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Abstract: Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to
various specialized cells, which have the potential capacity to differentiate properly and accelerate
recovery in damaged sites of the body. This stem cell technology has become the fundamental
element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely
influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising
protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture
expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent
oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted
on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway
have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress
and/or ROS quenching. In this review, we summarize the current research and our view of how
PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications
are for MSCs’ biology.
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1. Introduction

Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells that are present in almost all
fetal and adult issues, which are characterized by their ability to differentiate into several specialized
cells [1]. MSCs are progenitors of the various important cells that have emerged as vital tools for
medical engineering. MSCs have been isolated from a number of different tissues such as cord blood,
placenta, and bone marrow, which are being investigated for several tissue repair, immune modulation,
and so on [2]. For example, studies have reported the transplantation of MSCs from bone marrow as a
strategy for cardiac repair following myocardial infarction [3]. Enhancing the viability of implanted
MSCs and restoring cellular mechanisms are therefore serious in order to gain adequate outcomes with
the therapy. Reactive oxygen species (ROS) and nonspecific inflammation have been hypothesized to
lead to the loss of the transplanted MSCs from concerned sites [4]. At the inflammation sites, excessive
immune cells would accumulate, and they could produce ROS. Furthermore, aging and senescence
usually reduce MSCs’ expansion [5], which is also critical for their clinical applications. MSCs easily
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undergo replicative senescence, limiting the number of divisions, and proliferation exaggeratedly
decreases. In general, aging and/or senescence is associated with an excess of oxidative stress, which
could limit the quality of MSCs [6]. On the other hand, evidence has suggested that the regulation of
mitochondria dynamics is indispensable for the fruitful differentiation of MSCs [7]. These findings have
important implications in MSCs’ biology, which requires a greater understanding of the contributions
of oxidative stress and/or ROS to the MSCs. In particular, there is a prerequisite to identify the methods
to manipulate MSCs to reduce ROS in both the MSCs themselves and in their tissue microenvironment
in order to improve the potential and/or the quality of MSCs. Further study of the oxidative stress
in MSCs is also imperative in order to precisely estimate the roles, risks, and mechanisms for the
longevity of MSCs.

2. ROS Is Involved in the Differentiation and Senescence of MSCs

Generally, ROS inhibit MSCs’ proliferation, increase the senescence, and enhance several cell
differentiations (Figure 1). The ROS represent a group of oxygen-containing minor molecules, which
react freely with various chemical structures. Examples of ROS include peroxides, superoxides,
hydroxyl radicals, and singlet oxygen. ROS have been considered to bring cellular dysfunction and cell
death/apoptosis via the damaging oxidation of cellular components. Now, it has been revealed ROS
have important roles in normal cell physiology in addition to the pathology of several diseases such as
tissue degenerative disorder and cancer [8]. Whereas unregulated levels of ROS may be harmful, under
physiological conditions, a regulated basal level of ROS is even necessary in order for them to assist as
second messengers for regulatory functions, and they are also advantageous for the maintenance of
cellular functions [9]. The impacts of ROS on MSCs’ differentiation and/or proliferation have attracted
a deal of interest due to potential applications in medical therapeutics.
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Figure 1. Illustration of mesenchymal stromal/stem cells (MSCs) proliferation and/or differentiation
in response to the extracellular growth factor stimulation and/or oxidative stress. The model shows
that several triggers including oxidative stress, superoxide dismutases (SODs), reactive oxygen species
(ROS), inflammation, and growth factors could affect MSCs and their destinations. SODs reduce some
of the oxidative stress by dismuting superoxide. Note that some critical routes have been omitted
for clarity.
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Oxidative stress, ROS, and senescence/aging may enhance cell differentiation (Figure 1).
For example, the differentiation of chondrocyte is accelerated by an oxidative stress,
and chondrogenesis is inhibited by the administration of antioxidants [10]. On the contrary,
the upregulation of ROS inhibits the osteogenic differentiation of MSCs [11]. Whereas a low level
of ROS could promote osteogenesis, high levels of ROS could promote MSCs to adipocytes [12].
Antioxidant enzymes such as superoxide dismutase (SOD) and catalase have been shown upregulated
upon the osteogenic differentiation, which led to a dramatic decrease in the intracellular ROS level [13].
Antioxidant enzymes are also upregulated during adipogenesis differentiation in MSCs [14]. Consistent
with this, it has been shown that the ROS scavenger N-acetylcysteine (NAC) inhibits adipogenesis in
stromal cells [15]. The NAC improves antioxidant capacity by augmenting glutathione levels, which
also inhibits some of the ROS levels. Increasing ROS levels may stimulate chondrocyte hypertrophy,
which is inhibited by the NAC [16]. Conceivably, MSCs may rely on oxidative mitochondrial
metabolism, and mitochondrial metabolism may be important for the MSCs’ differentiation [17].
It has been demonstrated that ROS generated by mitochondria are imperious for the activation of
adipogenic transcription factors [18]. Similarly, mitochondrial biogenesis and oxygen intake upsurge
meaningfully during adipogenesis [19]. Consistently, inhibiting mitochondrial respiration significantly
suppresses several cell differentiations, reducing adjacent ROS [20].

Cellular ROS metabolism might be firmly controlled by a variety of molecules involved in redox
machinery. However, less is known about the initial mechanism and/or regulation of signaling
molecules by ROS. One mechanism by which ROS are thought to exert their effects may be through
the flexible regulation of target molecules such as PI3K and AKT [21]. For example, high-density
lipoprotein (HDL) has been described as possessing a variety of functional properties in addition
to the ability to transport cholesterol [22]. HDL has also been shown to eliminate the effects of
ROS in vascular walls [23]. To reduce ROS, HDL has been shown to protect endothelial cells from
cell apoptosis [24]. Similarly, HDL protects MSCs from apoptosis by activation of the PI3K/AKT
pathway [25,26]. Furthermore, the HDL has promoted MSCs’ survival and function [25,26], indicating
the importance of the PI3K/AKT pathway.

3. Characterization of Superoxide Dismutases

A group of metal-containing enzymes named superoxide dismutases (SODs) have vigorous
antioxidant roles categorized by their scavenging of ROS [27]. The SODs have been thought to be
the first line of protection arrangement against oxidative stresses, which implies that SODs can play
an important defensive role in several cell apoptosis. Before some of ROS can oxidize critical DNA
and/or proteins, SODs catalyze the reaction of superoxides to the less damaging/reactive hydrogen
peroxide [28]. The presence of metals such as Cu, Zn, Mn, or Fe may be essential for this function
in the system [29]. So, altered metal homeostasis in cells may be the cause of endogenous oxidative
stress [30]. Three types of SODs are known in mammalian species. The most abundant cytosolic
enzyme is SOD1. The loss of SOD1 increases the total level of ROS, which is thought to trigger
oxidative DNA damage to cells. It has been shown SOD1-null animals develop some age-related
diseases [31]. Amazingly, SOD1 may upturn the therapeutic potential of MSCs [32]. SOD2 is located
in the mitochondrial matrix [33], which is the critical site of free radical production from the electron
transportation chain. SOD2 is required for maintaining mitochondrial functions and reliability [34].
One of the primary functions of SOD2 might be to protect mitochondrial DNA against oxidative
damage [35]. The SOD2 gene is subjected to regulation by a number of inflammatory cytokines and
growth factors [36]. It has been shown that SOD2 overexpression causes an increase in ATP production
through energetic mitochondrial respiration [37]. The induction of osteogenesis in MSCs is associated
with an upregulation of SOD2 and a decrease in ROS levels [38]. Additionally, the reduction of SOD2
diminishes the expression of an adipogenesis marker, which results in higher ROS production [39].
SOD3 is secreted to the extracellular matrix in cells and tissues [40]. Downregulation of SOD3
has been shown to lead DNA copy number change and/or hypermethylation in the promoter
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region of genes [41]. It has been revealed that overexpressed SOD3 causes hypoxic accumulation of
hypoxia inducible factor-1α (HIF1α) in cells [42]. There is an increase in SOD3 expression with the
differentiation of MSCs into adipocytes [43]. In addition, SOD3 levels have been shown to decrease
upon chondrogenesis [43].

4. PI3K/AKT/PTEN and p53 Signaling Are Involved in Maintenance of MSCs’ Proliferation
and Stemness

In MSCs, excess ROS can impair self-renewal, differentiation capacity, and proliferation [44].
Concordantly, antioxidants stimulate MSCs’ proliferation [45]. The MSCs’ stemness is maintained by
inhibiting cellular senescence through a PI3K/AKT pathway [46]. Moreover, the PI3K/AKT pathway
has been shown to be involved in maintaining embryonic stem cell pluripotency [47]. Activation of
the PI3K/AKT signaling may have dynamic roles in maintaining the pluripotency of stem cells [48],
which is also involved in enhanced cell proliferation [49] (Figure 2). In addition, it has been reported
that PI3K/AKT is associated with the regulation of stem cell fate [50]. Stromal cell-derived factor 1
(SDF1) is an important chemokine in stem cell mobilization, and plays a critical role in the biological
functions of MSCs by enhancing PI3K expression [51]. Muc1 is a member of the carbohydrate-binding
protein family that contributes to MSCs’ survival and stemness via the PI3K/AKT signaling [52].
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PTEN gene can be upregulated by p53 and PPARγ, while NF-κB and TGF-β downregulate PTEN 

Figure 2. Schematic representation of the integrative model of tumor suppressor molecules signaling,
including phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and p53 in response
to the extracellular growth factor stimulation and/or oxidative stress. Typical examples of molecules
known to act on the DNA damage response and cell proliferation or cell cycle progression via the
regulatory intracellular pathway are shown. Note that some critical signaling has been omitted
for clarity.

Studies have shown an antioxidant role for tumor suppressor molecules: they adjust
the expression of some antioxidant genes in response to oxidative stress [53]. For example,
PTEN (phosphatase and tensin homolog deleted on chromosome 10) performs as this, which is a tumor
suppressor gene that is often deleted and/or mutated in a lot of human cancers [54]. PTEN depressingly
regulates the activity of PI3K/AKT signaling through converting PIP3 into PIP2. The PTEN gene can
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be upregulated by p53 and PPARγ, while NF-κB and TGF-β downregulate PTEN expression [55,56].
Interestingly, some components in rosemary extract can repress PTEN expression in culture cells [57].
The related PI3K/AKT/PTEN pathway signaling takes place as a pivotal determinant of cell fate
regarding senescence and apoptosis, which is mediated by ROS generation [58]. The signaling protects
cells against oxidative damage partially via a transcription factor Nrf2 activation [59]. The Nrf2 forms
a heterodimer with other transcription factors such as Maf protein after translocation into the nucleus,
which in turn binds to the regulatory sequence termed antioxidant response elements (ARE) [60].
ARE is located at the promoter region of certain genes encoding several antioxidant enzymes [60].
Silencing of Nrf2 considerably inhibits the expression of SOD1 and/or SOD2 [61]. In addition,
the Nrf2-Maf complex level is significantly increased by oxidative stress [61,62]. Then, AKT-mediated
Nrf2-Maf activation meaningfully attenuates oxidative stress and cellar apoptosis [61,62] (Figure 2).

The NRF2 plays a key role in the conservation of MSCs’ self-renewal and differentiation potential
by regulating p53 [62]. Additionally, p53 is implicated in protecting cells from the attack of oxidative
stress [63]. It has been shown that pretreatment with curcumin, which is a phytochemical substance
found in turmeric spice, noticeably enhances the anti-apoptotic ability of stem cells [64], and they
can preserve their viability by the inhibition of PTEN and p53 signaling and/or activation of AKT
and HO-1 signaling [65]. In addition, the antioxidant curcumin has been reported to modulate this
PTEN/AKT/p53 axis to exhibit its cell protective effects. Moreover, curcumin induces kinds of
senescence, which are indicated by elevating the expression of senescence markers [66]. It has also
been suggested that nuclear PTEN induced by ATM-mediated phosphorylation plays a unique role to
protect cells upon oxidative damage [67,68] (Figure 2).

5. Involvement of PTEN-p53-AKT-MDM2 Loop in MSCs Regulation

It has been proposed that low levels of p53 induce cell cycle arrest, whereas high levels of p53
induce apoptosis [69]. The PI3K/AKT activation runs into the inhibition of p53 by activating another
tumor suppressor, MDM2 [70]. MDM2 is an oncoprotein that regulates tumorigenesis, whose mRNA
level is regulated by p53 in response to oxidative stress and/or DNA damage [71]. Subcellular
localization of the MDM2 is post-translationally modulated by PI3K/AKT [72]. Consequently,
PI3K/AKT and p53 affect the process of apoptosis in opposed ways. In addition, there are cross-talks
between AKT and p53 involving transcription as well as post-translational modifications [72,73].
Moreover, the subsequent p53-induced expression of PTEN causes the p53–PTEN interaction, which
suppresses the cell survival through PI3K/AKT signaling [70]. PTEN associates with p53 and regulates
the transcriptional activity of p53 by modulating its DNA binding [74]. AKT kinase phosphorylates
MDM2 to translocate into the nucleus, as mentioned formerly. In addition, PTEN is required for the
maintenance of p53 acetylation, which is required for target gene transcription [75]. PTEN has also
been shown to interact with p53 and prevent its degradation. The p53 and MDM2 complex transports
from the nucleus into the cytoplasm, where MDM2 serves as an E3 ubiquitin ligase [76]. Attenuation
of the PI3K/AKT pathway by PTEN protects p53 from MDM2-mediated degradation and inactivation.
The levels of p53 could be positively related to the amount of oxidative DNA damage.

On the other hand, AKT activation can overcome both the p53-independent cell cycle checkpoint
and apoptosis that is induced by the oxidative DNA damage. The PTEN-p53-MDM2-AKT loop in
MSCs’ regulation now may become dominant (Figure 3). As mentioned above, PTEN and p53 are
known to interact and regulate each other, which could be at the important control machinery for
switching between survival and death. These cross-talks are frequently a combination of mutually
antagonistic pathways, which may frequently serve as an added regulatory effect on the expression of
key genes involved in MSCs. Interestingly enough, soy isoflavone genistein induces an autoregulatory
loop between PTEN and p53 [77]. The induction of PTEN expression and nuclear accumulation
by genistein elicits a sequence of PTEN-dependent increased nuclear p53 accumulation, enhanced
PTEN/p53 physical interaction, and increased recruitment of the PTEN/p53 complex to the p53
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binding sites of the PTEN promoter [77,78]. Eventually, it has been informed that genistein suppresses
the adipogenic differentiation of MSCs in a dose-dependent manner [79].

It has been shown that zinc deficiency modulates the PTEN-p53-MDM2-AKT signaling axis [80].
(Figure 3) In addition, the enhanced proliferation potential of MSCs has been accompanied by
the upregulation of multiple genes, including AKT and Mdm2 [81]. Many dietary compounds
are known to have health benefits owing to their antioxidative and anti-inflammatory properties.
Among them, the polyphenols from blueberries have been involved in the ultraviolet-activated
p53/MDM2 DNA repair system by restoring the cell membrane potential [82]. In addition, curcumin
downregulates MDM2 and upregulates p53 [83], which exhibits cell protective effects. Chitosan is
a deacetylated polysaccharide derivative of chitin that is contained in the shells of crustacean such
as crabs and shrimps in nature, which activates the PI3K/AKT pathway [84], and has also been
shown to enhance mineral deposition during the osteogenic differentiation of MSCs [85]. At these
points, again, the PTEN-p53-MDM2-AKT loop becomes dominant in MSCs’ biology (Figure 3).
The microenvironment of cells/tissues could be driven by these diet ingredients.
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Figure 3. Suggestion of various molecular regulatory loops involving the PTEN-p53-AKT-MDM2
network on the controls of MSCs is shown. Interactions are shown as arrows to mean activation,
while hammerheads mean inhibition. Expression of these molecules is regulated by genetic, epigenetic,
and transcriptional changes, which may result in the MSCs’ regulation. Note that some critical
pathways have been omitted for clarity.

6. Future Perspectives

MSCs may have huge therapeutic potential, however, oxidative stress damages on MSCs may
be leading to problems. Therefore, there is unlimited need to identify novel methods to optimize
ROS levels in MSCs to enhance their regenerative abilities, so that their full therapeutic potential can
be realized. Key molecules may be regulated and interact each other at multiple levels including
transcription, protein modulation, and protein stability, and so forth. Understanding the regulation is
also crucial for the effective design of novel MSCs’ therapeutics. Numerous interactions may support
the biological plausibility that the combination of variants of the PTEN-p53-AKT-MDM2 network could
result in more comprehensive treatment. It will be important to understand the mechanism-of-action,
which will lay a foundation for targeting SODs in the appropriate stages of MSCs.
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Human diet usually consists of complex combinations of lipids and/or nutrients that might act
synergistically or antagonistically. Further mechanistic studies are needed in order to understand the
precise molecular mechanisms for the effective diet with their alteration. Looking forward, precisely
understanding these regulations is crucial for MSCs’ therapeutic intervention. Especially, long-term
studies are obligatory in order to explore combinations with other therapies that are known to reduce
ROS levels.
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Abbreviations

ARE antioxidant response elements
ATF2 activating transcription factor 2
ATP adenosine triphosphate
DNA deoxyribonucleic acid
GSK3β glycogen synthase kinase-3β
HIF1α hypoxia inducible factor-1α
Maf macrophage activating factor
MAPK Mitogen-activated Protein Kinase
MSCs Mesenchymal stromal/stem cells
NAC N-acetylcysteine
Nrf2 NF-E2-related factor-2
PIP3 phosphatidylinositol 3,4,5-triphosphate
PIP2 phosphatidylinositol 4,5-bisphosphate
PI3K phosphoinositide-3 kinase
PKC protein kinase c
PPAR peroxisome proliferator-activated receptor
PPREs PPAR response elements
PTEN phosphatase and tensin homologue deleted on chromosome 10
PUFAs polyunsaturated fatty acids
ROS reactive oxygen species
SDF1 stromal cell-derived factor 1
SODs superoxide dismutases
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