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Abstract: Systems biology aims at achieving a system-level understanding of living 

organisms and applying this knowledge to various fields such as synthetic biology, 

metabolic engineering, and medicine. System-level understanding of living organisms can 

be derived from insight into: (i) system structure and the mechanism of biological networks 

such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system 

dynamics of biological networks, which provides an understanding of stability, robustness, 

and transduction ability through system identification, and through system analysis methods; 

(iii) system control methods at different levels of biological networks, which provide an 

understanding of systematic mechanisms to robustly control system states, minimize 

malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic 

design methods for the modification and construction of biological networks with desired 

behaviors, which provide system design principles and system simulations for synthetic 

biology designs and systems metabolic engineering. This review describes current 

developments in systems biology, systems synthetic biology, and systems metabolic 

engineering for engineering and biology researchers. We also discuss challenges and future 

prospects for systems biology and the concept of systems biology as an integrated platform 

for bioinformatics, systems synthetic biology, and systems metabolic engineering. 

Key words: systems biology; bioinformatics; systems synthetic biology;  

systems metabolic engineering 
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1. Introduction 

The Human Genome Project and high-throughput experimental methodologies such as microarray 

chromatin-immunoprecipitation DNA chips (ChIP-chip) have led to the development of biology as an 

increasingly information-rich science encompassing transcriptomes, proteomes, metabolomes, 

interactomes, and so forth [1,2]. Some have suggested that systems biology is nothing more than a new 

name for integrative physiology, which has been practiced for the past 50 years or more. Because of 

these novel technologies, biologists have been able to collect data at a rate that was unimaginable a 

decade ago. The context of biology has profoundly changed over the past 20 years. These changes 

provide a powerful new framework for systems biology that moves it far beyond classical integrative 

physiology. A systems biology approach implies that every system of any level of biological systems 

can be analyzed with respect to the system’s structure, in particular, in terms of its dynamics, method of 

control, and method of system design. Systems biology involves genomic, transcriptomic, proteomic, 

and metabolic investigations from a systematic perspective. As a result, systems biology has become the 

frontier of modern biological research; large amounts of new omics data cannot be understood without a 

network or systems viewpoint and without highly sophisticated computational analyses [3–11].  

The role of systems biology in modern biological research (Figure 1) requires powerful 

computational tools to mine large-scale data sets of information on genetics, proteins, DNA–protein 

binding, metabolism, and so forth. These tools are used to construct dynamic system models for the 

interpretation of specific mechanisms of some cellular phenotypse (or behaviors) from a system (or 

network) perspective [12–17]. To construct a dynamic system model of biological networks from omics 

data, system identification technologies (i.e., reverse-engineering schemes) are needed to estimate the 

parameter values of dynamic models and the order of biological networks [18–44]. Synthetic biology 

metabolic engineering has recently been developed for designing synthetic genetic networks for the 

production of specific cellular functions in host cells [45–51]. Based on system models and mechanisms 

in systems biology, synthetic genetic circuits and metabolic engineering pathways can be designed to 

investigate cellular behaviors [52–63]. These synthetic biological technologies can be employed to 

investigate the models and mechanisms of systems biology. Discrepancies between the real behavior of 

synthetic genetic networks and the desired behavior predicted by the models and mechanisms of systems 

biology can be fed back to modify the models through methodologies of systems synthetic biology and 

systems metabolic engineering. Based on the role of systems biology (Figure 1), this review describes 

current developments in bioinformatics, systems synthetic biology, and systems metabolic engineering. 

It discusses how systems biology can serve as an integrated platform for bioinformatics, systems 

synthetic biology, and systems metabolic engineering in the future. 

Bioinformatics is crucial in genome-wide analyses for understanding cell physiology at different 

cellular levels (i.e., genome, transcriptome, proteome, and metabolome levels) [12,13]. The various 

disciplines of bioinformatics provide invaluable information on the global cellular status for systems 

biology, systems synthetic biology, and systems metabolic engineering, as well as a thorough analysis of the 

cell. Genomic information in bioinformatics represents the whole genetic makeup of the organism [12–17], 

and comparative genomic analysis may contribute to systems synthetic biology or systems metabolic 

biology for targeting and engineering genetic circuits to create desirable cellular phenotypes. 

Transcriptome profiling uses DNA microarrays to decipher the expression levels of thousands of genes 
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under various biological conditions [14,15]. The results can be used to select candidate genes for 

modification based on systematic analysis of regulatory genes in response to genetic variations and 

environmental changes, or to identify novel factors for the enhancement of heterologous product 

secretion in metabolic pathways [64–68]. Proteome profiling is also useful in obtaining 

transcriptome-profiling data at the protein level. The metabolome comprises the entirety of information 

on metabolites present within and/or outside the cell under specified conditions [61–63]. It is expected to 

contribute significantly to the understanding of the cell and of synthetic circuit engineering in its 

metabolic pathways. In this paper, recent advances in the application of bioinformatics to systems 

synthetic biology and systems metabolic engineering through systems biology are reviewed using 

specific examples. 

Figure 1. The role of systems biology as an integrated platform in modern biological 

research Systems biology integrates information on genetics, proteins, DNA-protein 

binding, and metabolism with system dynamics modeling and system identification 

technology to develop models and mechanisms for the interpretation of phenotypes or 

behaviors of cellular physiology. Since large-scale data sets need to be mined, powerful 

computational tools are necessary. Based on system models and mechanisms in systems 

biology, synthetic genetic circuits are designed to investigate specific desired cellular 

behaviors of cellular physiology. Discrepancies between real and desired cellular behaviors 

are used as feedback to adjust system models and mechanisms. Systems biology is thus 

positioned to play the role of integrated platform for bioinformatics, systems synthetic 

biology, and systems metabolic engineering. 

{
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Although bioinformatic information (e.g., data on genetics, protein binding, and metabolism) is 

available, several stages of systems biology are required to help us understand via system dynamics 

modeling the underlying molecular mechanisms of genetic regulatory (GR) networks [18–24], 

protein–protein interaction (PPI) networks [25–29], and metabolic networks [61–63] under various 

biological conditions. At the first stage, a putative GR or PPI network is created by large-scale 

integration of knowledge such as information from publications and databases, and high-throughput data 

(from data mining or deep curation). Based on this network and dynamic modeling, the actual GR or PPI 

network of cellular physiology can be identified with system identification methods 

(reverse-engineering scheme [34]) by using specific microarray gene or protein expression data [18–28]. 

For example, GR networks (GRNs) have been constructed by dynamic modeling via microarray data for 

cell cycles [18,23,24], environmental stressors [28,44], photosynthesis [69], aging [34], and cancer [39]. 

PPI networks have been constructed for cancer [3,9,33,39,70], inflammation [41], biofilm formation [43], 

and infection by Candida albicans. Comparison of PPI networks between healthy and cancer cells can 

provide network markers for the investigation of the systematic mechanism of cancer [70]. The 

integration of cellular networks of GRs and PPIs provides deeper insight into actual biological networks 

and is more predictive than an approach without integration [71]. A systematic and efficient method to 

integrate different kinds of omics data for the construction of integrated cellular networks via microarray 

data have been provided based on coupling dynamic models and statistical assessments [44]. This 

method has been shown to be powerful and flexible, and can be used to construct integrated networks at 

different cellular levels to investigate cellular machinery under different biological conditions and for 

different species. Coupling dynamic models of the whole integrated cellular network is very useful for 

theoretical analyses and for further experiments in the field of network biology and synthetic biology.  

In short, synthetic biology is the engineering of biological systems to fulfill a particular purpose. It is 

possible to build living machines from off-the-shelf genetic devices by employing many of the same 

strategies that electrical engineers use to manufacture computer chips [47–49]. The main goal of this 

nascent field is the design and construction of biological systems with desired behaviors [51]. Synthetic 

biology envisions the redesign of natural biological systems as well as the construction of functional 

“genetic circuits” by using a set of powerful biotechniques for the automated synthesis of DNA 

molecules and their assembly into genes and microbial genomes [47]. Synthetic biology is predicted to 

have important applications in biotechnology, metabolic engineering, and medicine. It may 

revolutionize how we conceptualize and approach the engineering of biological systems [49]. As 

illustrated in Figure 1, synthetic genetic circuits can furthermore be employed to confirm network 

mechanisms derived using systems biology methods, and can be used as feedback for their improvement 

or revision. Synthetic biology is therefore expected to contribute significantly to a better understanding 

of the functioning of complex biological systems such as metabolic pathways.  

However, the development of synthetic gene networks is still difficult. Most newly created gene 

networks are nonfunctional because of intrinsic parameter fluctuations, environmental disturbances, and 

functional variations in the intra- and extracellular context. For this reason, the design method based on 

dynamic models for robust synthetic gene networks has become an important topic in synthetic  

biology [52–60,68]. These system-dynamics-based design methods for synthetic biology lead to systems 

synthetic biology. 
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Heterologous genes have previously been combined into pathways in metabolic engineering, 

generating a myriad of non-native biochemical products, including isoprenoids, hydroxyacids, biofuels, 

polypeptides, and biopolymers [64–67]. Synthetic biologists developed synthetic tools to engineer 

genetic devices capable of performing complex biological functions such as sensing cell states, counting 

cellular events, and implementing computational logic. These tools have been applied to the 

modification and control of metabolic pathways in several organisms. They consist of one or more parts 

that have been combined to perform a complex function, and provide metabolic engineers with novel 

ways of exerting cellular control over heterologous production pathways. Some synthetic biological 

devices with potential relevance in metabolic engineering include orthogonal inducible promoters, 

light-sensitive promoters, state sensors, spatiotemporal controllers, and logic gates, as well as promoter 

and ribosome binding site (RBS) libraries [36,37]. Since metabolic engineering seeks to control cellular 

metabolism and manipulate through heterologous pathways to maximize production of a desired 

molecule, metabolic engineers are need elegant methods for gathering bio-information about cells, their 

environment, and modulating gene expression in responses [37,61–63]. Hence, devices of synthetic 

biology promise to be a useful addition to the metabolic engineering toolbox. Some synthetic devices 

have already been used to increase product titers. However, many remain largely untested in an industrial 

setting, and the complexity of biology makes their application a feat of engineering [36,37,72]. From the 

systems biology perspective, continuous work with these devices can help elucidate design rules or aid 

the development of system dynamics models that facilitate their integration into metabolic industrial 

processes [36,37,72], and thereby lead to the development of systems metabolic engineering. 

Several mathematical techniques based on systems biology have been developed to analyze the 

systematic properties of complex biological networks. For example, system sensitivity of a biological 

network in response to various parameter variations has been analyzed to determine the systematic 

properties that affect the robustness and fragility of a biological network. System sensitivity analysis not 

only can reveal the robust stability of a biological network against various perturbations, but may also 

provide information about the controllability of a biological network [7–9]. The system response ability 

of a biological network is a measure of response to environmental signals or disturbances [28,34]. From 

the system theory perspective, robustness to intrinsic system variation and the ability to respond to 

external stimuli are two important and complementary system characteristics in the evaluation of system 

performance [33,34]. A more biological system that is robust toward a large amount of intrinsic 

parameter fluctuations is less responsive to environmental disturbances, and vice versa. A systems 

biology investigation of the aging-related gene network via microarray data found that network 

robustness increases and network response ability decreases during the aging process [34]. The 

sensitivity of a biological genetic system to environmental molecular noise is considered as an indication 

of the noise-filtering ability of the gene network [42]. Systems biology allows the measurement of its system 

characteristics, as well as the capabilities of the signal transduction pathway [8] Similarly, flux 

amplification of the metabolic pathway can be estimated, by using both system dynamics models. 

As nonlinear biological networks operate under different conditions of cellular homeostasis and 

homeodynamics, systems biology studies on complex biological models in the landscape of phenotypes 

are highly informative. These studies help discover possible equilibrium points (phenotypes) and 

dynamic behaviors, such as bifurcation, oscillation, robust stability, and phase drift to other equilibrium 

points (phenotype transition). Bifurcation analysis and phase-plane analysis of nonlinear dynamic 
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networks can be useful in predicting system behavior of biological networks under intrinsic parameter 

changes. Through systems biology approach and dynamic modeling [38–42], network robustness and 

noise filtering ability can be improved via feedback, redundancy, and modular schemes. This is why 

there are so many feedback loops, redundant genes, and modular structures at different scales of 

biological networks. A unifying mathematical framework based on nonlinear stochastic dynamic 

models [73–75] was recently proposed to describe different levels of stochastic biological networks 

under different parameter fluctuations, genetic variations, and environmental disturbances [29,30,59]. 

The phenotype robustness criteria of biological networks in systems, evolutionary, ecological, and 

synthetic biology were investigated from a systematic perspective on the basis of robust stabilization and 

filtering ability. Network robustness of biological networks can confer intrinsic robustness toward 

intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental 

robustness for resisting environmental disturbances. It was found that if the sum of intrinsic robustness, 

genetic robustness, and environmental robustness is less than or equal to the network robustness, then 

the phenotype is robust in different levels of biological networks in systems, evolutionary, ecological, 

synthetic, and metabolic biology. These phenotype criteria at different levels of biological networks are 

useful for the design of synthetic and metabolic systems. A systems biology approach based on dynamic 

models can clearly provide not only a systematic insight into behaviors at different levels of biological 

networks, but also a design platform to improve system robustness, filtering ability, and transduction 

ability of synthetic and metabolic system networks, which are discussed in detail in the following sections. 

2. Systems Biology Approach to GRNs and PPI Networks via Bioinformatics Methodology 

2.1. Construction of GRNs via Microarray Data 

The construction of a GRN using a systems biology approach can be divided into two steps. The first 

step is construction of a potential (or putative) GRN from two high-throughput data sets, namely, a ChIp 

network and a mutant network. The ChIp data are based on experimental data published by Harbison  

et al. [14], who also used a genomic tiling array to identify the genomic region bound by transcription 

factors (TFs). The mutant data are the gene expression data matrix published by Hughes et al. [76] with 

different gene deletion mutants. In general, the potential GRN is suitable for all possible biological 

conditions. Therefore, the GRN for a specific biological condition needs to be confirmed using 

microarray gene expression data of the specific biological condition; that is, the real GRN is derived by 

pruning the potential GRN with specific microarray data. Let xi(t) denote the gene expression of the i-th 

target gene in the potential GRN. The dynamic equation for the regulation of the i-th gene is then 

modeled as [21,22]  

 
1

( 1) ( ) ( ) ( )
N

i i ij j i i i i
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x t x t a x x t k n tλ
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+ = + − + +   (2.1) 

where xi(t) represents the mRNA expression level of target gene i at time t, xj(t) represents the regulation 

function of the j-th TF binding to the target gene i, aij denotes the regulatory ability from the j-th 

regulatory gene to the i-th target gene (the positive sign indicates activation and the negative sign 

indicates repression), λi indicates the degradation effect of the present time point on the next time point 

t+1, ki represents the basal level, and ni(t) is the stochastic noise due to model uncertainty and fluctuation 
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of microarray data of the target gene. Expression of the i-th gene in (2.1) can be represented by the 

following regression equation [77] 
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where ϕi denotes the regression vector, which can be obtained from microarray data. θi is the 

regulatory parameter vector of target gene i, which is to be estimated. 
The regulatory parameter can be estimated from microarray data of the corresponding gene through 

the least-squares or maximum-likelihood parameter estimation [77] (known as the reverse-engineering 

method). After regulator parameters in θi are estimated, the system order (i.e., the number of regulatory 

genes) is determined by model comparison (e.g., Akaike’s information criterion (AIC)), and the P-value 

statistical method is employed to determine the significant regulatory genes for target gene i. This is 

done by pruning false-positive regulations in the potential GRN. That is, some aij is pruned because of 

false positive deletion. Based on the dynamic model in (2.1), the true GRN can then be constructed one 

target gene at a time through microarray data. Using similar methods, GRNs for yeast cell cycles [18,23,24], 

cancer cell cycles [78], stress response [44], and inflammation [41] can be constructed. 

2.2. Construction of PPI Networks 

The construction of PPI network via a systems biology approach is also a two-step process. The first 

step is constructing a potential PPI network via data mining from literature and databases such as 

BioGRID, SGD, and GO [16,17]. As this is only a candidate network based on many biological 

conditions, the second step is pruning false positive PPIs by using a protein expression microarray of a 

specific biological condition. For a target protein i in the potential PPI network, the dynamic model of 

protein activity is [19,20] 

 
1

1) ) ( ) ( ) ( ) ( )( (
M
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where yi(t) represents the protein activity level of the target protein i at time t, bij denotes the interaction 

ability of the j-th interactive protein with the i-th protein, yj(t) represents the activity level of the j-th 

protein interacting with the target protein i, βi denotes the degradation effect of the protein, hi represents 

the basal activity level, and νi(t) is the stochastic noise. The rate of PPI is proportional to the product of 

the concentrations of both proteins [7], that is, it is proportional to the probability of molecular collisions 

between them. The physical interpretation of Equation (2.3) is that the activity of target protein i at time 

t+1 is the combination of present protein activity, regulatory interactions with M interactive proteins, 
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levels of basal protein from other sources and M interactive proteins in the cell, and stochastic noise, less 

the protein degradation of the present state. The PPI dynamic equation of target protein i in the potential 

PPI network can be represented by the following regression equation [77]: 
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The interaction parameter θi can be estimated from protein profile microarray data by least-squares or 

maximum-likelihood parameter estimation [77] (if protein profile microarray data are unavailable, ten 

mRNA microarray data could be used to replace them, with some modification [19,20]). By using AIC 

to prune false positive interactions, the real PPI network can then be constructed one target protein at a 

time by following the above two-step procedure. Some dynamic metabolic pathways [20] and PPI 

networks of cancer [39] and inflammation [41] have recently been constructed by using the microarray 

data and AIC method. Comparison of PPI networks between healthy and cancer cells can provide 

network-based biomarkers for molecular investigation and diagnosis of cancer [70]. 

2.3. Construction of Integrated GRN and PPI Cellular Networks 

Living organisms have evolved complex mechanisms to respond to changes in environmental 

conditions. This is the case even in unicellular organisms like the yeast Saccharomyces cerevisiae. Such 

environmental changes, commonly termed as “stress”, are harmful or even lethal to the survival of the 

cells, especially of microorganisms whose environment is very changeable. Cellular responses to 

stresses require complex cellular networks of sensing and signal transduction pathways, as well as 

metabolic pathways to adapt cell growth and proliferation for adjustments of gene expression programs, 

metabolic activities, and other features of the cell (see Figure 2).  

These regulatory systems and signal and metabolic pathways can therefore be suitably described by 

an integrated cellular network of transcription regulation and PPIs. The flowchart for constructing the 

integrated cellular network is shown in Figure S1. The same two steps already described apply 

(construction of a potential cellular network and pruning of false positives via specific microarrays of 

gene expression and protein expression data). Several kinds of omics data and database information 

were integrated, including data on microarray gene expression and protein expression, regulatory 

associations between TFs and genes, and PPI. From these data, the potential integrated GRN and PPI 

networks are retrieved. In the second step, based on the dynamic model of integrated gene/protein 

interactions in the potential cellular network, we find that [71] 
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where the regulation function zj(t) is modeled as the sigmoid regulation function of yj(t), that is, for the 

protein activity profiles of transcription factor j [71], 

 ( ) ( ){ }
1

( ) ( )
1 exp ( )

j j j

j j j

z t f y t
y t u σ

= =
+ − −

  (2.6) 

where fj(yj(t)) denotes the sigmoid function, uj and σj represent the mean and deviation of protein 

activity level of TF j, and αn denotes the translation effect from mRNA xn(t) to protein yn(t). 

Figure 2. Schematic diagram of the integrated cellular network. The integrated cellular 

network consists of two subnetworks. The signaling regulatory pathway (green) contains 

protein–protein interaction (PPIs). The gene regulatory network (yellow) contains transcription 

regulations. The transcription factors serve as the interface between the two subnetworks. 

 

Interaction and coupling among genes and proteins in the integrated cellular network in (2.5) are 

described as follows. If some TFs yj(t) at the end of the signal regulatory pathway regulate their target 

genes through the regulation function zj(t) = fj(yj(t)) in (2.6), then the regulatory genes influence their 

corresponding proteins in signal and metabolic pathways through translation effect αnxn(t). The interplay 

between genes and proteins can be seen from their coupling dynamic equations in (2.5) and Figure 2. 

Here, the TFs serve as the interface between the signaling regulatory pathway and gene regulatory 

network. In other words, the interplay between transcription regulation and PPIs constitutes the 

framework of the integrated cellular network. 
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Based on the dynamic coupling equation in (2.5), the potential integrated cellular network can be 

linked through the regulatory parameter aij between genes and their possible regulatory TFs and through 

the translation parameter αn for gene expression to protein expression. The potential signaling or 

metabolic pathways can be linked through the interaction parameter bnm between possible interaction 

proteins. Since omics data on the potential gene regulatory network and potential signaling or metabolic 

pathway only indicate possible TF-gene regulation and protein interactions, they should be confirmed 

using microarray data of gene and protein expressions. In particular, values of aij and bnm in (2.5) should 

be identified and validated by least-squares estimation via microarray data in a specific biological 

condition or phenotype [71]. Significant regulations and interactions between genes and proteins were 

detected using model selection methods such as AIC and statistical assessments like such as Student’s 

t-test [77]. Based on the interface between gene regulatory and signal/metabolic networks (i.e., 

transcription factors) in a specific biological condition, the two networks are coupled together to form 

the integrated cellular network. The integrated cellular network for S. cerevisiae under hyperosmotic 

stress is shown in Figure 3. After the construction of GRN and PPI network from microarray data and 

bioinformatic method, various system characteristics of the biological network are estimated or 

measured using systems biology methods in the following sections so that these systematic 

methodologies can be applied the systematic design of systems synthetic biology and systems 

metabolic engineering. 

Figure 3. The S. cerevisiae integrated cellular network under hyperosmotic stress. By 

following the schematic diagram of an integrated genetic regulatory network (GRN) and 

PPI cellular network in Figure S1, the integrated cellular network of signaling regulatory 

pathway and GRN for hyperosmotic stress in S. cerevisiae is identified by dynamic 

modeling and data mining. Receptor proteins in the plasma membrane, signal regulatory 

pathways in the cytoplasm, and transcription factors and GRNs in the nucleus are used to 

construct an integrated cellular network for S. cerevisiae under hyperosmotic stress. 
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2.4. Network Robustness and Sensitivity Estimation via Microarray Data Using a Systems  

Biology Approach  

After the GRNs or PPI networks or their integrated cellular networks are constructed by dynamic 

modeling using microarray data, some characteristics of these biological networks need to be estimated 

to gain insight into their systematic mechanisms. “Robustness”, the network ability to maintain systematic 

performance under intrinsic perturbations, and “response ability”, the network sensitivity to respond to 

external stimuli or to transduce them to downstream regulators, are two important complementary or 

antagonistic system characteristics that must be considered when discussing biological network 

performance. However, these systematic features cannot be measured directly for all network components in 

the experimental procedure. Even biological processes such as development, differentiation, tumorigenesis, 

and aging are increasingly being described in terms of temporal ordering of highly orchestrated 

transcriptional programs [33,34]. The term robustness is encountered widely in diverse scientific fields, 

from engineering and control theory [73–75] to dynamic systems [79] and biology [80]. It is important 

to note that robustness describes a relative property, not an absolute one, as no system can maintain 

stability in all functions when it is perturbed. In other words, robustness is not immutable.  

Let the GRN of interest consist of N genes. After parameter identification via microarray data, the 

GRN in (2.1) can be represented by the following linear discrete-time dynamic system [33,34] 

 ˆ ˆ( 1) ( ) ( )x t Ax t K n t+ = + +  (2.7) 
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where the state vector x(t) = [x1(t) ⋯ xN(t)]T stands for the discrete-time mRNA expression levels of total 

N genes at times t = 1, 2, ..., K. The system matrix Â denotes gene interactions in the gene network 

estimated by microarray data, that is, âij denotes the estimated interaction of gene j with gene i. If i ≠ j, 

then k̂i denotes the estimated basal level of the i-th gene. n(t) denotes the model residual and 

measurement noise. The steady state xs of x(t) is obtained as t→∞: 

 ( ) 1ˆ ˆˆ ˆ   or   1s s sx Ax K x A K
−

= + = −  (2.8) 

To simplify analysis of “robustness” of the steady state (phenotype), the origin of the dynamic system 

is shifted to the steady state xs, that is, x(t) = x̃(t) + xs. This shift allows the following shifted dynamic 

system to be achieved by subtracting Equation (2.7) from Equation (2.8) [34]: 

 ˆ( 1) ( )x t Ax t+ =   (2.9) 

Therefore, the robustness of the phenotype (i.e., the steady state) of the gene network becomes the 

robustness of the shifted gene network in Equation (2.9) at the origin x̃(t) ≡ 0. In the following, its 

network robustness (tolerance to intrinsic network perturbation) is tested. Suppose the linear GRN 

suffers from intrinsic molecular perturbations mainly due to process noise, thermal fluctuation, or 

genetic mutations. The interactive matrix Â is then perturbed as Â(1 + η), where η denotes the ratio of 
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intrinsic perturbation. That is, the corresponding additional system perturbation is ΔÂ = ηÂ [80]. A GRN 

with intrinsic perturbation can then be represented by  

 ( )ˆ ˆ ˆ( 1) (1 ) ( ) ( )x t A x t A A x tη+ = + = + Δ    (2.10) 

Because quadratic stability with the Lyapunov energy-like function V(x̃) = x̃T(t)Px̃(t) > 0, with V(0) = 

0 for a positive symmetric matrix, P = PT > 0. The perturbative GRN in Equation (2.10) is robustly 

stable if ΔV(x̃) = V(x̃(t+1)) − V(x̃(t)) ≤ 0, i.e., the energy of the gene network is not increased by intrinsic 

perturbations [79]. Based on this idea of robust stability, if the following inequality has a positive 

definite solution P = PT > 0 [34],  

 ˆ ˆ(1 ) (1 )
T

A P A Pη η   + + ≤     (2.11) 

then the perturbative gene network is robustly stable or the phenotype of the gene network is maintained 

under parametric perturbation ratio η. The network robustness η° of the perturbative gene network is 

equal to the tolerance of the largest perturbation that does not violate network stability or still maintains 

the phenotype of the perturbative gene network:  

 
0 max

subject to 0,  (2.11)P

η η=
>

 (2.12) 

That is, the network robustness is the maximum perturbation ratio η° tolerated by the GRN such that 

network stability (or phenotype) is still maintained. The constrained optimization problem in (2.12) can 

be solved by increasing η until no positive solution P exists in Equation (2.11) up to the highest value 

possible without violating the robust stability in Equation (2.11). A positive definite solution P > 0 in 

Equation (2.11) can be easily obtained by using the linear matrix inequality (LMI) Toolbox of Matlab. 

This network robustness method has been used to measure the relative network robustness of multiple 

loops of a gene regulatory network associated with aging-related pathophysiological phenotypes by 

using previously reported microarray data. It profiles the effects of aging on gene expression in the 

thymus, spinal cord, and eye tissues in mice [34]. This aging-related GRN includes 16 genes (Figure 4). 

The relative robustness η° toward normalized perturbation for GRNs of young, aged, and 

calorie-restriction (CR) groups is shown in Table 1.  

After the network robustness of aging-related GRNs is measured, the response abilities of genes to 

external stimuli are examined. Assuming that the GRN responds to external stimuli U(t), including 

upstream regulatory signals and external signals outside the network (e.g., hormones, carcinogens, 

oxidative stress, or ambient biomedical molecules) that could produce an effect on the gene network, the 

dynamic Equation (2.9) could be modified as follows: 

 
( ) ˆ1 ( ) ( )

( ) ( )

x t Ax t U t

Y t Cx t

+ = +
=

 


 (2.13) 

where U(t) = [u1(t) ⋯ uN(t)]T represents external stimuli and Y(t) denotes the output signal response of 

specific genes of interest. For example, if the output signal response of the gene i to external stimuli U(t) 

is to be analyzed, then C = diag(0, 0, ..., 0, 1, 0, 0, ..., 0), i.e., all elements of C are zero except for a single 

element at the i-th diagonal component. For example, C = diag(0, 0, 1, 0, ..., 0) describes the gene 
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response of the P53 gene. If the network response ability of the entire GRN to external stimuli is 

analyzed, then C = I (identity matrix). 

Figure 4. Multiple loops of a gene regulatory network associated with aging-related 

pathophyiological phenotypes. This aging-related gene regulatory network includes 16 

genes: FOXOs, NF-kB, P53, SIRT1, HIC1, Mdm2, Arf1, PTEN, P13K, Akt, JNK, IKK, IkB, 

BTG3, E3F1, and ATM. Dashed red lines and black arrows indicate negative and positive 

parameters of regulated interaction, respectively. 

 

The effect of input signals U(t) on output signal Y(t) is less than or equal to a positive value δ, if the 

following inequality holds [79] 
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∞

=
∞

=

≤



 (2.14) 

δ denotes the upper bound of the effect of U(t) on Y(t) for all bounded input signals U(t). δ°, the smallest 

upper bound of δ in (2.14), is called the “gene response ability (or sensitivity)” of the GRN. δ° permits us 

to obtain a more systematic insight into the ability of gene response to external stimuli for individual 

genes or the entire GRN. From the system gain result in [79], the network response of the dynamic GRN 

has an upper bound δ in (2.14), if there exists a positive definite P = PT > 0 solution to the following  

LMI [34]: 

 
2

ˆ ˆ ˆ
0

ˆ

T T T

T

A PA C C P A P

PA P Iδ

 + −
≤ 

−  
 (2.15) 

That is, if the above LMI holds for some P > 0, then the effect of U(t) on Y(t) must be less than or 

equal to δ, and Equation (2.14) holds. The response ability (minimal δ) of the GRN to external stimuli 

can be obtained by solving the following constrained optimization problem: 
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This can be solved by decreasing the upper bound δ in Equation (2.14) until no P > 0 exists in 

Equation (2.15) by using Matlab LMI Toolbox. By following Equation (2.16), the network response 

abilities of aging-related GRNs in Figure 4 can be measured and compared at different life stages. 

Results are shown in Table 1.  

Table 1 shows that the “aged” group has higher network robustness but lower network response 

ability. In order to tolerate the intrinsic parameter fluctuations accumulated due to genetic mutation, the 

elderly GRN becomes more robust than the young GRN. Robust GRNs are less responsive to external 

stimuli; consequently, the network protective ability against external stimuli decreases in the older gene 

networks. However, a more robust GRN may harbor more accumulated genetic mutations, which 

through random drift might provide more evolutionary paths to other phenotypes of gene network and 

thus lead to some aging-related chronic diseases like cancers, metabolic disorders, and arthritis. Table 1 

also shows that the “young” network groups are less robust, with greater response to external stimuli. 

These GRNs are therefore also less robust to intrinsic perturbations and elicit a strong response toward 

external stimuli. This might imply that some gene expressions such networks could be easily 

reprogrammed to mediate downstream genes or regulators for further reactions. It also allows for 

modulation of gene expression in response to external stimuli, such as exposure to oxidative stress, 

carcinogens, and pro-inflammation molecules. These observations suggest that the gene regulatory 

network at the earlier stage of life or under conditions of CR may opportunely have protective 

adaptations to maintain intact regulatory structures and homeostasis of cellular functions. The purpose 

of the above analysis is to gain a greater understanding of the systematic protective and/or defensive 

mechanisms inherent to aging-related GRNs. The proposed robustness measurement methods may be 

used for future studies of GRNs involved in various biological processes and may have potential 

applications in gene therapy and drug target selection. It was also found that the network robustness of 

cancer cells is higher than that of normal cells and that the reverse is true for network response 

ability [33,34]. 

Table 1. The network robustness (η°) and network response ability (δ°) of a gene regulatory 

network with 16 aging-related genes (Figure 4) across different tissues at young, aged, and 

calorie-restrictive (CR) stages.  

Tissue Young Aged CR 

Thymas    

η° 0.2310 0.3750 0.2050 

δ° 1.1653 0.9463 1.2279 

Spinal Cord    

η° 0.2410 0.6270 0.1400 

δ° 1.1630 0.9367 1.2645 

Eye    

η° 0.1600 0.2910  

δ° 1.2376 0.8798  
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2.5. Network-Based Biomarker Determination via Sample Microarray Data Using a Systems  

Biology Approach  

Biomarkers are used either in diagnostic evaluation to determine the health of a patient with or 

without a disease, or as a prognostic indicator to determine a patient’s prognosis. Present biomarker 

identification methods, which strictly use gene expression profiles, cannot show how the different genes 

within the biomarker gene set are related to each other; that is, biomarkers are not identified from a 

systems biology perspective. Furthermore, the gene lists obtained for similarly diagnosed patients by 

different research groups differ widely and share few common genes. Here, a systems biology approach 

is introduced for the integration of microarray data and PPI information to develop a network-based 

biomarker for systematic investigation into the network mechanism of lung carcinogenesis and the 

diagnosis of lung cancer [70]. The network-based biomarker consists of two protein association 

networks constructed from cancer and noncancer samples. The proposed method can be widely applied 

to determining network-based biomarkers for other diseases. The overall flowchart of the proposed 

network-based biomarker approach is shown in Figure S2 [71]. First, PPI information and microarray 

sample data for smokers with and without cancer are used to construct potential PPI networks for cancer 

and noncancer samples. Since data for both samples are limited, the number of proteins used in potential 

PPI network construction is also restricted: to avoid overfitting in network construction, the maximum 

degree of proteins in the potential network are less than the number of samples, imposing a limit on the 

size of the potential network. 

Using a simple regression model, the potential PPI network is then further validated by the sample 

microarray data to highlight independent protein associations of both samples relative to their respective 

data sets. For a target protein i in the potential PPI network, the protein is described using the following 

protein association model [71]: 

 ( ) ( ) ( )
1

iN

i ik k i
k

y n y n nα ε
=

= +  (2.17) 

where yi(n) represents the gene expression level of the target protein i for the sample n, and αik denotes 

the association ability between the target protein yi(n) and protein yk(n) for sample n. Ni represents the 

number of proteins interacting with the target protein i; it can be obtained from the rough PPI network. 

εi(n) denotes stochastic noise associated with other factors or model uncertainty. Equation (2.17) states 

that, biologically, the expression level of the target protein i is associated with the expression levels of 

interacting proteins. 

The associated interaction parameter αik in Equation (2.17) is identified through maximum likelihood 

estimation [77] on microarray data. AIC and Student’s t-test were employed for model order selection 

and for tests on the statistical significance of protein associations. Based on αik, two matrices are 

established to represent the cancer protein association network (CPAN) and the non-cancer protein 

association network (NPAN) as follows [77] 
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where αij,C and αij,N indicate the quantitative protein association ability between protein i and protein j for 

CPAN and NPAN, respectively, and K is the number of proteins in the protein association network. The 

resulting CPAN and NPAN constitute the network-based biomarker used for identifying significant 

proteins in lung carcinogenesis through the diagnostic evaluation 

 C C C N N N,    Y C Y E Y N Y E= ⋅ + = ⋅ +  (2.19) 

where YC = [y1,C(n) ⋯ yK,C(n)]
T, YN = [y1,N(n) ⋯ yK,N(n)]

T denotes the vectors of expression levels, and EC 

and EN indicate the noise vectors in cancer and non-cancer cases, respectively. A matrix indicating the 

difference between two protein association networks is defined as C − N, i.e., 
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K K K K KK KKK K KK

d d d
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 (2.20) 

where dij denotes the difference in protein association ability between CPAN and NPAN among proteins 

i and j. Using matrix D to represent the difference in network structure between CPAN and NPAN, a 

carcinogenesis relevance value (CRV) was derived to quantify the correlation of each protein significant 

to lung carcinogenesis. To identify significant proteins, two important issues are taken into 

consideration. First, the magnitude of the association ability αij denotes the significance of association of 

one protein to another. A higher absolute value of αij implies that the two proteins are more tightly 

associated. Second, if a protein plays a more crucial role in lung carcinogenesis, then the difference in 

association numbers linked to the protein for CPAN and NPAN would be larger. For example, if one 

protein shares a strong association with many proteins in CPAN, but has weaker associations (no 

protein) in NPAN, then the protein in question is more likely to be involved in lung carcinogenesis. As a 

result, CRV is determined based on the difference in protein association abilities using the following 

equation [70]: 

 
1

CRV
K

i ij
j

d
=

=  (2.21) 

For the i-th protein in the network-based biomarker, the implication of Equation (2.21) is that the 

CRV quantifies the extent of protein associations that differentiate CPAN from NPAN. 

The above network-based biomarker approach is applied to the molecular investigation and diagnosis 

of lung cancer. The primary data set of GSE4115 (79 smokers with lung cancer and 73 smokers without 

lung cancer; obtained from the GEO database, http://www.ncbi.nlm.nih.gov/geo/) was used for 

construction of the network-based biomarker. The CPAN and NPAN in Equation (2.18), which consist 

of 399 and 393 protein associations respectively, constitute the network-based biomarker of lung cancer 

(Figure 5). The difference between CPAN and NPAN is shown in Figure 6. The CPAN indicates that 40 

identified proteins play significant roles in lung carcinogenesis (Table S1). 
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Figure 5. The constructed network-based biomarker. (A) Cancer protein association 

network (CPAN) obtained from C in (2.18) by maximum likelihood estimation, Akaike’s 

information criterion (AIC) selection, and Student’s t-test. (B) Non-cancer protein 

association network (NPAN) obtained from N in Equation (2.18) using the same criteria. 

 

Figure 6. The difference between CPAN and NPAN obtained from Equation (2.20) for 

network-based biomarkers for lung cancer. The significance of proteins (indicated by circle 

size) to the network-based marker is dependent on their CRVs in Equation (2.21), which are 

listed in Table S1.  
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2.6. On the Network Robustness and Filtering Ability versus Molecular Noise in GRNs Using a 

Stochastic System Approach 

Molecular noise has been shown to play many roles in the cellular functions of GRNs, including 

noise-driven divergence of cell fates and population heterogeneity, noise-induced amplification of 

signals, generation of errors in DNA replication leading to mutation and evolution, and maintenance of 

the quantitative individuality of cells [50]. Other cellular processes influenced by noise include 

ion-channel gating, neural firing, developmental modules, cytoskeleton dynamics, and motors [50]. 

Phase variation in pathogenic bacteria, in which cells alternate randomly between expressing certain 

genes and silencing others, is thought to be a form of cultivated noise [25]. These molecular-level noisy 

phenomena are deeply rooted in the statistical mechanical behavior of so-called nanoscale chemical 

systems, where concentrations of reactive molecule species are extremely low and, consequently, 

fluctuations (noises) in the reaction rates are large [50]. Even though the molecular fluctuations leading 

to phase variation seem random in the individual, regulatory factors tune the variation to ensure mean 

levels of heterogeneity for the population, i.e., the random molecular noises can be shown to be filtered 

or attenuated by the GRNs [25]. 

Since cellular molecular events are subject to significant thermal fluctuations and noisy processes 

with transcriptional control, alternative splicing, translation, diffusion, and chemical modification 

reactions, gene expression is best viewed as a stochastic process. Many observations suggest that 

molecular events underlying cellular physiology are subject to random fluctuations; these observations 

have led to the proposal of a stochastic model for gene expression and cellular functions [25]. Noise 

filtering can be considered from a signal processing perspective [74]. From this perspective, a pathway 

is viewed as an analog filter in terms of its frequency response. In terms of signal processing, these 

cellular pathways function as biological filters that transduce molecular signals and filter molecular 

noise [25].  

For the convenience of illustration, the following linear biochemical dynamics of n genes GRN in 

Figure 7 [25] is simply considered initially: 
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( )
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=  (2.22) 

where the concentration vector x(t) and stoichiometric matrix N are given by 
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where xi(t) denotes the concentration of the i-th gene, and Nij denotes the interaction between genes j 

and i. 

Suppose the linear GRN suffers intrinsic molecular fluctuations so that the stoichiometric matrix N is 

perturbed as N + ΔN, 
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where ΔNij denotes the random parametric fluctuation of Nij; Mij denotes the deterministic part 

(amplitude) of fluctuation; and n(t) is white Gaussian noise with zero mean and unit variance, and 

denotes the stochastic part of fluctuation, i.e., the stochastic part of fluctuation is absorbed to n(t). 

Figure 7. The linear n genes GRN with interaction Nij, intrinsic fluctuation ΔNij, gene 

expression xi(t), and extrinsic fluctuation υi(t).  

 

The GRN with random parametric fluctuation can then be represented by  

 
( )( )

( )

( ) ( ) ( )

dx t
N N x t

dt
Nx t Mx t n t

= + Δ

= +
 (2.23) 

For the convenience of analysis by the stochastic process, the above stochastic GRN can be 

represented as follows [74,75]: 

 ( )( ) ( ) ( )dx t Nx t dt Mx t d tω= +  (2.24) 

where dω(t) = n(t)dt. ω(t) is called the stochastic Wiener process or Brownian motion [73]. 

The stochastic dynamic equations of GRNs are always nonlinear. In order to meet the nonlinear 

stochastic regulatory networks, Equation (2.23) should be generalized as the following Langevin 

equation [25] 

 ( ) ( )( ) ( )dx t N x dt M x d tω= +  (2.25) 
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where N(x) denotes the nonlinear interaction equation of the nonlinear GRN, and M(x)dω(t) is due to 

nonlinear intrinsic random fluctuation. 

Based on stochastic Lyapunov theory, let V(x) > 0 with V(0) = 0 denote the Lyapunov power-like 

function, then the stochastic GRN in Equation (2.23) or (2.24) is stochastically stable if E[dV(x(t))/dt] ≤ 

0 [73]. With the choice of V(x) = xT(t)Px(t) for some positive definite matrix P, the following result is 

derived. 

Proposition 1 [25]: 

The linear GRN with stochastic perturbation in Equation (2.23) or (2.24) is stochastically stable if the 

following LMI 

 0T TPN N P M PM+ + ≤  (2.26) 

has a symmetric positive definite solution P > 0, i.e., the phenotype of the linear stochastic GRN is 

maintained under intrinsic stochastic fluctuation. 

Remark 1: (i) In the intrinsic noise-free case, the stable condition in (2.26) is reduced to PN + NTP ≤ 

0, i.e., the eigenvalues of system matrix N should be on the left-hand side of the complex domain. 

Obviously, if the LMI in Equation (2.26) has a positive solution P > 0, then the eigenvalues of N should 

be located on the far left-hand side of the complex domain with more negative real values in order to 

overcome the additional term MTPM due to intrinsic random noise. (ii) If some eigenvalues of system 

interaction matrix N are near the jω axis, then intrinsic random molecular fluctuations across the jω axis 

perturb these modes more easily such that the linear GRN becomes unstable. The LMI in Equation 

(2.26) can be rearranged to  

 
intrinsic robustness network robustness

( )T TM PM PN N P≤ − +   (2.27) 

that is, −(PN + NTP) in Equation (2.27) can be taken as a measure of network robustness, and MTPM due 

to the random parametric fluctuation can be taken as a measure of intrinsic robustness. The physical 

interpretation of Equation (2.27) is that if the network robustness can confer enough intrinsic robustness 

for tolerating intrinsic random parameter fluctuation, then the phenotype of the GRN is maintained. 

For the nonlinear stochastic GRN in Equation (2.25), the following result is also derived. 

Proposition 2 [25]: 

The nonlinear stochastic GRN in Equation (2.25) is still stochastically stable if the following 

Hamilton–Jacobi inequality (HJI) has a positive Lyapunov solution V(x) > 0 with V(0) = 0  
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That is, the phenotype of the nonlinear stochastic GRN in Equation (2.25) is maintained under intrinsic 

stochastic fluctuation. Similarly, the HJI in Equation (2.28) can be rearranged as the following 

phenotype robustness criterion: 
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That is, if the network robustness of the nonlinear stochastic GRN in Equation (2.25) can confer 
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enough intrinsic robustness to tolerate intrinsic stochastic fluctuation, then the phenotype of the GRN 

is maintained. 

After the robust stability of GRN is guaranteed under intrinsic biochemical stochastic fluctuation, the 

effect of environmental random molecular noises on the GRN may be discussed. If the linear GRN in 

Equation (2.24) also suffers from environmental molecular noises ν(t) = [ν1(t) ⋯ vn(t)]
T outside the 

network (see Figure 7), then 

 
( )( ) ( ) ( ) ( ) ( )

( ) ( )

dx t Nx t Hv t dt Mx t d t

Z t Cx t

ω= + +
=

 (2.30) 

where H is a coupling matrix denoting the influence of environmental molecular signals ν(t) on the 

GRN. Z(t) denotes the concentration of specific genes of interest. For example, if we want to examine 

the effect of molecular noises of ω(t) and ν(t) on gene i (i.e., xi(t)), then we let C = diag(0…010…0). 

That is, every element of C is zero except for the i-th element. To investigate the effect of molecular 

noises on the whole GRN, then C = I, the identity matrix. The positive value ρ in the following 

inequality is then called the effect of environmental noises (or signals) on Z(t) in the stochastic GRN in 

Equation (2.30) with x(0) = 0 

 20

0

( ) ( )

( ) ( )

T

T

E Z t Z t dt

E v t v t dt
ρ

∞

∞ ≤
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That is, ρ is the upper bound of the effect of all environmental molecular signals or noises v(t) on the 

GRN. It is called the response level of the GRN. 

From this is derived the following response level result of the GRN in Equation (2.30). 

Proposition 3 [25]: 

The response level ρ of the linear stochastic GRN in Equation (2.30) is guaranteed if the following 

matrix inequality has a positive solution P > 0 

 2

1
0T T T TPN N P M PM C C PHH P

ρ
+ + + + ≤  (2.32) 

By Shur complement [79], the above inequality is equivalent to the following LMI: 
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−  
 (2.33) 

That is, if the above LMI has a positive solution P > 0, then the linear stochastic GRN in Equation (2.30) 

is robustly stable under random intrinsic molecular fluctuation and has a response level ρ to 

environmental molecular noises. 

The optimal response level ρ0 of the linear stochastic GRN (Equation (2.30)) can be obtained by 

solving the following constrained optimization 

 
0 min

subject to 0, 0 and LMI in (2.33)P

ρ ρ
ρ

=
> >

 (2.34) 

Remark 2: (i) If ρ0 < 1, then environmental molecular noises υ(t) are attenuated by the GRN and ρ0 is 

called the filtering ability of the GRN, i.e., the GRN is less sensitive to environmental noises. If ρ0 > 1, 



Cells 2013, 2 656 

 

then environmental molecular noises are amplified by the GRN, i.e., the GRN is more sensitive to 

environmental noises. (ii) Substituting ρ0 for ρ in Equation (2.32) and rearranging, the following 

phenotype robustness criterion of the stochastic GRN is derived 

 
( )2

intrinsic robustness 0
network robustness

environmental robustness

1T T T TM PM C C PHH P PN N P
ρ

+ + ≤ − +   (2.35) 

The phenotype robustness criterion in (2.35) for the stochastic GRN in (2.30) can be denoted as 

“intrinsic robustness + environmental robustness ≤ network robustness”. In other words, if the sum of 

intrinsic robustness and environmental robustness is less than network robustness, then the phenotype of 

the stochastic GRN remains robust under the influence of stochastic intrinsic fluctuation and 

environmental noises. In order to maintain the phenotype robustness criterion, GRNs need negative 

feedback loops to improve the network robustness on the right-hand side of Equation (2.35). Parallel 

loops and modular and redundant structures are also required to reduce the effect of intrinsic parameter 

variations on the GRN and to resist environmental disturbance, i.e., to provide more intrinsic 

robustness and environmental robustness on the left hand side of Equation (2.35). This is why 

feedback loops, parallel loops, and modular and redundant structures are abundant in GRNs as they 

contribute to phenotype robustness and favor natural selection. (iii) If the network robustness in 

Equation (2.35) is not large enough to confer intrinsic robustness and environmental robustness 

simultaneously to maintain the phenotype of the GRN, some negative feedback gene loops are 

implemented as follows: 
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where K denotes specific negative feedback loops that improve the network robustness of the 

stochastic GRN. In this situation, the phenotype criterion in Equation (2.35) is modified as 
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It can be seen from the phenotype robustness criterion in Equation (2.37) that an adequate K can 

improve the network robustness of the stochastic GRN such that it better tolerates intrinsic stochastic 

fluctuation and is less responsive to environmental noise (i.e. smaller ρ0). 

Similarly, the nonlinear stochastic GRN under environmental molecular noises (Equation (2.25)) 

should be modified as follows: 
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The phenotype robustness criterion in Equation (2.37) is then modified as follows [25]: 
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In general, it is very difficult to solve the HJI in Equations (2.29) and (2.39). Global linearization 

techniques [79,81] or T-S fuzzy methods [82,83] can be employed to interpolate several local linearized 

systems to approximate the nonlinear stochastic system in Equation (2.38) as follows: 
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 (2.40) 

where hi(z), i = 1,⋯, L denotes the interpolation functions of global linearization or fuzzy bases with 
hi(z) ≥ 0, ∑i=1

L  hi(z) = 1, and dx = (Nix + Hiv)dt + Mixdω is the i-th local linearized GRN. 

In this situation, the network robustness criterion in Equation (2.39) can be modified accordingly [25] 
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1
,  1,2, ,T T T T

i i i i i iC C PH H P M PM PN N P i L
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From the phenotype robustness criterion in Equation (2.41), it is seen that if local network robustness 

is large enough for every local linearized GRN to simultaneously provide enough local intrinsic 

robustness for tolerating local random parameter fluctuations and enough local environmental 

robustness for resisting local environmental disturbance, then the phenotype of nonlinear stochastic 

GRN is maintained in spite of intrinsic stochastic parameter fluctuations and environmental molecular 

noises. If the phenotype robustness criterion in Equation (2.41) cannot be maintained, then negative 

feedback loops can be engineered to improve network robustness. These feedback loops may have 

potential applications for some types of therapy and drug target selection.  

Systematic methodologies for the analysis of system characteristics of GRNs and PPINs detailed 

above are useful for the systematic designs of systems synthetic biology discussed in the following section. 

3. Systems Synthetic Biology 

Synthetic biology can be expected to have important applications in biotechnology and medicine, and 

to contribute significantly to a better understanding of the functioning of complex biological systems. 

Synthetic biology is concerned with the engineering of biological systems that fulfill a particular 

purpose. This is achieved by transformative innovation that makes it possible to build living machines 

from off-the-shelf chemical ingredients, employing many of the same strategies that electrical engineers 

use to make computer chips. The main goal of this nascent discipline is the design and construction of 

biological systems with desired behaviors [45–49]. Synthetic biology envisions the redesign of natural 

biological systems based on a set of powerful biomolecular techniques for the automated synthesis of 

DNA molecules and their assembly into genes and microbial genomes, for greater efficiency, as well as 

for the construction of functional “genetic circuits” and metabolic pathways for practical purposes [49]. 

The construction of GRNs has recently demonstrated the feasibility of synthetic biology [84–87]. The 

design of robust gene networks still presents a difficult challenge, and most newly designed gene 

networks cannot function properly. Such design failures are mainly due to both intrinsic perturbations 

such as gene expression noises, splicing, mutation, evolutionary changes, and environmental 

disturbances such as changing extracellular environments [52,53]. Designing robust synthetic gene 
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networks that can tolerate intrinsic parameter perturbations, attenuate extrinsic disturbances, and 

function properly in a host cell is therefore an important topic in synthetic biology [55]. 

3.1. Design of Specifications-Based Systems Synthetic Biology 

Analysis of the dynamic properties of gene networks has been previously implemented using 

sensitivity analysis, either by qualitative simulation of coarse-grained models or by extensive numerical 

simulations of nonlinear differential equation models or stochastic dynamic models [56]. For 

applications in systems synthetic biology, however, these approaches are not satisfactory since local 

sensitivity analysis can provide only a partial description of all possible behaviors of a nonlinear gene 

network. In particular, it cannot guarantee that a synthetic network behaves as expected for all uncertain 

initial conditions, external disturbances, and parameter variations in a given range. Recently, Kuepfer 

et al. developed an approach based on semidefinite programming for partitioning parameter spaces of 

polynomial differential equation models into “feasible” and “infeasible” regions [68]. In this approach, 

“feasible” simply refers to the existence of a desired steady state of the synthetic network. Another approach 

using robustness analysis and tuning of synthetic networks was proposed by Batt et al. to provide a 

means to assess the robustness of a synthetic gene network with respect to parameter variations [51]. 

This approach allows searching for parameter sets for which a given property is satisfied, using a 

publicly available tool called RoVerGeNe. Several gene circuit design methods have recently been 

introduced insert or delete specific circuits in an existing gene network to modify its structure toward 

improved robust stability and filtering ability [38]. Robust synthetic gene network design, however, is a 

topic in itself, necessitating the design of a completely synthetic network with enough robust stability 

toward parameter fluctuations and with enough noise filtering ability to resist external disturbances, 

which allows it to function properly in a host cell.  

A robust synthetic biological design incorporating molecular noises has been developed based on 

stochastic game theory [52]. However, the intrinsic parameter fluctuations of synthetic gene networks 

have not been considered in the design procedure. In a previous study [53] some system design 

specifications (engineering designs) had been provided by users so that the designer must engineer an 

artificial gene network to meet these design specifications. For the convenience of problem description, 

a simple design example is provided to give an overview of design problems for robust synthetic gene 

networks. A more general problem scenario is treated in preparation for this overview. First, consider the 

cross-inhibition network shown in Figure 8. This network is synthesized with two genes (a, b) that code 

for two repressor proteins (A, B). More specifically, protein A represses the expression of gene b, and, at 

higher concentration, the expression of its own gene. Protein degradation is not regulated. This synthetic 

system can be modeled by the following synthetic equations: 

 1 2( ) ( )a a a b a a a ax k r x r x xγ= −   (3.1) 

 ( )b b b a b bx k r x xγ= −  (3.2) 

The state variables xa and xb denote the concentrations of proteins A and B, respectively. k and γ are 

the kinetic parameter and decay rate, respectively. r is the regulation function capturing the regulator 

effect of a transcriptional protein on gene expression, and has a smooth sigmoidal form (e.g., Hill 

function) [88].  
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Figure 8. A simple two-gene cross-inhibition network. The network’s regulation functions 

are given in Equations (3.1) and (3.2). 

 

The simple cross-inhibition network in (3.1) and (3.2) can be represented by the following 

stoichiometric matrix equation [7] 

 

1 2( ) ( )

0 0 ( )

0 0

a b a a

a a a b a

b b b a

b

r x r x

x k r x

x k x

x

γ
γ

 
 −     =     −   
 
 


  (3.3) 

However, the stoichiometric matrix in vivo suffers from intrinsic parameter perturbations because of 

gene expression noises, splicing, mutation, evolutionary change, etc., as in [52] 

 
     

     
a a a a a a a a

b b b b b b b b
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k k k n n

γ γ γ
γ γ γ

→ + Δ → + Δ
→ + Δ → + Δ

 (3.4) 

where Δki and Δγi denote the amplitudes of fluctuations of the stochastic parameters and decay rates, 

respectively; and ni is a random white noise with zero mean and unit variance. 

Suppose the synthetic gene network also suffers from environmental disturbances because of 

changing extracellular environments and interactions with the cellular context in its host cell. The 

stochastic gene network can be then represented as  
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where x = [xa xb]
T and ν = [νa νb]

T denote the state vector and environmental disturbance of the synthetic 

gene network in the host cell, respectively. These intrinsic parameter fluctuations and environmental 

disturbances may cause the engineered synthetic gene network to be dysfunctional in the host cell. 

If a synthetic gene network consists of n genes, then the stochastic gene network of Equation (3.5) in 

the host cell can be extended according to the following n-gene network dynamics [52] 

 
1

( ) ( )
m

i i i
i

x Nf x M g x n v
=

= + +  (3.6) 

where the state vector x = [x1⋯xn]
T denotes the concentrations of proteins in the synthetic gene network, 

N denotes the corresponding stoichiometric matrix of the n-gene network, Mi'; i = 1,..., m denotes 

fluctuation matrices associated with independent random noise sources ni, i = 1,..., m; and the elements 

of Mi denote the standard deviations of the corresponding parameter fluctuations. ν = [ν1⋯νn]
T denotes 

the vector of external disturbances. This stochastic system is used to mimic the realistic dynamic 

behavior of a synthetic gene network of n genes in the host cell. As the network is subject to intrinsic 

parameter fluctuations and environmental disturbances in the context of the host cell, a robust synthetic 

gene network should be designed with the ability to not only tolerate parameter fluctuations and 

attenuate external disturbances, but also to achieve desired steady-state behaviors. 

For convenience of analysis and design, the stochastic dynamic in Equation (3.6) of a synthetic gene 

network in vivo can be represented by the following Ito stochastic differential equation [73,74] 

 ( )
1

( ) ( )
m

i i i
i

dx Nf x v M g x dW
=

= + +  (3.7) 

where Wi(t) is a standard Wiener process with dWi(t) = nidt. 

To ensure correct and efficient operation of the gene network, several systematic design 

specifications should be imposed on it from the systematic engineering point of view. 

(i) The kinetic parameters and the decay rates in stoichiometric matrix should be chosen from a 

biologically feasible range 

 [ ]2,  iN N N∈  

(ii) The network should tolerate the stochastic kinetic parameter and decay rate fluctuations with 

prescribed standard deviations in Mi in the state-dependent noise term 

 
1

( )
m

i i i
i

M g x dW
=
  

(iii) The following desired steady state should be achieved 

  as  dx x t→ →∞ 

(iv) The following prescribed attenuation level ρ of environmental disturbance should be achieved 

(i.e., the H∞ filtering ability)  

 
( ) ( )

20

0

T

d d

T

E x x Q x x dt

E v vdt
ρ

∞

∞

− −
≤


 (3.8) 
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for all bounded environmental disturbances v(t), where Q ≥ 0 is a symmetric weighting matrix and ρ is a 

prescribed attenuation level less than 1. That is, the effect of environmental disturbance v on the 

regulation error x − xd should be less than the attenuation level ρ from the average energy perspective.  

In order to achieve the desired steady state xd and for convenience of design, the origin of the 

nonlinear stochastic system in Equation (3.7) should be shifted to xd. Stabilizing the shifted nonlinear 

stochastic system at the origin would then also achieve xd, simplifying the design procedure. Let x̃ = x – 

xd. The following shifted stochastic synthetic genetic system is then derived [79]: 

 ( )
1

( ) ( )
m

d i i d i
i

dx Nf x x v dt M g x x dW
=

= + + + +    (3.9) 

That is, the origin x̃ = 0 of the stochastic system in Equation (3.9) is at the desired steady state xd of the 

original stochastic system in Equation (3.7). N ∈ [N1,N2] is then specified to tolerate the stochastic 
parameter fluctuation ∑i=1

M  Migi(x̃ + xd)dWi and efficiently attenuate the environmental disturbance v to 

the prescribed level  

 20

0

T

T

E x Qxdt

E v vdt
ρ

∞

∞ ≤


 
 (3.10) 

From the stochastic synthetic gene network Equation (3.9) in vivo, we obtain the following result. 

Proposition 4 [53]: 

If design kinetic parameters and decay rates in N ∈ [N1,N2] are chosen such that the following HJI has 

a positive solution V(x̃) > 0 
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 (3.11) 

then (a) the stochastic gene network in Equation (3.9) can achieve both the robust stabilization 

necessary to tolerate the intrinsic stochastic parameter perturbations and the prescribed attenuation 

level ρ of environmental disturbances, i.e., design specifications (i), (ii), and (iv) are satisfied. (b) If the 

stochastic gene network is free of environmental disturbances (v(t) = 0), then x̃→0 or x→xd in 

probability, i.e., design specification (iii) is achieved. 

It is generally very difficult to specify N ∈ [N1,N2] to solve HJI in Equation (3.11) for V(x̃) > 0 using a 

systematic method. If all global linearizations are bound by a polytope consisting of M vertices  
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where Co denotes the convex hull of a polytope with M vertices defined in Equation (3.12), then through 

the global linearization method [79,81], the state trajectories x̃(t) of the shifted gene network in Equation 

(3.9) can be represented by the convex combination of M linearized gene networks as 

 
1 1

( )
M m

j j i ij i
j i

dx x NF xdt M G xdW vdtα
= =

 = + + 
 

      (3.13) 

where the interpolation function αj(x̃) satisfies 0 ≤ αj(x̃) ≤ 1 and ∑ 1i M= αj(x̃) = 1. The trajectory of the 

nonlinear stochastic synthetic gene network in Equation (3.9) could thus be represented by the 

interpolated synthetic gene network in Equation (3.13). This yields the following result. 

Proposition 5 [53]: 

Assuming that design kinetic parameters and decay rates in N ∈ [N1, N2] are chosen such that the 

following M LMIs have a common symmetric positive definite solution P > 0 

 1

2

0,   1, ,

m
T T T T

j j ij i i ij
i

PNF F N P G M PM G Q P
j M

P Iρ
=

 + + +  < = 
−  

   (3.14) 

then there are two results: (a) The stochastic synthetic gene network in Equation (3.7) is robustly stable 

toward intrinsic stochastic parameter perturbations and achieves a prescribed attenuation level ρ of 

environmental disturbances. That is, design specifications (i), (ii) and (iv) are satisfied. (b) If the 

synthetic gene network is free of environmental disturbance (v(t) = 0), then the synthetic gene network 

in Equation (3.7) may asymptotically converge to the desired steady state. (An in silico design example 

is shown in supplementary example 1.) 

Remark 3: (i) Gene circuit design can now be implemented using recombination technology to insert 

or delete TF binding sites in the promoter region of a regulated gene with the aim of increasing or decreasing 

the value of the kinetic parameter κi (i.e., different levels of affinity) of the regulated gene [89]. By 

inserting strong or weak binding sites, large or small values can be obtained. For example, the binding 

site of κi = 1 is 10 times larger than that of κi = 0.1 at the promoter region of target gene i. Changes to the 

decay rate γi can be implemented by shortening the 3' polyadenylate tail (referred to as deadenylation), 

which primarily triggers decapping, resulting in 5' to 3' exonucleolysis. Alternatively, removal of the 3' 

polyadenylate tail can increase γi [53]. Therefore, by shortening or elongating the gene’s 3' 

polyadenylate tail, we can increase or decrease the decay rate γi of gene i. Directed evolution methods are 

also useful in changing the elasticity (kinetic property of κi) and in designing biochemical circuits [53]. From 

a systems biology perspective, these advances in implementation techniques of κi and γi enable 

engineering of synthetic gene networks in the near future. 

(ii) Because of the uncertain values of v and initial state x̃(0) of the synthetic gene network (3.9) in the 

host cell, the following minimax design has also been considered to reset the uncertainty of ν(t) and x̃(0) 

in vivo [52]. ν(t) and x̃(0) are considered players maximizing their effects on regulation error x̃(t) when 

the kinetic parameters are specified as another player minimizing the effects of v and x̃(0) on x̃(t).  
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A robust synthetic gene network based on dynamic game theory and fuzzy interpolation of local 

linearized linear systems can thus be efficiently designed [52]. 

(iii) When the desired output of the synthetic gene network is not a steady state but a time-varying 

signal like a specific binary or periodic signal, and the network structure becomes complex, the above 

systematic analysis methods are difficult to apply. Because natural selection of traits suited for 

environmental change is an important evolutionary mechanism, kinetic parameters of synthetic gene 

networks can be tuned by genetic algorithms (GAs) or evolution algorithms (EAs) to optimally track 

desired biological functions [54,58]. Based on the evolutionary network algorithm, the kinetic 

parameters may be tuned to maximize the fitness to some desired phenotype selected by natural 

selection. Consider the optimal tracking design of a synthetic gene network by network evolution shown 

in Figure 9. Let the tracking error be defined as 

 ( ) ( ) ( )de t y t y t= −  

The design purpose is then to tune the design parameter ki using evolutionary (or genetic) algorithms 

such that the network can achieve the following optimal tracking 

 
0,

min ( ) ( )
P

L U
i ii

T T

k k k
E e t e t dt

 ∈ 
  (3.16) 

where Tp denotes the present time. Let  

 
0

( ) ( ) ( )
PT TJ k E e t e t dt=   (3.17) 

Let the fitness function F(k) be defined as 

 
1

( )
( )

F k
J k

=  (3.18) 

Adapting a parameter vector (chromosome) ki ∈ [ki
L,ki

U] by EA or GA to minimize J(k) for the 

desired network behavior tracking of the synthetic gene network is equivalent to maximizing the fitness 

function in Equation (3.18) to meet the natural selection. A robust biological network design with a 

desired output behavior yd(t) is therefore equivalent to as solution to the following fitness maximization 

problem using an evolutionary network method [54,58] 

 
*

,
( ) max ( )

L Uk k k
F k F k

 ∈ 

=  (3.19) 

The evolutionary network algorithm (or evolutionary systems biology algorithm [58]) is employed to 

solve the above fitness maximization problem via genetic operators such as selection, crossover, and 

mutation. It mimics natural selection in an evolutionary process to tune the kinetic parameter network of 

the synthetic gene network to an environmental change. A GA-based algorithm with binary coding of 

the chromosome has been proposed for the design of robust synthetic genetic oscillators with prescribed 

amplitude, period, and phase [54]. The oscillator is intended to allow protein concentrations to track 

desired periodic reference signals under intrinsic and environmental noises. Based on an evolutionary 

systems biology algorithm that encodes each chromosome in a real-valued vector, the design 



Cells 2013, 2 664 

 

parameters of target gene circuits can evolve to specific values in order to robustly track a desired 

biological function in spite of such interferences [58]. 

Figure 9. Block diagram of the optimal tracking scheme for synthetic biological circuit 

design using an evolutionary systems biology algorithm. Based on a network algorithm 

mimicking natural selection in an evolutionary process, the design parameters k of a 

synthetic biological circuit are tuned to minimize the tracking error between the desired 

logic circuit and the stochastic synthetic biological circuit, and to achieve the desired 

behavior tracking. 

 

3.2. Robust Synthetic Gene Network Design via Library-Based Search Methods 

Over the past decade, synthetic biology has made significant progress in designing biological parts. 

Even synthetic gene networks may have been constructed using a variety of biological components to 

achieve desired behaviors. A limitation on the development of complex synthetic gene networks 

intended to track specific reference trajectories is the lack of an efficient method for selecting suitable 

biological parts from libraries; experimental data in promoter libraries cannot be directly used for 

selecting adequate promoter parts. Current promoter libraries therefore need to be redefined based on 

promoter activity. This would allow development of library-based search methods. 

A dynamic model can be used in the indirect evaluation of the activities of promoter parts to help 

redefine existing promoter libraries. In the TetR-regulated promoter library shown in Figure 10, x(c, t) 

and X(c, t) respectively denote the concentrations of the mRNA and protein of gene yegfp (which is used 

to measure protein expression). The dynamic model of the promoter-regulation gene part is constructed 

with [56,57] 
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( , ) ( , ) ( , )
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x c t P c r x c t

X c t x c t X c t

β
α γ
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  (3.20) 

where β and γyEGFP denote the degradation rates of mRNA and protein yEGFP, respectively, and α 

denotes the translation rate. The promoter regulation function PTetR(c,r), which is dependent on repressor 

activity γ and the choice of promoter c, has the form 

 ( )
( )( , ) ( ), [ , ]

1 TetR

s r
TetR r r s r TetR r s TetRn

TetR

c c
P c r c c c c H r c c c Lib

r K

−= + = + − = ∈
+  (3.21) 

where the promoter c has two promoter activities cr and cs (the minimum and maximum values of the 

promoter regulation function PTetR(c, r), respectively) for the TetR-regulated promoter library LibTetR. 

That is, c = (cr, cs) ∈ LibTetR. KTetR and nTetR denote the TetR–DNA binding affinity and binding 

cooperativity of regulatory protein TetR and DNA, respectively. HTetR(r) is a Hill function capturing the 

effect of a regulatory protein.  

Based on the estimated promoter activities c = (cr, cs) via maximum and minimum values of the 

steady state of protein expression data, some promoter libraries can be redefined in such a way that they 

can be efficiently selected from the design of the synthetic gene network (Table 2) [56,57]. Since a 

synthetic gene network always consists of a set of promoter-regulation gene circuits (Figure 10), the 

design of complex synthetic gene network addresses how to select a set of promoters from the 

corresponding promoter libraries that have promoter activities adequate for achieving the design 

specifications. A well-known gene circuit topology, the simple toggle switch, is shown for illustration 

purposes in Figure 11. The toggle switch has two distinct stable states and can be reversibly switched 

between them by changing the inducers ATc and IPTG. Let x1(c1, t), x2(c2, t), and x3(c3, t) denote the 

concentrations of mRNAs tetR, lacI, and yegfp, respectively; and let X1(c1, t), X2(c2, t), and X3(c3, t) 

denote the concentrations of proteins TetR, LacI, and yEGFP, respectively. The dynamic model of the 

toggle switch gene network in Figure 11 is then modeled as 
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 (3.22) 

The promoter regulation functions pLacI(c1, r1), pTetR(c2, r2), and pTetR(c3, r3) are dependent on the 

selection of promoters c1, c2, and c3 from the corresponding promoter libraries in Table 2. The output of 

interest y(c, t) is dependent of the selected promoter set c = [c1, c2, c3] with adequate promoter activities 

from the corresponding promoter libraries in Table 2. This dynamic toggle switch gene network model 

consists of three interactive dynamic models of promoter-regulation gene parts, as shown in 

Equation (3.20).  



Cells 2013, 2 666 

 

Table 2. Redefined TetR- and LacI-regulated promoter libraries. The redefined TetR- and 

LacI-regulated promoter libraries (i.e., LibTetR and LibLacI) comprise different promoters (i.e., 

Tk and Lk, k = 0,…,20) with their corresponding activities of cs and cr obtained from previous 

libraries of experimental data. 

TetR-regulated promoter library (LibTetR) LacI-regulated promoter library (LibLacI) 

Promoter 
Promoter activity 

Promoter 
Promoter activity 

cs cr cs cr 

T0 2121 0.1724 L0 1657.5 0.3018 

T1 1604 0.7576 L1 923.97 0.2567 

T2 1376.6 0.1936 L2 860.87 0.2244 

T3 1169.8 0.4672 L3 674.92 1.9189 

T4 974.52 0.0753 L4 651.58 1.1680 

T5 942.77 0.2281 L5 570.07 3.5062 

T6 967.17 0.1493 L6 527.83 0.5497 

T7 738.57 0.0702 L7 323.45 0.1248 

T8 641.74 0.7135 L8 327.77 0.1772 

T9 564.24 0.2620 L9 309.74 0.5439 

T10 501.35 0.0756 L10 298.35 0.1146 

T11 469.35 0.0788 L11 250.16 0.1326 

T12 466.16 0.1636 L12 248.03 0.1171 

T13 356.88 0.0927 L13 239.32 0.1010 

T14 348.95 0.1483 L14 190.2 0.0959 

T15 274.79 0.1067 L15 163.84 0.4813 

T16 250.04 0.0857 L16 166.42 0.0989 

T17 188.77 0.1366 L17 131.63 0.1190 

T18 119.57 0.0753 L18 108.96 0.0903 

T19 111.57 0.1185 L19 101.89 0.0982 

T20 70.909 0.1606 L20 85.673 0.2174 

Figure 10. Single schematic diagram of the synthetic promoter-regulation gene circuit. The 

existing TetR-regulated promoter library contains the minimum and maximum values of 

fluorescence [yimin, yimax] corresponding to with and without TetR (repressor) binding. Based 

on the promoter regulation function (3.21) and these values, the promoter library is redefined 

for the design of synthetic gene networks (Table 2). 

i TetRc Lib∈

y
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The multiobjective design approach for the H2/H∞ synthetic gene network based on promoter 

libraries selects an adequate promoter set c = [c1, c2, c3] from corresponding promoter libraries such that 

the following two design objectives are achieved simultaneously [56]: 

(i) H∞ desired noise attenuation level ρd: 
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  (3.23) 

(ii) H2 optimal reference tracking: 
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 (3.24) 

By solving an optimization problem with two constraints [56], adequate promoters can be selected 

from the corresponding libraries in Table 2 to achieve the two design objectives in Equations (3.23) and 

(3.24). Based on the synthetic toggle switch (Figure 11) and dynamic model (equation (3.22)) with 

intrinsic parameter variation and external disturbance, the adequate promoter set c = [c1, c2, c3] [L9,T2, 

L8] is selected from promoter libraries in Table 2 to achieve the multi-objective H2/H∞ reference 

tracking specified in Equations (3.23) and (3.24). Simulation results with ν(t) = 10 × [n1⋯n6]
T are shown 

in Figure 12. 

Figure 11. Synthetic gene circuit topology: simple toggle switch. The regulatory protein 

TetR, which is induced by ATc, inhibits the transcription of lacI by binding promoter c2. 

TetR also inhibits transcription of yegfp by binding promoter c3 to repress the expression of 

the fluorescent protein yEGFP. The protein LacI, which is induced by the inducer IPTG, 

inhibits the transcription of tetR by binding promoter c1. The gene circuit has two distinct 

stable states, and can reversibly switch between them by changing the inducers ATc and 

IPTG. If an adequate promoter set c = [c1, c2, c3] is selected from corresponding promoter 

libraries, then yEGFP can be used to track the desired behaviors generated by a reference 

model. In the reference model, c1 is selected from the LacI-regulated promoter library, and c2 

and c3 are selected from the TetR-regulated promoter library in Table 2 (i.e., c1 ∈ LibLacI, 

c2,c3 ∈ LibTetR). 

3 TetRc Lib∈1 LacIc Lib∈
2 TetRc Lib∈

 
  



Cells 2013, 2 668 

 

Figure 12. Simulation of toggle switch. By solving the LMI-constrained optimization 

problem of the H2/H∞ design objective Equations (3.23) and (3.24) for the synthetic gene 

network in Figure 11 through the library searching method, an adequate promoter set c = [c1, 

c2, c3] = [L9, T2, L8] is selected from the corresponding promoter libraries. The inducer ATc 

is added to the synthetic gene network at 80–160 hours to induce the gene network, and then 

the inducer IPTG is added at 160–240 hours. The output y(c, t) clearly produces a robust 

track with the desired reference output yr(t). 

 

Remark 4: Collective rhythms of GRNs, especially the synchronization of dynamic cells mediated 

by intercellular communication, have become a subject of considerable interest to biologists and 

theoreticians [90]. Synchronization of a population of synthetic genetic oscillators is an important 

consideration in practical applications, because a population distributed over different host cells needs to 

exploit molecular phenomena in a simultaneous manner in order to function as a biological entity. 

However, this synchronization of synthetic gene networks in different host cells may be corrupted by 

intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust 

synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators 

with intrinsic kinetic parametric fluctuations and extrinsic molecular noise. A systems biology approach 

indicates [59,60] that if the synchronization robustness criterion is greater than or equal to the sum of the 

intrinsic robustness and extrinsic robustness, then the stochastic coupled synthetic oscillators can be 

robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the criterion for 

synchronization robustness is violated, then an external control scheme can be designed to improve 
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robustness by adding inducers to the coupled synthetic genetic network. These robust synchronization 

criteria and control methods are useful for a population of coupled synthetic networks with emergent 

synchronization behavior, especially for multicellular engineered gene networks [60]. 

4. Systems Metabolic Engineering 

Systems metabolic engineering aims to amplify or delete specific genes in metabolic pathways to 

perform metabolic engineering within a systems biology framework. Regulatory gene networks, 

metabolic networks, and other cellular networks can thus be engineered in an integrated system manner. 

Systems biological analysis via large-scale genome-wide analyses and computational bioinformatic 

tools can allow the rapid evaluation of the global physiology of a cell with respect to various cellular 

regulations. These include transcriptional and translational regulation, as well as metabolic engineering 

distribution [37,61–63]. Results of this systems biology approach can be used to predict targets for a 

metabolic engineering approach within the host strain. Furthermore, the integration of high-throughput, 

large-scale, genome-wide analyses with in silico simulation results might provide additional information 

on cellular status at various hierarchical levels from genome to fluxome. Strain selection for strain 

improvement by systems metabolic engineering is divided into several phases [37]: (i) A base strain is 

allowed to develop. (ii) The base strain is further engineered via synthetic biological methods, based on 

results obtained from high-throughput genome-wide bioinformatic data and systems biology 

computational analyses. (iii) The performance of this preliminary production strain is evaluated in actual 

fermentation. (iv) The results are then fed back into further strain development until a superior strain 

showing the desired performance is derived. 

By combining the results of multiple genome-wide analyses and computational analyses, systems 

biology may allow us to reach an unprecedented level of understanding of cellular physiology and 

characteristics [72], which can subsequently be used in a systems synthetic biology framework to design 

systems metabolic engineering strategies, for example, for strain improvement. However, novel 

computational methods such as large-scale data mining, multidimensional data integration, and 

data-driven network inference and deep curation schemes still need to be developed and applied to the 

integration and interpretation of heterogeneous large-scale genome-wide bioinformatic data, which are 

closely interconnected by complex regulatory and metabolic pathways [37,91]. Several robust 

biochemical circuit designs have recently been proposed to improve the network robustness of metabolic 

pathways. The proposed design schemes provide a systems biology method with potential applications 

in systems synthetic circuit design in systems metabolic engineering and systems drug design. Broadly, 

a metabolic network is a collection of enzymatic reactions that process cellular and intercellular 

metabolites. In systems metabolic engineering, the rates of reactions or fluxes, which correspond 

directly to changes in concentrations of substrates, enzymes, factors, or products, are often measured. 

Such systematic changes in concentrations can be expressed in terms of dynamic differential equations. 

The following S-system representation has been used for the last three decades as an efficient model for 

describing a dynamic metabolic network [7,27] 



Cells 2013, 2 670 

 

 

1 1

1 1 1
1 1

1 1

1 1

, , 1,

j j

ij ij

nj nj

n m n m
g h

j j
j j

n m n m
g h

i i j i j i i
j j

n m n m
g h

n n j n j
j j

X X X

X X X V V i n

X X X

α β

α β

α β

+ +

= =

+ +

−
= =

+ +

= =

= −

= − = − = …

= −

∏ ∏

∏ ∏

∏ ∏











 (4.1) 

where X1,⋯,Xn+m are metabolites, such as substrates, enzymes, factors, or products of a biochemical 

network, in which X1,⋯,Xn denote n dependent variables and Xn+1,⋯,Xn+m denote the independent 

variables. In a metabolic network, intermediate metabolites and products are dependent variables, 

whereas substrates and enzymes are independent variables. The rate of change in Xi, Ẋi is equal to the 

difference between two terms, one for production or accumulation, and the other for degradation or 

clearance. Each term is the product of a positive rate constant αi or βi and all dependent and independent 

variables that directly affect production or degradation, respectively. Each variable Xj is raised to the 

power of a kinetic parameter gij and hij, which represents an activating effect of Xj on Xi when its value is 
positive, and an inhibitive effect when its value is negative. Vi and V–i represent aggregate flux into and 

out of the Xi pool. 

Construction of the S-system representation of a metabolic network and estimation of its kinetic 

parameters from experimental data are described in [7] and the literature references therein. The 

nonlinear parameter estimation problem of S-systems has recently been solved efficiently by evolution 

optimization methods [92]. It is generally difficult to study the network robustness or sensitivity of a 

nonlinear system such as Equation (4.1). Fortunately, many important characteristics of an S-system at 

or close to the steady state can be analyzed by using simple algebraic methods. Since most metabolic 

networks in nature operate near the steady state, at which inputs and outputs are almost balanced, the 

following focuses on the network robustness of metabolic networks at the steady state [7,27]. 

4.1. Robust Biochemical Circuit Design in Metabolic Networks 

Consider the steady state of the metabolic network in Equation (4.1), 

 
1 1
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g h

i j i j
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X X i nα β
+ +

= =

= = …∏ ∏  (4.2) 

Taking the logarithm on both sides of Equation (4.2) and making some rearrangements, 
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Introducing new variables and coefficients, 
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i

y X a g h b
β
α

 
= = − =  

 
 (4.4) 

the steady state of the metabolic network is obtained as 
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In Equation (4.5), AD denotes the system matrix of the interactions between dependent variables YD, 

and AI indicates the interactions between dependent variables YD and independent variables YI. In the 

nominal parameter case, it is assumed that the inverse of AD exists so that YD can be solved uniquely, i.e., 

the metabolic network results in only one steady state (phenotype). Therefore, the steady state of the 

biochemical system is given by 

 1( )D D I IY A b A Y−= −  (4.6) 

Suppose that parameter variations due to mutation, thermal changes, or disease can alter the kinetic 

properties of the steady state of a metabolic network as follows [27] 

 ( )( ) ( ) ( )( )D D D D I I I IA A Y Y b b A A Y Y+Δ +Δ = +Δ − +Δ +Δ  (4.7) 

Parameter perturbations are defined as  
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where ΔAD denotes perturbations due to kinetic parameter variations, Δb denotes perturbations due to 

rate constant variations, and ΔAI denotes perturbations due to kinetic parameter variations between 

dependent and independent variables. ΔAD can influence the existence of the steady state of the 

metabolic network. 

From Equation (4.7), we derive 

 ( )1 ( ) ( ) ( )D D D D D I I IA I A A Y Y b b A A Y−+ Δ + Δ = + Δ − + Δ  (4.8) 

If the following robustness condition holds [27] 

 
1

2
1D DA A− Δ <  (4.9) 

then the singular values of I + AD
−1ΔAD are free of zero and the inverse (I + AD

−1ΔAD)−1 exists. 

Therefore, the steady state of the perturbative metabolic network in Equation (4.8) is uniquely solved: 

as 

 ( ) [ ]11 1 ( ) ( )D D D D D I I IY Y I A A A b b A A Y
−− −+ Δ = + Δ + Δ − + Δ  (4.10) 
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The above analysis implies that if the robustness condition in Equation (4.9) holds, then the steady 

state of a metabolic system is preserved under parameter variations ΔAD, i.e., YD + ΔYD in Equation 

(4.10) has a small difference ΔYD from the nominal in Equation (4.6) under small perturbation. 

However, if the condition in Equation (4.9) does not hold, then individual values of I + AD
−1ΔAD may be 

zero, the inverse (I + AD
−1ΔAD)−1 may not exist, and the steady state YD + ΔYD may cease to exist under 

the parameter perturbation ΔAD. As an example, consider the singular value decomposition: 

 
1

n
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A U V u vσ
=

= Σ =  (4.11) 

where σi denotes the i-th singular value and ui, vi∈Rn denote the corresponding left and right singular 

vectors, respectively. Therefore, if a parameter variation is specified as follows: 
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 (4.13) 

Obviously, the inverse (AD
−1ΔAD)−1 or (I+AD

−1ΔAD)−1 does not exist under the parameter perturbation 

in Equation (4.12). 

Remark 5: The parameter perturbations in the direction of singular vectors like Equation (4.12) are 

the network’s points of fragility. The robustness prevents this kind of parameter variation and guarantees 

the existence of the steady state of the metabolic networks. When unexpected perturbations like 

Equation (4.12) are encountered, a catastrophic failure of the network follows. Robust circuit design is a 

necessary fail-safe mechanism in such situation. For example, the trehalose pathway in yeast consists of 

only a few metabolites that form a substrate cycle. It is governed by a surprisingly complex control 

system that is composed of several inhibiting or activating signaling mechanisms [7].  

Equivalently, the network robustness of the metabolic network in Equation (4.9) can be rewritten as a 

more intuitive criterion for network robustness:  

 1 <I    or    T T T T
D D D D D D D DA A A A A A A A− −Δ Δ Δ Δ <  (4.14) 

That is, ADAD
T is the upper bound of ΔADΔAD

T without violation of robust stability at steady state. If 

the network robustness criterion in Equation (4.14) holds, then the steady state of the perturbative 

metabolic network still exists. 

If a metabolic network cannot tolerate perturbations, i.e., the network robustness criterion in Equation 

(4.14) is violated, then robust control via a biochemical circuit design is a suitable remedy. Based on 

robustness analysis, we develop a biochemical circuit design scheme for the robust control of metabolic 
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networks. Consider the robust control system design of the metabolic network (in Equation (4.1)) by 

specific biochemical feedback circuits in a more general metabolic network form [27] 
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where ikf
kX  denotes a new biochemical control circuit with Xk regulating the production of Xi by the 

kinetic parameter fik. ik
k
lX  denotes a new biochemical control circuit with Xk regulating the degradation 

of Xi by the kinetic parameter lik. The choice of regulating objects, Xk and Xi, and the specification of the 

kinetic parameters, fik and lik, are designed according to the feasibility of biochemical circuit linkage to 

achieve a desired robustness to tolerate ΔAD within the prescribed range of kinetic parameter 

perturbations in a metabolic network. Since fik and lik represent the elasticities of the corresponding 

enzymes in the designed control circuits, the implementation of control circuits is heavily dependent on 

the elasticity specification of these enzymes. 

Consider the robust control system of the metabolic network in Equation (4.15). By using a similar 

procedure to Equations (4.2)–(4.7) at steady state, 

 ( )( ) ( ) ( )( )D D D D I I I IA F A Y Y b b A A Y Y+ +Δ +Δ = +Δ − +Δ +Δ  (4.16) 

where fij and lil are the kinetic parameters in F of the biochemical control circuit to be specified in Equation 

(4.15). 

Suppose we can find some F such that the inverse of (AD + F + ΔAD) exists. Equation (4.16) is 

equivalent then to 

 ( )1( ) ( ) ( ) ( ) ( )( )D D D D D I I I IA F I A F A Y Y b b A A Y Y−+ + + Δ + Δ = + Δ − + Δ + Δ  (4.17) 

Similar to Equation (4.14), a robust design scheme for the controlled metabolic system in Equation 

(4.17) is given by 

 
1

2
( ) 1  or  ( )( )T T

D D D D D DA F A A A A F A F−+ Δ < Δ Δ < + +  (4.18) 

In this case of robust circuit design, the design purpose is to specify feedback circuits such that the 

structural stability robustness of the metabolic network is improved, thus enabling the network 

robustness criterion in Equation (4.18) to tolerate larger parameter perturbations ΔAD. The phenotype 

(i.e., the steady state of the controlled metabolic network in Equation (4.16)) is then given by 

 ( ) [ ]11 1( ) ( ) ( ) ( )( )D D D D D I I I IY Y I A F A A F b b A A Y Y
−− −+ Δ = + + Δ + + Δ − + Δ + Δ  (4.19) 

A simple example of network robustness analysis and circuit design is given in supplementary 

example 2. 

4.2. Multipurpose Circuit Control Design of Metabolic Networks 

The robustness design above focuses on the tolerance of kinetic parameter perturbations ΔAD. The 

effects of rate constant variations Δb and of environmental changes or upstream regulatory changes ΔYI 

on output variations ΔYD should also be considered in the circuit design of metabolic networks to 

guarantee robustness against both intrinsic parameter variations and extrinsic environmental 
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perturbations. The sensitivity of ΔYD to Δb in the designed metabolic network of Equation (4.16) is 

given by [7] 

 1( )D
D

Y
A F

b
−Δ = +

Δ
 (4.20) 

The sensitivity of ΔYD to ΔYI is given by 

 
1( )D

D I
I

Y
A F A

Y
−Δ = − +

Δ  (4.21) 

It is more appealing to design a robust metabolic network with desired sensitivities to variations in 

rate constants and environmental signals, i.e., 

 1 2
2 2

,D D

I

Y Y
s s

b Y

Δ Δ< <
Δ Δ

 (4.22) 

where the upper bounds s1 and s2 are prescribed in advance by the biochemical circuit designer. From 

Equations (4.20)–(4.22), the equivalent sensitivity criteria for Equation (4.22) are obtained as [27] 
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 (4.23) 

A multipurpose circuit design approach is therefore aimed to construct a biochemical circuit F to 

simultaneously satisfy the design requirements of network robustness in Equation (4.18) and network 

sensitivity in Equation (4.23). For example, suppose the goal is to design a robust biochemical circuit f22 

in supplementary example 2 to tolerate kinetic parameter variation ΔAD and satisfy the network 

sensitivity in Equation (4.22) or (4.23) with prescribed sensitivities of ǁΔYD/Δbǁ2 < ǁΔYD/Δbǁ2,nominal ≡ s1 

= ǁAD
−1ǁ2 = 3.42 and ǁΔYD/ΔYIǁ2 < ǁΔYD/ΔYIǁ2,nominal ≡ s2 = ǁAD

−1AIǁ2 = 2.66. Then f22 should be specified 

to satisfy the robust circuit design and the following inequalities: 
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 (4.24) 

simultaneously. With the help of Matlab, the range of f22 necessary to tolerate ΔAD in and satisfy the 

desired network sensitivity in Equation (4.24) is found to be [−1, −0.081]. We choose f22 = −0.407 as a 

design example, which is a negative self-regulation. It has been found to efficiently eliminate the effect 

of parameter variations by negative compensation. About 10% of yeast genes encoding regulators are 

negatively self-regulating; thus, this mechanism seems to be important for maintaining robustness in 

yeast [27]. The metabolic network and time responses are shown in Figure S5(d) and (e), respectively. 

Similarly, suppose the goal in the design case in equation is to specify f12 and l22 to satisfy equations 

and (4.24), i.e., 
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where s1 and s2 are the same as above. Similarly, the ranges of f12 and l22 necessary to tolerate ΔAD in 

equation () and satisfy the desired sensitivity criteria in Equation (4.25) are found to be [−1, 0] and 

[0,1], respectively. f12 = −0.08 and l22 = 0.31 are chosen as a design example. The metabolic network 

and time responses are shown in Figure S5(f) and (g), respectively. Another example of a TCA cycle is 

given in supplementary example 3. 

Given that the goal is to design a robust metabolic circuit to tolerate the perturbation ΔAD and to 

achieve the desired sensitivities s1 and s2 in Equation (4.23), the robust control circuit design problem 

can be reduced to specifying F to satisfy the following multipurpose control circuit design derived from 

Equations (4.18) and (4.23): 
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 (4.26) 

with nominal sensitivities s1 = ǁAD
−1ǁ2 = 8.3685 and s2 = ǁAD

−1AIǁ2 = 7.5464. 

If one biochemical control pathway with kinetic parameter f12 is designed to satisfy the 

multi-objective design criteria in Equation (4.26), then the range of f12 is found to be within [−0.8, −0.1]. 

If f12 is chosen as −0.2 (Figure S6(a), blue line), then the time responses of the designed TCA cycle 

network shown in Figure S6(d), which match the desired properties of the proposed design method, are 

obtained. That is, the robust controlled biochemical network not only can tolerate ΔAD (to preserve its 

phenotype under parameter perturbations) but also retains sensitivity to environmental molecules in the 

nominal case. If dynamic circuit design is employed to implement the biochemical circuit f12, then an 
enzyme capable of catalyzing the reaction X2→X1 is required. Additionally, a TF (Z) has to be found 

such that oxaloacetate2 (X2) can bind to the promoter of the enzyme’s inhibitor gene, as f12 is negative. 

The concentration of X2 could therefore regulate X1 through the kinetic parameter f12. The elasticity of 

the enzyme inhibitor’s gene sequence has to be modulated then to the specified performance by rational 

design or directed evolution. This allows the construction of the biochemical control circuit f12. 

The previous section discusses robust circuit design of metabolic networks based on the steady state 

of an S-system model. In the following section, a stochastic dynamic model approach is taken based on 

the systems biology approach outlined in Section 3. 

4.3. Robust Control Circuit Design of Stochastic Dynamic Metabolic Networks 

Based on sampled data from biochemical experiments and the delayed effect of molecular diffusion 

and transport in cells, the linear metabolic regulatory network can be suitably modeled by the following 

discrete-time dynamic system: 
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where the state vector X(t) denotes the discrete-time expression vector of the molecules (mRNAs, 

proteins, or other chemical complexes in the biochemical regulatory network) at time t, A denotes the 

stoichiometric (interactive) matrix among these molecules (see Figure 13), and y(t) denotes the 

metabolic output. Thus, 
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where xi(t), i = 1,⋯, n are molecular concentrations of mRNAs, proteins, and other complexes in the 

biochemical network.  

Figure 13. Linear metabolic network of n molecules with intrinsic parameter fluctuation Δaij 

and extrinsic noise νi fij denotes the biochemical circuit design from xj to xi to improve 

network robustness stability and noise-filtering ability. 
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Suppose the kinetic parameters of a biochemical regulatory network of metabolic processes are 

affected by the following intrinsic perturbation and environmental disturbance: 

 1

( 1) ( ) ( )

( ) ( )

( )
L

i i v
i

X t A A

y t CX t

n t X t B v t
=

 + = + + 
 

=


 (4.28) 

where ∑i=1
L  Aini(t) denotes the intrinsic parameter fluctuations due to an L random fluctuation source 

(e.g., thermal fluctuation, alternative splicing, molecular diffusion, etc.), and ni(t) denotes the i-th 

random noise with the statistics E[ni(t)] = 0 and E[ni
2(t)] = σi

2, i = 1,⋯, L. ν(t) denotes the 

environmental disturbance. 

Based on the robust stabilization and disturbance filtering described in Section 2, the environmental 

disturbance attenuation level ρ of the metabolic network is denoted as 

 2

2

( )

( )

y t

v t
ρ≤  (4.29) 

Following the systems biology approach in Section 2, the following robust result for a linear 

stochastic metabolic network is derived. 

Proposition 6 [28]:  

For a linear stochastic metabolic network with intrinsic parameter fluctuation and environmental 

disturbance, if there exists a positive definite matrix P = PT > 0 such that the following matrix inequality 

holds for a desired disturbance attenuation level ρ 

 2 2 1

1

( ) ( ) 0
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T T T T T T T
i i i v v v v

i

A PA P A PA C C A PB B PB I A PBσ ρ −

=

− + + + − <  (4.30) 

then the intrinsic parameter perturbation can be tolerated and environmental disturbance can be 

attenuated to a level ρ in the stochastic metabolic network Equation (4.28). 

The phenotype robustness criterion in Equation (4.30) could be rewritten as 
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 (4.31) 

Remark 6: (i) The physical interpretation of the phenotype robustness criterion of the metabolic 

network in Equation (4.31) is that if intrinsic robustness allowing tolerance of intrinsic parameter 

fluctuation and environmental robustness, as well as attenuation of environmental disturbance are 

simultaneously conferred by the network robustness, then the phenotype of the metabolic network is 

maintained. It can be shown that if the eigenvalues of A are closer to the origin, then the network 

robustness is commensurately larger. 

(ii) To solve the phenotype robustness criterion in Equation (4.30), it can be transformed into the 

following equivalent LMI: 
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According to its definition, the disturbance attenuation (filtering) ability ρ0 (i.e., the minimum ρ) can 

be obtained by solving the following constrained optimization problem: 

 
0 min

subject to  0, and LMI in (4.32)
P

P

ρ ρ=

>
 (4.33) 

If the metabolic network in Equation (4.28) cannot achieve a prescribed disturbance attenuation 

ability ρP (i.e., ρP < ρ0) specified for therapeutic or biotechnological purposes, then a biochemical circuit 

design using state feedback is necessary:  
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The phenotype robustness criterion in Equation (4.31) is then modified as  
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The negative feedback circuit F could shift the eigenvalues of A to the origin, thereby improving the 

network robustness of the metabolic network on the right-hand side of Equation (4.35) and achieving the 

prescribed attenuation level ρP < ρ0. In general, the interactions of a biochemical regulatory network in 

metabolic processes are nonlinear in real biosystems. In this situation, a nonlinear biochemical 

regulatory network of metabolic pathways under intrinsic stochastic parameter perturbation and 

environmental disturbance can be represented based on the stochastic dynamic model of systems 

biology in Section 2: 
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In the following, the robust stability and filtering ability ρ0 on ν(k) at y(k) in the stochastic nonlinear 

metabolic network in Equation (4.36) is discussed. 

Proposition 7 [28]: 

If the following matrix inequality holds for a Lyapunov function V(x(k)) > 0 and a noise attenuation 

level ρ 
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then the effect of environmental disturbance ν(k) on y(k) is less than ρ, i.e., the robust disturbance 

attenuation level ρ is achieved for the nonlinear metabolic network in Equation (4.36). 

The filtering ability ρ0 of the nonlinear stochastic metabolic network in Equation (4.36) that 

attenuates environmental disturbance can be obtained by solving the following constrained optimization 

problem: 
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Following the robustness result discussed in Section 2, the phenotype robustness criterion for the 

nonlinear stochastic metabolic network in Equation (4.36) is given as  
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Suppose the network robustness of the metabolic network cannot confer enough intrinsic robustness 

and environmental robustness to maintain the phenotype of the metabolic network. In this situation, 

some negative feedback loops Fg(X(t)) should be implemented to improve network robustness as 

follows: 
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In this case, the phenotype robustness criterion in Equation (4.39) should be modified as follows: 
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That is, the negative feedback loops Fg(X) are employed to improve network robustness to tolerate 

more fluctuations of the intrinsic parameter and to filter more environmental disturbances. 

It is generally very difficult to solve the HJI in Equations (4.37), (4.39), and (4.41) for robust 

chemical circuit design of metabolic networks. Based on the global linearization method in Equation 

(3.12) [79,81] or fuzzy interpolation methods [83,93], the nonlinear stochastic metabolic network can be 

approximated by interpolating M local metabolic networks as follows: 
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where f(X), g(X), and fi(X) are approximated by ∑ i=1
M  αj(X)AjX(t), ∑ i=1

M  GjX(t), and ∑ i=1
M  AijX(t), 

respectively. In this situation, the following robust chemical circuit design for a metabolic network 

with a prescribed noise attenuation level ρP is derived. 

Proposition 8: 

Suppose the negative feedback loop F is designed for the metabolic network in Equation (4.40) or 

(4.42), such that the following LMIs have a positive solution P > 0: 
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Thus, the prescribed disturbance attenuation level ρP is achieved by the biochemical circuit design. 

If the optimal robust filtering design is employed for the nonlinear stochastic metabolic network in 

Equation (4.40) or (4.42), then the control matrix F is specified to solve the following constrained 

optimization problem: 

 
0 min

subject to  0  and LMIs in (4.43)

P
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ρ ρ=

>
 (4.44) 

where ρ0 in Equation (4.44) is the disturbance (noise)-filtering ability of the optimally controlled 

metabolic network in Equation (4.40) or (4.42) (see supplementary example 4). 

This robust biochemical circuit design example in a metabolic network illustrates that the proposed 

systematic method of biochemical circuit design produces metabolic networks that not only tolerate 

more fluctuations of the intrinsic random parameter but also filter more environmental disturbances. 

Systems metabolic engineering design is thus capable of improving the network robustness of metabolic 

networks and efficiently attenuating the effect of environmental noises. This approach may serve as a 

basis for drug designs against genetic perturbations, pathological environmental cues (such as infectious 

agents or chemical carcinogens), or both. 

Network robustness is a systematic property that allows a metabolic network to maintain its 

biochemical function or to generate biochemical products despite external disturbance and intrinsic 

parametric fluctuation. It is from a class of fundamental and ubiquitously observed systems-level 

phenomena that cannot be understood by observing individual components only. Thus, a study of network 

robustness at one level is simply a study of why, when, and how metabolic networks function properly or 

otherwise [47,80,94]. If network robustness is not large enough to obtain sufficient intrinsic robustness 

to tolerate random parameter fluctuations and environmental robustness to filter environmental 

molecular noises, then a robust biochemical circuit design is necessary to improve robustness such that 

the network can maintain its function or phenotype. The proposed robust circuit design principles could 

potentially be used for robust biosynthetic network design with applications in drug design, gene 

therapy, and metabolic engineering. Future focus may be on robust chemical circuit design for such 
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applications or construction of other pathways by nanotechnology and metabolic engineering [28]. If 

network robustness, intrinsic robustness, and environmental robustness are taken into consideration in 

metabolic network engineering, such networks would function more reliably and efficiently. 

With the exception of implementing feedback biochemical circuits in metabolic networks, systems 

synthetic biology techniques detailed in Section 3 could be combined with systems metabolic 

engineering approaches to engineer complete metabolic pathways or networks to produce biochemical 

products that could not be produced in the host cell. As an example, E. coli does not have 

non-fermentative pathways for isobutanol (see Figure 14(A)). Suppose a synthetic pathway in E. coli is 

required for the production of butanol as biofuel. In this application, it is necessary to engineer 

transcription and translation genes to produce the enzymes AlsS, IlvC, IlvD, and Kdc (KIVD), which are 

necessary to catalyze the isobutanol metabolic pathway (Figure 14(B)). The last enzyme of the 

metabolic pathway (Adh) is already present in E. coli. Promoters and RBSs with different regulatory 

abilities can be selected from the corresponding libraries. With adequate computation and simulation 

following the systems biology approach (see Section 2), a synthetic metabolic pathway could be 

designed and engineered (see Section 3) to achieve high-yield and high-specificity metabolic production 

of isobutanol. 

Figure 14. Engineered synthetic metabolic pathway for isobutanol production in E. coli.  

(A) Schematic representation of engineered isobutanol production pathway. (B) Engineered 

synthetic genetic circuit to generate the enzymes necessary for pathway in (A) for isobutanol 

production in E. coli. 

 

5. Future Challenges in Systems Biology 

Systems biology approaches to synthetic biology and metabolic engineering are built on molecular 

and genetic findings, and results of studies in omics fields such as genomics, proteomics, and 

metabolomics. The main concerns faced by systems biology are the complexity and dynamic character 

of biological systems, the vast quantities of biological data, and the fragmented nature of biological 

knowledge. These fragments of information need to be integrated with nonlinear stochastic dynamic 
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models at different system levels by suitable computational tools before they can be applied to system 

synthetic biology and systems metabolic engineering. 

The first challenges of systems biology are how to enrich omics data (e.g., updating and improving 

protein microarray, ChIP-chip databases, and pathway database for systematic studies discussed in 

chapters 2–4) and develop more powerful computational tools for sophisticated data handling, advanced 

modeling, integrated analysis, and knowledge integration. A systems biology approach based on the 

integration of these enriched omics data and advanced computational models will enable us to predict 

the behaviors of biological systems more precisely. This will increase our understanding of the 

underlying molecular mechanisms and our ability to efficiently predict the effects of designed genetic 

circuits in metabolic engineering as well as the impact of perturbations on biological systems in 

drug treatment. 

The second challenge is how to increase the capability of researchers to navigate and relate various 

data and knowledge resources using the integrated platform of bioinformatics, systems synthetic 

biology, and system metabolic engineering to enable innovations. Connecting genomics, molecular 

networks, and physiology will provide us with deeper understanding of how individual differences in the 

genome affect physiological processes through alterations in molecular networks. Therefore, predictive 

and preventive medicine based on network-based biomarkers inevitably lead to personalized medicine 

that may revolutionize healthcare in the future [7]. The third challenge of systems biology is how to 

integrate bioinformatics, gene circuit design, and metabolic engineering technologies for systems drug 

design in future predictive and preventative medicine. 

Drastically increasing oil consumption, exhaustion of natural resources, and global warming are 

worldwide concerns at present. They have spurred research in the areas of bioenergy and biorefining, as 

well as microbial production of bulk chemicals and materials. Systems biology will play an important 

role in these undertakings, collaborating with systems synthetic biology and systems metabolic 

engineering to generate bio-based products to replace some, if not most, currently used chemicals and 

materials. The fourth challenge of systems biology is how to make these bio-based processes competitive. 
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