Next Issue
Volume 2, June
Previous Issue
Volume 1, December
 
 

Cells, Volume 2, Issue 1 (March 2013) – 10 articles , Pages 1-187

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
190 KiB  
Review
Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs)
by Jean Berthelet and Laurence Dubrez
Cells 2013, 2(1), 163-187; https://doi.org/10.3390/cells2010163 - 14 Mar 2013
Cited by 108 | Viewed by 13445
Abstract
Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain [...] Read more.
Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals. Full article
(This article belongs to the Special Issue Apoptosis)
Show Figures

Figure 1

808 KiB  
Review
Induction of Cell Death Mechanisms and Apoptosis by Nanosecond Pulsed Electric Fields (nsPEFs)
by Stephen J. Beebe, Nova M. Sain and Wei Ren
Cells 2013, 2(1), 136-162; https://doi.org/10.3390/cells2010136 - 06 Mar 2013
Cited by 133 | Viewed by 12301
Abstract
Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular [...] Read more.
Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While nsPEFs have multiple cellular targets, these studies show that nsPEF-induced dissipation of ΔΨm closely parallels deterioration in cell viability. Increases in intracellular Ca2+ alone were not sufficient for cell death; however, cell death depended of the presence of Ca2+. When both events occur, cell death ensues. Further, direct evidence supports the hypothesis that pulse rise-fall times or high frequency components of nsPEFs are important for decreasing ΔΨm and cell viability. Evidence indicates in Jurkat cells that cytochrome c release from mitochondria is caspase-independent indicating an absence of extrinsic apoptosis and that cell death can be caspase-dependent and –independent. The Ca2+ dependence of nsPEF-induced dissipation of ΔΨm suggests that nanoporation of inner mitochondria membranes is less likely and effects on a Ca2+-dependent protein(s) or the membrane in which it is embedded are more likely a target for nsPEF-induced cell death. The mitochondria permeability transition pore (mPTP) complex is a likely candidate. Data demonstrate that nsPEFs can bypass cancer mutations that evade apoptosis through mechanisms at either the DISC or the apoptosome. Full article
(This article belongs to the Special Issue Apoptosis)
Show Figures

Figure 1

192 KiB  
Review
The Anti-Apoptotic Role of Neurotensin
by Christelle Devader, Sophie Béraud-Dufour, Thierry Coppola and Jean Mazella
Cells 2013, 2(1), 124-135; https://doi.org/10.3390/cells2010124 - 04 Mar 2013
Cited by 16 | Viewed by 8469
Abstract
The neuropeptide, neurotensin, exerts numerous biological functions, including an efficient anti-apoptotic role, both in the central nervous system and in the periphery. This review summarizes studies that clearly evidenced the protective effect of neurotensin through its three known receptors. The pivotal involvement of [...] Read more.
The neuropeptide, neurotensin, exerts numerous biological functions, including an efficient anti-apoptotic role, both in the central nervous system and in the periphery. This review summarizes studies that clearly evidenced the protective effect of neurotensin through its three known receptors. The pivotal involvement of the neurotensin receptor-3, also called sortilin, in the molecular mechanisms of the anti-apoptotic action of neurotensin has been analyzed in neuronal cell death, in cancer cell growth and in pancreatic beta cell protection. The relationships between the anti-apoptotic role of neurotensin and important physiological and pathological contexts are discussed in this review. Full article
(This article belongs to the Special Issue Apoptosis)
Show Figures

Figure 1

699 KiB  
Review
Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways
by Pei Zhi Cheryl Chia and Paul A. Gleeson
Cells 2013, 2(1), 105-123; https://doi.org/10.3390/cells2010105 - 22 Feb 2013
Cited by 10 | Viewed by 10124
Abstract
Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in [...] Read more.
Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed. Full article
(This article belongs to the Special Issue Imaging in Cell Biology and Development)
Show Figures

Figure 1

878 KiB  
Review
Divergent Roles of Autophagy in Virus Infection
by Abhilash I. Chiramel, Nathan R. Brady and Ralf Bartenschlager
Cells 2013, 2(1), 83-104; https://doi.org/10.3390/cells2010083 - 25 Jan 2013
Cited by 147 | Viewed by 18467
Abstract
Viruses have played an important role in human evolution and have evolved diverse strategies to co-exist with their hosts. As obligate intracellular pathogens, viruses exploit and manipulate different host cell processes, including cellular trafficking, metabolism and immunity-related functions, for their own survival. In [...] Read more.
Viruses have played an important role in human evolution and have evolved diverse strategies to co-exist with their hosts. As obligate intracellular pathogens, viruses exploit and manipulate different host cell processes, including cellular trafficking, metabolism and immunity-related functions, for their own survival. In this article, we review evidence for how autophagy, a highly conserved cellular degradative pathway, serves either as an antiviral defense mechanism or, alternatively, as a pro-viral process during virus infection. Furthermore, we highlight recent reports concerning the role of selective autophagy in virus infection and how viruses manipulate autophagy to evade lysosomal capture and degradation. Full article
(This article belongs to the Special Issue Autophagy)
Show Figures

Graphical abstract

307 KiB  
Review
Cardiomyocyte Regeneration
by Nanako Kawaguchi and Toshio Nakanishi
Cells 2013, 2(1), 67-82; https://doi.org/10.3390/cells2010067 - 15 Jan 2013
Cited by 12 | Viewed by 9898
Abstract
The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs) in adult hearts was proposed. CSCs [...] Read more.
The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs) in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs) were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine. Full article
(This article belongs to the Special Issue Tissue and Organ Regeneration)
Show Figures

Figure 1

658 KiB  
Article
Functional Assessment of Pharmacological Telomerase Activators in Human T Cells
by Brenda Molgora, Riley Bateman, Greg Sweeney, Danielle Finger, Taylor Dimler, Rita B. Effros and Hector F. Valenzuela
Cells 2013, 2(1), 57-66; https://doi.org/10.3390/cells2010057 - 14 Jan 2013
Cited by 38 | Viewed by 25493
Abstract
Telomeres are structures at the ends of chromosomes that shorten during cell division and eventually signal an irreversible state of growth arrest known as cellular senescence. To delay this cellular aging, human T cells, which are critical in the immune control over infections [...] Read more.
Telomeres are structures at the ends of chromosomes that shorten during cell division and eventually signal an irreversible state of growth arrest known as cellular senescence. To delay this cellular aging, human T cells, which are critical in the immune control over infections and cancer, activate the enzyme telomerase, which binds and extends the telomeres. Several different extracts from the Astragalus membranaceus root have been documented to activate telomerase activity in human T cells. The objective of this research was to compare two extracts from Astragalus membranaceus, TA-65 and HTA, for their effects on both telomerase and proliferative activity of human CD4 and CD8 T cells. Our results demonstrate that, TA-65 increased telomerase activity significantly (1.3 to 3.3-fold relative to controls) in T cell cultures from six donors tested, whereas HTA only increased telomerase levels in two out of six donors. We also demonstrate that TA-65 activates telomerase by a MAPK- specific pathway. Finally, we determine that during a three-day culture period, only the T cells treated with the TA-65 extract showed a statistically significant increase in proliferative activity. Our results underscore the importance of comparing multiple telomerase activators within the same experiment, and of including functional assays in addition to measuring telomerase activity. Full article
Show Figures

Figure 1

828 KiB  
Review
Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment
by Sonia M. Rosenfield and Gilbert H. Smith
Cells 2013, 2(1), 43-56; https://doi.org/10.3390/cells2010043 - 10 Jan 2013
Cited by 7 | Viewed by 6937
Abstract
Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary [...] Read more.
Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV)-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH) for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo. Full article
(This article belongs to the Special Issue Tissue and Organ Regeneration)
Show Figures

Figure 1

716 KiB  
Article
CD8+ T Lymphocyte Epitopes From The Herpes Simplex Virus Type 2 ICP27, VP22 and VP13/14 Proteins To Facilitate Vaccine Design And Characterization
by Rebecca J. Platt, Tansi Khodai, Tim J. Townend, Helen H. Bright, Paul Cockle, Luis Perez-Tosar, Rob Webster, Brian Champion, Timothy P. Hickling and Fareed Mirza
Cells 2013, 2(1), 19-42; https://doi.org/10.3390/cells2010019 - 04 Jan 2013
Cited by 5 | Viewed by 7207
Abstract
CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, [...] Read more.
CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings. Full article
(This article belongs to the Special Issue ELISPOT Research)
Show Figures

Figure 1

426 KiB  
Concept Paper
The “Stars and Stripes” Metaphor for Animal Regeneration-Elucidating Two Fundamental Strategies along a Continuum
by Baruch Rinkevich and Yuval Rinkevich
Cells 2013, 2(1), 1-18; https://doi.org/10.3390/cells2010001 - 27 Dec 2012
Cited by 13 | Viewed by 8712
Abstract
A number of challenges have hindered the development of a unified theory for metazoan regeneration. To describe the full range of complex regeneration phenomena in Animalia, we suggest that metazoans that regenerate missing body parts exhibit biological attributes that are tailored along a [...] Read more.
A number of challenges have hindered the development of a unified theory for metazoan regeneration. To describe the full range of complex regeneration phenomena in Animalia, we suggest that metazoans that regenerate missing body parts exhibit biological attributes that are tailored along a morpho-spatial regeneration continuum, illustrated in its polar scenarios by the USA “stars and stripes” flag. Type 1 organisms (“T1, ‘stars’”) are typical colonial organisms (but contain unitary taxa) that are able to regenerate “whole new stars”, namely, whole bodies and colonial modules, through systemic induction and sometimes multiple regeneration foci (hollow regeneration spheres, resembling the blastula) that compete for dominance. They regenerate soma and germ constituents with pluripotent adult stem cells and exhibit somatic-embryogenesis mode of ontogeny. Type 2 organisms (“T2, ‘stripes’”) are capable of limited regeneration of somatic constituents via fate-restricted stem cells, and regenerate through centralized inductions that lead to a single regeneration front. T2 organisms are unitary and use preformistic mode of ontogeny. T1 and T2 organisms also differ in interpretation of what constitutes positional information. T2 organisms also execute alternative, less effective, regeneration designs (i.e., scar formation). We assigned 15 characteristics that distinguish between T1/T2 strategies: those involving specific regeneration features and those operating on biological features at the whole-organism level. Two model organisms are discussed, representing the two strategies of T1/T2 along the regeneration continuum, the Botrylloides whole body regeneration (T1) and the mouse digit-tip regeneration (T2) phenomena. The above working hypothesis also postulates that regeneration is a primeval attribute of metazoans. As specified, the “stars and stripes” paradigm allows various combinations of the biological features assigned to T1 and T2 regeneration strategies. It does not consider any concentration gradient or thresholds and does not refer to the “epimorphosis” and “morphallaxis” terms, regeneration types across phyla or across body plans. The “stars and stripes” paradigm also ignores, at this stage of analysis, cases of regeneration loss that may obscure biological trajectories. The main advantage of the “stars and stripes” paradigm is that it allows us to compare T1/T2 regeneration, as well as other modes of regeneration, through critical determining characteristics. Full article
(This article belongs to the Special Issue Tissue and Organ Regeneration)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop