge SCs; Lgr6, Lrig1 and MTS24 for the isthmus SCs; Blimp1 for the sebaceous gland and
Sca1 for the infundibulum [118]. Various factors and signaling pathways involved in the
regulation of HF-SCs and TACs are listed in Table 3. Interestingly, the HF-TACs have been
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shown to perform functions other than their proliferative roles too. For example, HF-TACs,
while generating their own progeny, also orchestrate a neighboring lineage for dermal
adipogenesis through secreting sonic hedgehog (SHH) [119]. Also, they have been shown
to have efferocytic roles in addition to a proliferative role [120]. It is worth exploring if all
the TACs in other tissues can perform such moonlighting activities as seen with HF-TACs.

Another fascinating feature of HF-TACs is that dedifferentiation is integral to home-
ostatic stem cell maintenance. A recent study showed that melanocyte stem cells toggle
between the SC and TAC states and can reversibly enter distinct differentiation states
depending on local microenvironmental cues, e.g., WNT [121]. Similar dedifferentiation
also takes place from early progenitor germ cells to bulge stem cells in the HF during
both homeostasis and post-injury [122]. Is such a dedifferentiation integral to all TAC
populations across organs or species? If not, what cues regulate them? It is also worth
mentioning here that in the quiescent stem cells of HFs, micro-niches do exist, with spatio-
temporal blueprints that can prime the TACs for differentiation into specific lineages.
These micro-niches guide the complex lineages, which expand with the growth of the
tissue [123]. The corneal SC and TAC research needs further investigation for identification
and characterization of possible micro-niches.

Table 3. Factors and signaling pathways involved in the regulation of HF-SCs and TACs.

Factor/Pathway Species Role Reference

β-catenin Human
Differentiates HF-SCs to HF-TACs by activating c-myc and
regulating the expression of HF-TAC markers K15, K19,
a6-integrin and β1-integrin

[124]

BMP signaling and
pSMAD1/5 targets, e.g., Gata3 Mouse Promotes HF-TAC lineage progression [125]

miR-214/EZH2/β-catenin Human Regulates HF-SC proliferation and differentiation [126]

Serum/glucocorticoid-
regulated kinase family
member 3 (Sgk3)

Mouse Reduces the supply of HF-TACs, causing premature entry
into the apoptotic regression phase of the hair cycle [127]

T-cell leukemia/lymphoma
protein 1 (Tcl1) Mouse Affects the cycling and self-renewal of HF-SCs and HF-TACs [128]

Stable β-catenin-induced Wnt
signaling pathway activation Mouse

Causes transient activation of lymphoid enhancer-binding
factor 1 (Lef1)/Tcf complexes that promote TAC conversion
and proliferation

[129]

Transient activation of c-Myc Mouse Shifts keratinocytes from the SC to TAC compartment and
thus stimulates proliferation and differentiation [130]

β1 integrin signaling Human Maintains the survival, proliferation, apoptosis, and
migration of human epithelial progenitors [131]

Prostaglandin E2 Mouse Attenuates the apoptosis of HF-TACs by promoting G1 arrest [132]

Sonic hedgehog pathway Mouse Reinstalls dermal papilla for HF neogenesis [133]

Notch/RBP-J Signaling Mouse Regulates the cell fate determination of hair follicular stem
cells at the bulge region [134]

6.2. The Testis in Mammalian Models

The mammalian testis serves as a powerful and elegant model to study stem cells due
to: (i) its structural organization, which makes it possible to trace the progeny of individual
stem cells, and (ii) the ease of analyzing the reconstitution of the stem cell population
after an insult by studying the regeneration of this population or through transplantation
experiments [135]. Both spermatogonia stem cells (SSCs) and TAC progenitors have been
identified in the mouse testis [136], where the main function of the progenitor cells is
to produce a large number of differentiated daughter cells, which are required for the
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continuous daily production of millions of motile sperm. Based on the pulse-chase of the
undifferentiated spermatogonia, Nakagawa et al. (2007) [136] demonstrated that in mice,
the spermatogenic stem cell system contains ‘actual stem cells’ and a second population
called ‘potential stem cells’, which are essentially transit-amplifying cells. This distinction
is based on the theory by Potten and Loeffler (1990) [137], which in principle says that
irrespective of the cell types, the immediate progeny of the actual stem cells can retain
‘stemness’ while undergoing differentiation and can thus be referred to as ‘potential stem
cells’. Importantly, not all TACs are potential stem cells. For differentiating spermatogonia,
a major part of the transit-amplifying compartment is incapable of colony formation after
transplantation [138,139]. In mice, a population of undifferentiated spermatogonia has
been identified that express Miwi2 and behave as TACs during homeostasis; however, they
retain stem cell-like properties and are critical for regenerative spermatogenesis [140].

6.3. Germline SCs, the Drosophila Model

The Drosophila is another excellent model for stem cell research, with a similar turnover
rate to germline stem cells in males [141] and females [142,143]. TACs have been shown
to dedifferentiate and become functional SCs under an appropriate microenvironment
in the Drosophila testis [30]. The germline SCs lacking the Janus kinase-signal transducer
and activator of transcription (Jak-STAT) pathway, which otherwise maintains the stem
cells, differentiate into spermatogonia. Restoration of Jak-STAT signaling using conditional
manipulation induces the dedifferentiation of TACs and spermatogonia to germline SCs.
Furthermore, differentiated 4- or 8-cell interconnected germline cysts/cystocytes, generated
either in the second instar larval ovaries of Drosophila or in adults over-producing the BMP4-
like stem cell signal decapentaplegic (dpp), have been shown to efficiently convert into
single stem-like cells [31]. These dedifferentiated cells can form functional germline stem
cells and support normal fertility. The composition of the male germline stem cell system is
well-conserved between mice and Drosophila, suggesting that germline stem cells in other
organisms may also be capable of dedifferentiation [136]. Spermatogonial stem cells (SSCs)
in rhesus macaques use a different strategy to meet a similar biological demand compared to
rodents [144]. Unlike rodents’ testes, which have a small germline SC pool and a relatively
larger pool of TA progenitors, rhesus testes have a larger SC pool with a relatively smaller
TA progenitor compartment. Whether the other primate species, including humans, also
have a larger SSC pool, as observed with the rhesus macaques, needs further investigation.
The widely accepted factors/pathways involved in regulating SCs and TACs of mammalian
testis and Drosophila germline are listed in Table 4.

Table 4. Factors/pathways involved in regulating the SCs and TACs of mammalian testis and
Drosophila germline.

Factor/Pathway Species Role Reference(s)

Lola

Male Drosophila

Maintains SCs and germ cell differentiation [145]

Profilin Maintains SCs germ cell enclosure by somatic
cyst cells [146]

Notch and Delta Required for survival of the germline
stem cell lineage [147]

Held-out-wings (HOW) Maintains SC maintenance and controls the
onset of transit-amplifying divisions [148]

Dynein-light-chain-1 (DDLC1/LC8) Regulates spermatogonial divisions [149]

CG8005 Mediates TACs’ spermatogonial divisions via
oxidative stress [150]

Epidermal growth factor signaling Regulates the differentiation of germline cells [151]
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Table 4. Cont.

Factor/Pathway Species Role Reference(s)

CG6015

Male Drosophila

Controls the TACs divisions by EGFs signaling [152]

E-cadherin-based adherens junctions Regulates asymmetric stem cell division [153]

Maelstrom (Mael) Differentiates the GSC lineage [154]

dBigH1 and bag of marbles (Bam) Regulates SC differentiation [155]

Terminal uridylyl transferase 1 (tut), bag of
marbles (bam), or benign gonial cell
neoplasm (bgcn)

Coordinates the proliferation and differentiation [156]

ERK downstream targets Regulates TACs and subsequent differentiation
of neighboring germline cells [157]

Bam Switches from proliferation to terminal
differentiation in TACs [158]

Wnt/b-catenin signaling Mediates proliferation of undifferentiated
spermatogonia (SSCs and TACs) [159]

Transforming growth factor-beta (TGFb) Regulates SC maintenance and TAC proliferation [160]

Insulin/IGF signaling, TOR signaling, and
GCN2-dependent amino acid sensing

Promotes the proliferation and maintenance of
the stem/progenitor population [161,162]

Rac family small GTPase (Rac)

Female Drosophila

Mediates polarity to ensure a robust pattern of
asymmetric division [163]

Tumor suppressor brain tumor (Brat) Regulates the linker histone dBigH1 expression [164]

Niche-derived Hh and Wnts and
germline-derived EGFs Promotes the differentiation of GSCs [165]

Insulin/IGF signaling, TOR signaling, and
GCN2-dependent amino acid sensing

Promotes the proliferation and maintenance of
the stem/progenitor population [161,162]

Retinoic acid-STRA8 signaling

Mouse testis

Regulate spermatogenesis by controlling
spermatogonial differentiation and
meiotic initiation

[166]

Netrin-1 receptor UNC5C Contributes to the homeostasis of
undifferentiated spermatogonia [167]

Tumor suppressor gene Rb Required for self-renewal of spermatogonial
stem cells [168]

Glial cell line-derived neurotrophic factor Regulates spermatogonial stem cells [169]

Breast cancer-amplified sequence 2 (BCAS2) Involved in alternative mRNA splicing in
spermatogonia and the transition to meiosis [170]

Mammalian target of rapamycin complex 1
(mTORC1) Required for spermatogonial differentiation [171]

SH2 domain-containing protein tyrosine
phosphatase-2 (SHP2)

Required for the transition from stem cell to
progenitor spermatogonia and male fertility [172]

SOX3 SOX3 promotes the generation of committed
spermatogonia in postnatal testes [173]

6.4. Intestine

The intestinal epithelium is continuously exposed to harsh conditions that can lead
to cell damage, such as digestive enzymes, non-physiological pH, and pathogens. Thus,
the intestinal epithelium is endowed with various properties that allow regeneration and
maintenance of homoeostasis, including self-renewing capabilities that are conferred by
populations of SCs that are in an anatomically protected location within the crypts and
villi. Two models of an intestinal stem cell (ISC) have been proposed: (i) the ‘stem cell zone
model’ by Cheng and Leblond, which suggests the crypt base columnar (CBC) cells to be
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resident stem cells (active ISCs), and (ii) the ‘+4 model’ by Potten, which proposes the cells
immediately above the Paneth cells to be stem cells (reserve/quiescent ISCs) [174]. CBCs
express Leucine Rich Repeat-Containing G Protein-Coupled Receptor 5 (Lgr5), which is
generally accepted as a specific marker of CBCs, besides others, such as CD44, Musashi-1
(Msi-1), Olfactomedin-4 (Olfm4), Achaetescute-like 2 (ASCL2), SPARC-related modular
calcium-binding protein-2 (SMOC2), SOX9 and Krüppel-like factor 5 (KLF5) [175]. The
rapidly cycling Lgr5+ ISCs give rise to TACs at the crypt–villus junction, which further
differentiate into goblet, Paneth, enterocytes and enteroendocrine cells. The rapid cycling
and differentiation of TACs in different zones of the intestinal crypts are regulated by
adenomatous polyposis coli (APC), Ca2+ and calcium-sensing receptor (CaSR)-driven
differentiation in the middle and upper crypt and apoptosis on the mucosal surface [176].

In the case of injury-induced ablation of Lgr5+ cells, the SCs located at the +4 posi-
tion (i.e., reserve/quiescent ISCs) compensate for their function. These +4 position ISCs
express Bmi, besides other markers, such as leucine-rich repeats and immunoglobulin-
like domains 1 (Lrig1), mouse telomerase reverse transcriptase (mTert), homeodomain-
only protein X (HOPX), inhibitor of differentiation 1 (ID1) and doublecortin-like kinase 1
(DCLK1) [175]. Thus, two ISC subpopulations imply that Lgr5+ CBCs are active SCs that
mediate homeostatic self-renewal, whereas Bmi1+ quiescent SCs represent both a reserve
SC pool in case of injury and a source for the replenishment of the Lgr5-expressing
cells [177,178]. Besides this so called ‘reserve stem cell’ model of regenerative Bmi1+
quiescent SCs, a ‘dedifferentiation model’ has also been widely accepted, which says
that plastic non-ISCs present in the TA zone can also dedifferentiate to active ISCs dur-
ing injury-induced regeneration [179]. Murata et al. (2020) have shown that nearly all
regeneration after ISC injury occurs by ASCL2-dependent dedifferentiation of recent
Lgr5+ cell progeny [180].

Besides dedifferentiation, another interesting feature of intestinal TACs is their vital
role in the tuning of the differentiated cell-type composition. Using enteroid monolayers,
3D organoids and in vivo murine models, Sanman et al. (2021) have shown the existence
of anticorrelation between progenitor cell proliferation and the ratio of secretory to ab-
sorptive cells. They found fewer rounds of cell division for secretory than absorptive
progenitors, which suggests a ‘differential amplification model’ by which modulation of
TAC proliferation, for example, during injury, infection, or calorie restriction, can control
the tissue-cell-type composition. Such an underappreciated differential amplification role
of TACs in other organs/species, such as the human cornea, is yet to be explored [181].

Intestinal TACs express markers that are shared with ISCs, such as prominin-1
(Prom1)/CD133 [182], polycomb transcriptional repressor, Bmi1 [183], inhibitor of
DNA binding 1 (ID1) [184] and specific markers such as PR domain containing 16
(PRDM16) [185], transcription factor CCAAT/enhancer-binding protein α, C/EBPα [186],
E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (Fbw7) [187], protein argi-
nine methyltransferase, PRMT1 [188]. The factors and pathways involved in regulating
the transition between SCs and TACs in the intestine are summarized in Table 5.

Table 5. Factors/pathways involved in regulating the SCs and TACs of the intestine.

Factor/Pathway Species Role Reference(s)

Wnt/β-catenin-based suppression of the
mitogen-activated protein kinase (MAPK) Mouse Balances proliferation and differentiation in ISCs [189,190]

K-Ras Mouse Promotes expansion and hyperproliferation
of TACs [191]

BMP signaling Mouse Dampens Lgr5+ ISC renewal [192]

Delta1-Notch signaling Mouse Controls the secretory commitment of TACs
through lateral inhibition [193]

Hippo signaling Mouse Deletion of Lats1/2 (Hippo kinases) results in
the loss of Lgr5+ ISCs and expansion TACs [194]
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Table 5. Cont.

Factor/Pathway Species Role Reference(s)

Growth factor signaling such as
epidermal growth factor receptor
(EGFR)/ErbB1

Human Major drivers of proliferation in the ISC niche [195]

Cytokeratin-8 (K8)-regulated
Notch signaling Mouse Promotes differentiation of TACs [196]

IL-10 (rmIL-10) Mouse and
ISC cultures

Expands the number of TACs and enhances
the differentiation [197]

Interleukin 22 via inhibition of Notch
and Wnt signaling

Mouse and
ISC cultures Expands TACs [198]

Methyltransferase 3,
N6-Adenosine-Methyltransferase
(METTL3)

Mouse Survival of TACs [199]

Lysophosphatidic acid receptor 5
(LPA5) receptor Mouse Survival of SCs and TACs [200]

Mixed-lineage leukemia 1
(MLL1/KMT2A) Mouse Loss of MLL1 is accompanied by loss of ISCs and

differentiation bias toward the secretory lineage [201]

Krüppel-like factor 5 (Klf5) Mouse Maintains proliferation of both CBCs and TACs [202,203]

Prefoldin RPB5 interactor (URI) Mouse Helps in survival and differentiation of TACs [204,205]

Survivin Mouse Survival of TACs [206]

Death receptor 5 (DR5) Mouse Survival of TACs [207]

Cyclin/CDK inhibitor p57Kip2 Mouse Maintains Hopx+ ISC quiescence [208]

Foxl1+ mesenchymal cells Mouse Maintains proliferation of ISCs and TACs [209]

Polycomb group (PcG) proteins Human Repress the terminal differentiation in the TACs [210]

Myeloid translocation gene-related 1
(MTGR1) Mouse Maintains the ISCs in an undifferentiated state [211]

CBL family ubiquitin ligases Mouse Maintain ISCs [212]

Rho GTPase family member, CDC42 Mouse CDC42 deletion leads to diminished ISCs and
highly expanded TACs [213]

Src42a and Src64b Drosophila Required for ISC divisions [214]

Unfolded protein response (UPR) Mouse Required for SC to TAC transition [215]

Lipopolysaccharide (LPS) Mouse Represses cell proliferation through
RIPK3-mediated necroptosis of ISCs and TACs [216]

Hypomorphic X-box–binding protein 1
(Xbp1) Mouse Increases ISC numbers [217]

Intraepithelial lymphocytes (IELs) Mouse Modulate the proliferation of TACs [218]

6.5. Tooth

Many studies have revealed the interaction between SCs and TACs during homeostasis
and regeneration, but they are all exclusively ectodermal organs [219]. The interaction
between SCs of mesenchymal origin (MSCs) and their TACs has not been studied in as
much detail when compared to epithelial stem cells [219]. Mesenchymal stem cells were
first identified in teeth in 2000 and termed post-natal dental pulp stem cells (DPSCs) [220].
Subsequently, more types were identified, i.e., stem cells from the exfoliated deciduous
(SHED) [221], periodontal ligament stem cells (PDLSCs) [222] and stem cells from the
apical papilla (SCAP) [223] and dental follicle precursor cells (DFPCs) [224]. MSCs have
an essential role in tooth development, homeostasis, and regeneration. Unlike adult stem
cells of epithelial origin that are mostly unipotent, MSCs are multipotent and contribute
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toward the formation of various dental tissues, including dentin, pulp and periodontal
structures. Huang et al. have elaborated and compared the dental MSCs with those from
other tissues/organs [225]. As with adult stem cells of epithelial origin, MSCs undergo
asymmetric cell divisions to produce another MSC that remains in the MSC pool and a
TAC (called MTACSs) with increased proliferative capabilities that will differentiate into
the different tooth cell types. The IGF-WNT signaling cascade is involved in MSC to TAC
differentiation, whereas a Wnt5a/Ror2-mediated non-canonical WNT signaling pathway
has been shown to be involved in the TAC to MSC feedback [226]. Using a mouse incisor
as a model, Walker et al. have shown that distinct MSCs contribute to incisor MTACs. The
MTAC feedback regulates the homeostasis and activation of cord-lining MSCs (CL-MSCs)
through the Delta-like 1 homolog (Dlk1). This way, a balance between the MSC-MTAC
number and the lineage differentiation is regulated [219].

Importantly, two different MSCs from human dental tissues, i.e., DFPCs and DPSCs,
have been shown to revert/dedifferentiate to a naïve stem-cell-like status after osteogenic
differentiation. Interestingly, dedifferentiated DSCs showed an enhanced potential to
further differentiate toward the osteogenic phenotype compared to their undifferentiated
counterparts [227]. The factors and pathways involved in regulating the transition between
SCs and TACs in the tooth are summarized in Table 6.

Table 6. Factors/pathways involved in regulating the SCs and TACs of the tooth.

Factor/Pathway Species Role Reference(s)

Arid1a Mouse
Regulates the fate of TACs by limiting
proliferation, promoting cell cycle exit
and differentiation

[228]

Runt-related transcription factor
(Runx)2+/glioma-associated
oncogene (Gli)1+ cells via insulin-like
growth factor IGF signaling

Mouse
Maintain MSC niche, regulates proliferation
and differentiation of TACs and growth rate of
the incisor tooth

[229]

MAPK and PI3K pathways Mouse
Regulate dental epithelial stem cell activity,
transit-amplifying cell proliferation, and
enamel formation

[230]

Notch and FGF signaling Mouse and organ
culture model Decide the fate of SCs in incisors [231,232]

TGF-βI (Alk5) Mouse Regulates the proliferation of TACs and
maintenance of SCs [233]

Prominin-1 (Prom1/CD133) Mouse Absence results in the disruption of stem cell
quiescence maintenance and activation [234]

Polycomb repressive complex 1 (PRC1) Mouse
Regulates the TAC phenotype by controlling the
expression of key cell-cycle regulatory genes and
Wnt/β-catenin signaling

[235,236]

E-cadherin Mouse
Inactivation leads to decreased label-retaining
stem cells, decreased cell migration and
increased proliferation

[237]

c-Myb Mouse Involved in differentiation [238]

Transforming growth factor-beta 1
(TGF-β1) and connective tissue
growth factor (CTGF)

Mouse
Involved in the functioning of TACs during
incisor development (embryonic day
16.5–post-natal day 3.5)

[239]

Yap Mouse Maintains proliferation and inhibits differentiation [240]

YAP/TAZ and mTOR signaling Mouse Drive the proliferation of TACs [241]

CXCR4/CXCL12 signaling Mouse
Activates enamel progenitor cell division and
controls the movement of epithelial
progenitors from the dental stem cell niche

[242]
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6.6. Olfactory Epithelium

The olfactory epithelium (OE) is a specialized neuroepithelium lining the postero-
dorsal aspect of the nasal cavity that possesses high regenerative capacity, unlike other
parts of the nervous system. This high regenerative capability of the OE indicates the
existence of an SC population [243]. In 1979, using 3H-thymidine-based autoradiogra-
phy of the rat OE, Graziadei and Monti-Graziadei (1979) reported that the basal cells
proper of the OE are SCs and the globose basal cells are possible transitional forms
between the basal cells proper and the olfactory cells [243]. Now, it is well accepted that
two sub-population of basal cells exist in the OE, the horizontal/dark basal cells (HBCs)
and the globose/light basal cells (GBCs). In a normal, uninjured OE or even after abla-
tion of the olfactory bulb, HBCs remain mitotically inactive/quiescent, indicating that
they do not function as neuronal progenitors. The GBCs, on the other hand, progress
from stem cell to differentiating olfactory sensory neuron (OSN) in four cell stages:
(1) Sox2 and Pax6-expressing stem cells (GBCSTEM), (2) proneural transcription factor
Ascl1(Mash1)-expressing early progenitor cells, GBCTA-OSN (3) Neurogenin 1 (Ngn1)-
expressing late-stage transit-amplifying cells, also called immediate neuronal precur-
sors (GBCINP), and (4) postmitotic Neural cell adhesion molecule (Ncam)-expressing
olfactory receptor neurons (ORNs) [243–247].

Lin et al. (2017) have shown that in the mouse OE, Ascl1+ progenitors and Neurog1+-
specified neuronal precursors can dedifferentiate into multipotent stem/progenitor cells
after epithelial injury, which can contribute significantly to tissue regeneration [248]. In
another study, Gadye et al. (2017) have shown that following injury, the quiescent olfactory
stem cells of mouse OE rapidly shift to activated, transient states, which are unique to
injury-induced regeneration. One such fate is renewal of HBCs (or differentiation from a
transient state), which can further differentiate [249]. Both the studies have also shown that
Sox2 is required to initiate this dedifferentiation. The factors and pathways involved in
regulating the transition between SCs and TACs in the OE are summarized in Table 7.

Table 7. Factors/pathways involved in regulating the SCs and TACs of the OE.

Factor/Pathway Species Role Reference

Testicular receptor 2, Nr2c1 Mouse Involved in regulating the progenitor or
early differentiation state [250]

Fibroblast growth factors (FGF) Mouse

Delay differentiation of a committed
neuronal TAC (the INP) and support
proliferation or survival of a rare cell,
possibly a stem cell, that acts as a
progenitor of INPs

[251]

Transforming growth factor beta (TGF-β) Mouse

Plays key roles in feedback loops to
regulate the size of progenitor cell pools,
and thereby the neuron number, during
development and regeneration

[252]

Bone morphogenetic protein (BMP4) OE cultures from mouse

Inhibits proliferation of MASH1-expressing
progenitors when present at high
concentrations and stimulates survival of
newly generated ORNs when present at
low concentrations

[253]

De novo methyltransferase DNmt3b Mouse Plays a role in the initial steps of progenitor
cell differentiation [254]

Zinc finger transcription factor Insm1 Mouse
Promotes the transition of progenitor cells
from proliferative apical to terminal,
neurogenic basal cells

[255]
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7. Conclusions

Taken together, substantial data have emerged to suggest that, under certain condi-
tions, a subset of cells within tissues have the capability to dedifferentiate into stem-cell-like
or progenitor-like cells to regenerate damaged stem cells pools. In tissues, as stem cells un-
dergo asymmetric cell division, they produce TACs with high proliferative capabilities that
will ultimately differentiate to produce mature cell types within the tissue. Substantial data
have shown that in various tissues, a subset of the produced TACs retain progenitor-like
properties, and that under certain conditions, they can dedifferentiate. Thus, a subset of
TACs exist in a reversible state, and certain factors act as a pendulum dictating how the
TACs transition between the stem cell and differentiated cell states.
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