# The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands 

Marta Recagni ${ }^{1, t}$, Martina Tassinari ${ }^{2, t}$, Filippo Doria ${ }^{3}$, Graziella Cimino-Reale ${ }^{1}$, Nadia Zaffaroni ${ }^{1}$, Mauro Freccero ${ }^{3}$, Marco Folini ${ }^{1, *}$ and Sara N. Richter ${ }^{2, *}$<br>1 Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; marta.recagni@istitutotumori.mi.it (M.R.); g.ciminoreale@virgilio.it (G.C.R.); nadia.zaffaroni@istitutotumori.mi.it (N.Z.)<br>${ }^{2}$ Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy; martina.tassinari@unipd.it<br>${ }^{3}$ Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy; filippo.doria@unipv.it (F.D.); mauro.freccero@unipv.it (M.F.)<br>* Correspondence: marco.folini@istitutotumori.mi.it (M.F.); sara.richter@unipd.it (S.N.R.); Tel.: +39-022-3905027 (M.F.); +39-049-827-2446 (S.N.R.)<br>+ These authors contributed equally to this paper.

## Synthetic Protocol

We synthesized the compounds $\mathbf{1 - 1 0}, \mathbf{1 3}$, and 14 according to a published procedure [1-3], which was slightly modified to implement yields, as outlined in Scheme 1. We synthesized 11 and 12 using one-pot nucleophilic aromatic substitution and a Chichibabin-like reaction with 15-H:15$\mathbf{B r} / 40: 60$ mixtures (Scheme 1). The raw mixture ( 0.5 mmol ) was dissolved in 20 mL of dimethylformamide (DMF) in a round-bottom flask in the presence of 1.0 mmol of 4 -chloro- 0 phenylenediamine. The resulting solution was stirred at $80^{\circ} \mathrm{C}$, under argon. We monitored the reaction with analytical HPLC (see analytical method above). After 16 h , we quenched the resulting dark violet solution in water, extracting the suspension with three portions of $\mathrm{CHCl}_{3}(50 \mathrm{~mL}$ each $)$. The organic layers were collected, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated with a vacuum. The crude product was dissolved with $0.1 \%$ trifluoroacetic acid (TFA) aqueous solution ( $0.5-1.2 \mathrm{~mL}$ ) and purified via preparative HPLC using the preparative method. The purity of the collected fractions was evaluated by analytical HPLC, using the analytical method. See Supporting Information for the characterization of compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ and their HPLC purity data. It has been reported that TFA anion might induce toxicity [4], therefore TFA was exchanged with a more biocompatible ion, such as chloride, by addition of 0.5 mL of 1 M HCl solution to each chromatographic portion. Solvent evaporation by vacuum presented the products as dihydrochloride $(x 2 \mathrm{HCl})$ salts.

## Fluorescence Microscopy Analyses

Immunofluorescence analyses were carried out on cells grown on glass coverslips. Both untreated and treated cells were fixed in $4 \%$ formaldehyde/PBS for 15 min and incubated in a methanol/acetone solution for 15 min at room temperature. Cells were probed with a primary anti-G-quadruplex single chain antibody (BG4 $300 \mathrm{ng} / \mu \mathrm{L}$; dilution 1:20; produced as described in [5]) or a rabbit polyclonal anti- $\gamma$-H2AX antibody (ab11174; $1 \mathrm{mg} / \mathrm{mL}$; dilution 1:500; Abcam, Cambridge, UK) for 1 h at room temperature (r.t.). To detect the G-quadruplex folding upon c-exNDI exposure, cells were probed with an anti-FLAG antibody (F1804, $1 \mathrm{mg} / \mathrm{mL}$; dilution 1:800; Sigma-Aldrich (Milan, Italy)) for 1 h at RT. The AlexaFluor488 antibody (Life Technologies, A-11008) was used as a secondary antibody according to standard protocol. Nuclei were counterstained with $0.1 \mathrm{mg} / \mathrm{mL}$ of 4',6-diamidino-2-phenylindole (DAPI, Life Technologies, D1306).

Images were acquired using a Nikon Eclipse E600 microscope equipped with UV (nuclei) and FITC ( $\gamma$-H2AX) filters by ACT-1 software (Nikon). Images were processed with Adobe Photoshop Image Reader 7.0. The uptake of c-exNDI 1 was detected by cell-imaging on the same samples using a TRITC filter. Pyridostatin ( $10 \mu \mathrm{M}$ for 24 h ; Tocris Bioscience, Bristol, UK) was used as a reference compound for G4 ligand-induced DNA damage.


Scheme S1. Synthetic protocol for the preparation of core-extended naphthalene diimides (cexNDIs). Reagents and conditions: (a) DMA, $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under Ar ; (b) HPLC purification and 1 M HCl addition/evaporation under vacuum; (c) $\mathrm{N}, \mathrm{N}$-dimethylpropylamine, $\mathrm{MW}, 140^{\circ} \mathrm{C}, 4 \mathrm{~min}$, closed vessel; (d) MeI, $\mathrm{CHCl}_{3}$, r.t., 12 h .

| c-exNDI | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{R}_{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | CH | H | H |
| $\mathbf{2}$ | CH | Br | H |
| $\mathbf{3}$ | CH | H | H |
| $\mathbf{4}$ | CH | Br | H |
| $\mathbf{5}$ | CH | H | H |
| $\mathbf{6}$ | CH | Br | H |
| $\mathbf{7}$ | N | Br | H |
| $\mathbf{8}$ | CH | $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}$ | H |
| $\mathbf{9}$ | CH | H | $\mathrm{CH}_{3}$ |
| $\mathbf{1 0}$ | CH | Br | $\mathrm{CH}_{3}$ |
| $\mathbf{1 1}$ | CH | H | H |
| $\mathbf{1 2}$ | CH | Br | H |
|  |  |  |  |
| $\mathbf{1 3}$ | CH | H | H |
|  |  |  |  |
|  |  |  | H |



Figure S1. Structure and numbering of c-exNDIs. Compounds were prepared and tested as dihydrochloride ( $1-7,11-14 \times 2 \mathrm{HCl}$ ) or trihydrochloride $(8 \times 3 \mathrm{HCl})$ salts. The quaternary ammoniums $\mathbf{9}$ and $\mathbf{1 0}$ were used as iodide salts.

A


Untreated

c-exNDI 1 (IC ${ }_{50}$ )


Pyridostatin
( $10 \mu \mathrm{M}$ )

B


Figure S2. (A) Representative photomicrographs showing immunofluorescence analysis of DNAdamage induction ( $\gamma$-H2AX foci, green fluorescence) in A375 and SKMEL-2 cells exposed for 48 h to an equitoxic amount of c-exNDI 1 (IC50). Cells exposed to Pyridostatin ( $10 \mu \mathrm{M}$ ) were used as a positive control for G4 stabilization-mediated DNA-damage induction. Nuclei were counterstained with DAPI. Magnification: $\times 100$; scale bar: $10 \mu \mathrm{~m}$. (B) Representative Western immunoblotting showing the amounts of the indicated proteins in untreated (-) SKMEL-2 cells and upon 72 h of exposure (+) to $1\left(\mathrm{IC}_{50}\right)$. Vinculin (VCL) was used to ensure equal protein loading. Cropped images of selected proteins are shown.


Figure S3. CD analysis of c-myc, bcl-2, c-kit1, c-kit 2 and b-raf G4 oligonucleotides ( $4 \mu \mathrm{M}$ ) in the absence (left panels) and presence (middle panels) of 4 -fold excess of $\mathbf{1}(16 \mu \mathrm{M})$. The left and middle panels show CD spectra variation in function of the wavelength; arrows indicate the spectral change from $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. The right panels show the molar ellipticity at the peak wavelengths as a function of the temperature, fitted with the vant' Hoff equation, where possible. Circles and triangles indicate the parallel ( 265 nm ) and antiparallel ( 290 nm ) G4 conformation contribution, respectively.


Figure S4. Representative FRET-melting curves of end-labeled c-kit2 (A-B) and dsDNA (C-D) 0.25 $\mu \mathrm{M}$ in the presence of $\mathbf{1}(0.25 \mu \mathrm{M})$ or the same amount of dimethyl sulfoxide (DMSO) at $\mathrm{K}^{+} 100 \mathrm{mM}$ or $\mathrm{K}^{+} 10 \mathrm{mM}$. The right panels show the raw fluorescence, while the left panels show the normalized fluorescence data. Each condition was run in duplicate, and $\mathrm{T}_{\mathrm{m}}$ was calculated from two independent experiments.

Table S1. Oligonucleotides used in this study.

| Application | Name | Sequence ( $5^{\prime} \rightarrow 3^{\prime}$ ) |
| :---: | :---: | :---: |
| CD | c-myc | TGGGGAGGGTGGGGAGGGTGGGGAAGG |
|  | bcl-2 | AGGGGCGGGCGCGGGAGGAAGGGGGCGGGAGCGGGGCTG |
|  | b-raf | GGGCGGGGAGGGGGAAGGGA |
|  | c-kit1 | AGGGAGGGCGCTGGGAGGAGGGG |
|  | c-kit2 | CGGGCGGGCGCGAGGGAGGGG |
| FRET | c-kit 2 | $F A M^{1}$-CGGGCGGGCGCGAGGGAGGGG-TAMRA ${ }^{2}$ |
|  | dsDNA | $F A M^{1}$-CTATAGCGCGCTATAG-TAMRA ${ }^{2}$ |
| Taq polymerase stop assay | primer | GGCAAAAAGCAGCTGCTTATATGCAG |
|  | c-myc | TTTTTGGGGAGGGTGGGGAGGGTGGGGAAGGTTTTTCTGCATATA AGCAGCTGCTTTTTGCC |
|  | bcl-2 | tTTTTAGGGGCGGGCGCGGGAGGAAGGGGGCGGGAGCGGGGCTG TTTTTCTGCATATAAGCAGCTGCTTTTTGCC |
|  | b-raf | TTTTTGGGCGGGGAGGGGGAAGGGATTTTTCTGCATATAAGCAGC TGCTTTTTGCC |
|  |  | TTTTTCGGGCGGGCGCGAGGGAGGGGAGGCGAGGAGGGGCGTGG |
|  | c-kit1+2 | CCGGCGCGCAGAGGGAGGGCGCTGGGAGGAGGGGTTTTTCTGCA TATAAGCAGCTGCTTTTTGCC |
|  | non-G4 cnt | TTGTCGTTAAAGTCTGACTGCGAGCTCTCAGATCCTGCATATAAG CAGCTGCTTTTTGCC |

${ }^{1} 6$-carboxyfluorescein; ${ }^{2}$ 6-carboxy-tetramethylrhodamine.

Table S2. Cytotoxic activity of $\mathbf{1}$ on primary skin fibroblasts and cell lines established from solid human tumors of different histological origins ${ }^{1}$.

| Cell line | Source ${ }^{2}$ | $\begin{aligned} & \mathrm{IC}_{50} \\ & (\mathrm{nM}) \end{aligned}$ | Doubling times (h) 3 |
| :---: | :---: | :---: | :---: |
| $H D F a$ Primary dermal fibroblasts from adult skin | Thermo Fisher Scientific, C0135C | >1000 | 227 |
| $A 375$ <br> Malignant melanoma | ATCC® CRL-1619 | $9 \pm 1$ | 22 |
| PC-3 <br> Castration resistant prostate cancer cells | ATCC® ${ }^{\text {CRL- }}$ - $4335{ }^{\text {TM }}$ | $12 \pm 2$ | 25 |
| U-2 OS Osteosarcoma cancer cells | ATCC® HTB-96 ${ }^{\text {TM }}$ | $14 \pm 1$ | 29.7 |
| $A-431$ <br> Epidermoid carcinoma | ATCC® ${ }^{\text {CRL- }}$ - $1555{ }^{\text {TM }}$ | $14 \pm 5$ | 19.3 |
| NCI-H460 <br> Large cell lung cancer | ATCC® ${ }^{\text {HTB-177 }}{ }^{\text {™ }}$ | $24 \pm 2$ | 23 |
| CaSki <br> Epidermoid carcinoma | ATCC® CRM-CRL-1550 | $40 \pm 4$ | 31.5 |
| STO Diffused malignant peritoneal mesothelioma | Perrone F, et al. [6] | $59 \pm 17$ | 30 |
| SiHa Squamous cell carcinoma | ATCC® HTB-35 | $70 \pm 4$ | 35 |
| SK-MEL-2 <br> Malignant melanoma | ATCC® HTB-68 | $256 \pm 30$ | 32 |

${ }^{1}$ The cytotoxic activity of $\mathbf{1}$ was assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (CellTiter $96 ®$ AQueous One Solution Cell Proliferation Assay, Promega Italia, Milan, Italy). Briefly, 24 h after seeding, cells were treated with increasing concentrations ( $0.1-10,000 \mathrm{nM}$ ) of freshly diluted compounds and incubated at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ for 48 h . Cell viability was determined by incubating the cells for 4 h at $37^{\circ} \mathrm{C}$ in the presence of $20 \mu \mathrm{~L}$ of MTS solution and by recording the absorbance, according to the manufacturer's instructions. The IC $\mathrm{C}_{50}$ values (concentration of compound leading to $50 \%$ inhibition of cell viability) at each time point were calculated from the dose-response curves (percentage inhibition of cell viability with respect to cells exposed to solvent (DMSO) as a function of the $\log _{10}$ concentrations of $\mathbf{1}$ ) using GraphPad Prism 5.01 (GraphPad Software Inc., San Diego, CA, USA). Data are reported as mean values $\pm$ s.d. from at least three independent experiments. ${ }^{2}$ ATCC: American Type Culture Collection (www.atcc.org). ${ }^{3}$ Doubling times in hours were calculated according to the formula DoublingTime $=$ duration $* \log (2) /[\log$ (Final Concentration) $-\log$ (Initial Concentration)].

Table S3. Analysis of gene expression levels in melanoma cells upon 48 h of exposure to $\mathbf{1}^{1}$.

| A375 |  |  | SKMEL-2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gene symbol | RQ | $\pm$ s.d. | Gene symbol | RQ | $\pm$ s.d. |
| Down-regulated genes |  |  | Down-regulated genes |  |  |
| AKT1 | 0.61 | 0.10 | BID | 0.47 | 0.00 |
| APC | 0.64 | 0.25 | FAS | 0.55 | 0.04 |
| BCL2 | 0.65 | 0.11 | FGF2 | 0.56 | 0.02 |
| BCL2L1 | 0.46 | 0.02 | IGF1 | 0.34 | 0.02 |
| BRAF | 0.55 | 0.02 | ITGAV | 0.58 | 0.01 |
| CCND1 | 0.66 | 0.09 | ITGB3 | 0.65 | 0.03 |
| CDC42 | 0.57 | 0.00 | KIT | 0.67 | 0.05 |
| CDK4 | 0.64 | 0.11 | МАРЗК5 | 0.65 | 0.03 |
| CDKN1B | 0.66 | 0.08 | NFKB2 | 0.59 | 0.02 |
| CYCS | 0.44 | 0.05 | NFKBIA | 0.52 | 0.02 |
| DVL1 | 0.59 | 0.06 | Up-regulated genes |  |  |
| EGFR | 0.55 | 0.02 | CDH1 | 1.80 | 0.06 |
| ELK1 | 0.48 | 0.02 | CDKN1A | 1.93 | 0.07 |
| ERBB2 | 0.65 | 0.03 | CDKN2B | 2.72 | 0.10 |
| FN1 | 0.48 | 0.02 | CYCS | 1.56 | 0.06 |
| FOS | 0.52 | 0.02 | FADD | 1.59 | 0.06 |
| FYN | 0.50 | 0.06 | FASLG | 1.81 | 0.10 |
| FZD1 | 0.66 | 0.00 | FN1 | 1.52 | 0.00 |
| GRB2 | 0.56 | 0.02 | FOS | 2.37 | 0.08 |
| GSK3B | 0.48 | 0.02 | ITGA2B | 2.41 | 0.10 |
| IGF1R | 0.46 | 0.05 | PTK2B | 2.26 | 0.11 |
| ITGA2B | 0.44 | 0.00 | Non-differently expressed genes |  |  |
| ITGB1 | 0.65 | 0.07 | ABL1 | 1.04 | 0.04 |
| ITGB3 | 0.49 | 0.05 | AKT1 | 0.97 | 0.03 |
| JUN | 0.55 | 0.02 | AKT2 | 0.84 | 0.09 |
| LEF1 | 0.51 | 0.10 | APC | 1.23 | 0.00 |
| MAP2K1 | 0.49 | 0.04 | $B A X$ | 1.37 | 0.05 |
| МАРЗК5 | 0.33 | 0.07 | BCAR1 | 1.40 | 0.08 |
| MAPK1 | 0.30 | 0.04 | BCL2 | 0.95 | 0.07 |
| MAPK3 | 0.46 | 0.05 | BCL2L1 | 1.08 | 0.01 |
| MAPK8 | 0.44 | 0.03 | BCL2L11 | 0.99 | 0.06 |
| MAX | 0.57 | 0.00 | BRAF | 0.85 | 0.03 |
| MYC | 0.65 | 0.07 | CASP8 | 1.21 | 0.09 |
| NFKB2 | 0.59 | 0.02 | CCND1 | 1.47 | 0.05 |
| NRAS | 0.59 | 0.06 | CCND2 | 1.02 | 0.03 |
| PIK3CA | 0.59 | 0.15 | CCND3 | 0.88 | 0.06 |
| PIK3R1 | 0.59 | 0.05 | CCNE1 | 0.78 | 0.03 |
| PTEN | 0.58 | 0.04 | CDC42 | 1.35 | 0.19 |
| PTK2 | 0.58 | 0.04 | CDK2 | 0.77 | 0.06 |
| RAF1 | 0.53 | 0.08 | CDK4 | 0.99 | 0.01 |
| A375 |  |  | SKMEL-2 |  |  |
| Gene symbol | RQ | $\pm$ s.d. | Gene symbol | RQ | $\pm$ s.d. |
| RB1 | 0.63 | 0.09 | CDKN1B | 0.76 | 0.05 |
| RELA | 0.62 | 0.04 | CDKN2A | 1.20 | 0.05 |
| RHOA | 0.49 | 0.02 | COL1A1 | 1.49 | 0.04 |
| SHC1 | 0.44 | 0.08 | CRK | 1.05 | 0.11 |


| SMAD4 | 0.47 | 0.06 | CTNNB1 | 1.16 | 0.08 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SOS1 | 0.45 | 0.03 | DVL1 | 0.76 | 0.01 |
| SRC | 0.55 | 0.02 | E2F1 | 1.12 | 0.12 |
| TCF3 | 0.62 | 0.09 | ELK1 | 0.83 | 0.07 |
| TGFB1 | 0.55 | 0.06 | ERBB2 | 0.92 | 0.04 |
| TGFBR1 | 0.58 | 0.04 | FYN | 1.16 | 0.02 |
| TGFBR2 | 0.54 | 0.04 | FZD1 | 0.85 | 0.03 |
| TP53 | 0.50 | 0.03 | GRB2 | 1.20 | 0.05 |
| VEGFA | 0.55 | 0.02 | GSK3B | 0.92 | 0.07 |
| Up-regulated genes |  |  | HRAS | 1.45 | 0.06 |
| BAX | 1.73 | 0.89 | IGF1R | 1.06 | 0.05 |
| BCL2L11 | 2.10 | 0.17 | ITGB1 | 1.21 | 0.13 |
| CDKN1A | 1.70 | 0.07 | JUN | 0.98 | 0.04 |
| Non-differently expressed genes |  |  | KDR | 0.94 | 0.01 |
| ABL1 | 0.69 | 0.14 | KRAS | 0.89 | 0.06 |
| AKT2 | 0.67 | 0.30 | LEF1 | 1.17 | 0.06 |
| BCAR1 | 1.08 | 0.15 | MAP2K1 | 1.19 | 0.04 |
| BID | 0.82 | 0.11 | MAPK1 | 1.00 | 0.00 |
| CASP8 | 0.96 | 0.13 | MAPK14 | 0.91 | 0.04 |
| CCND2 | 1.02 | 0.04 | МАРКЗ | 0.76 | 0.00 |
| CCND3 | 0.81 | 0.00 | MAPK8 | 1.08 | 0.01 |
| CCNE1 | 0.89 | 0.10 | MAX | 1.20 | 0.05 |
| CDK2 | 0.71 | 0.09 | MDM2 | 0.78 | 0.03 |
| CDKN2A | 0.83 | 0.03 | MYC | 0.74 | 0.03 |
| COL1A1 | 0.81 | 0.06 | NFKB1 | 0.85 | 0.03 |
| CRK | 0.91 | 0.07 | NRAS | 1.12 | 0.04 |
| CTNNB1 | 0.73 | 0.08 | PIK3CA | 0.98 | 0.08 |
| E2F1 | 0.71 | 0.10 | PIK3R1 | 0.79 | 0.03 |
| $F A D D$ | 1.05 | 0.11 | PTEN | 0.93 | 0.06 |
| FAS | 1.12 | 0.04 | PTK2 | 1.00 | 0.07 |
| FGF2 | 0.85 | 0.03 | RAC1 | 1.12 | 0.04 |
| HRAS | 0.68 | 0.03 | RAF1 | 0.87 | 0.06 |
| ITGAV | 0.72 | 0.03 | RB1 | 0.79 | 0.03 |
| KDR | 0.87 | 0.06 | RELA | 0.91 | 0.04 |
| KRAS | 1.15 | 0.08 | RHOA | 0.82 | 0.01 |
| MAPK14 | 0.98 | 0.08 | SHC1 | 1.36 | 0.05 |
| MDM2 | 0.81 | 0.06 | SMAD4 | 1.05 | 0.04 |
| NFKB1 | 0.76 | 0.09 | SOS1 | 0.87 | 0.00 |
| NFKBIA | 0.85 | 0.03 | SPP1 | 0.90 | 0.03 |
| A375 |  |  | SKMEL-2 |  |  |
| Gene symbol | RQ | $\pm$ s.d. | Gene symbol | RQ | $\pm$ s.d. |
| PTK2B | 1.21 | 0.74 | SRC | 0.84 | 0.03 |
| RAC1 | 0.79 | 0.03 | TCF3 | 1.04 | 0.09 |
| SPP1 | 0.92 | 0.10 | TGFB1 | 0.90 | 0.03 |
| Undetected genes |  |  | TGFBR1 | 1.12 | 0.04 |
| CASP9 | - | - | TGFBR2 | 1.05 | 0.04 |
| CDH1 | - | - | TP53 | 1.01 | 0.01 |
| CDKN2B | - | - | VEGFA | 1.34 | 0.10 |
| FASLG | - | - | Undetected genes |  |  |
| HGF | - | - | CASP9 | - | - |
| IGF1 | - | - | EGFR | - | - |


| KIT | - | - | HGF |
| :---: | :---: | :---: | :---: |
| WNT1 | - | - | WNT1 |

${ }^{1}$ Gene expression data are reported as Relative Quantity (mean RQ values $\pm$ s.d.). The cut-off for differently expressed genes in treated vs. untreated cells was set at fold-change $|1.5|(R Q<0.67$ or $R Q>1.5)$. Undetected genes had no signal after 40 cycles of PCR amplification.

Table S4. Over-representation analysis showing the most relevant enriched pathways found in the list of differently expressed genes (with a fold-change $>|2.0|$ ) in treated vs. untreated melanoma cells ${ }^{1}$.

| A375 |  |  |
| :---: | :---: | :---: |
| geneSet | Description | $p$ Value |
| R-HSA-6802952 | Signaling by BRAF and RAF fusions | 0.004397796 |
| R-HSA-6802957 | Oncogenic MAPK signaling | 0.004397796 |
| R-HSA-74749 | Signal attenuation | 0.005990102 |
| R-HSA-6802949 | Signaling by RAS mutants | 0.015058934 |
| R-HSA-5674135 | MAP2K and MAPK activation | 0.015058934 |
| R-HSA-6802946 | Signaling by moderate-kinase activity BRAF mutants | 0.015058934 |
| R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.015058934 |
| R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase-inactive BRAF | 0.015058934 |
| R-HSA-422475 | Axon guidance | 0.015275749 |
| R-HSA-448424 | Interleukin-17 signaling | 0.016669598 |
| SKMEL-2 |  |  |
| geneSet | Description | $p$ Value |
| R-HSA-114608 | Platelet degranulation | 0.064656041 |
| R-HSA-76005 | Response to elevated platelet cytosolic Ca ${ }^{2+}$ | 0.064656041 |
| R-HSA-2559582 | Senescence-associated secretory phenotype (SASP) | 0.174019732 |
| R-HSA-2559580 | Oxidative stress-induced senescence | 0.199304842 |
| R-HSA-9018519 | Estrogen-dependent gene expression | 0.291819116 |
| R-HSA-212436 | Generic transcription pathway | 0.31782553 |
| R-HSA-73857 | RNA polymerase II transcription | 0.31782553 |
| R-HSA-74160 | Gene expression (transcription) | 0.31782553 |
| R-HSA-3700989 | Transcriptional regulation by TP53 | 0.333572253 |
| R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.340659177 |

${ }^{1}$ WEB-based GEne SeT AnaLysis Toolkit (WebGestalt, http://webgestalt.org).

## HPLC purity data

Compound 11


## Compound 12



## NMR characterization

Compound 11
${ }^{1} \mathrm{H}$ NMR-300 MHz CD 3 OD

${ }^{13} \mathrm{C}$ NMR-300 MHz CD3 OD

${ }^{1} \mathrm{H}$ NMR-300 MHz CD 3 OD

${ }^{13} \mathrm{C}$ NMR-300 MHz CD3 OD

포


## Characterization of c-exNDIs 11 and 12

Compound $11 \cdot 3 \mathrm{HCl}$ : Blue solid (yield $38 \%$; m.p. dec. $>200^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$ ): 7.63 (s, 2 H), 7.05 (dd, $1 \mathrm{H}, J=8 \mathrm{~Hz} ; 1.8 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.95(\mathrm{bs}$, 4 H ), 3.23 (m, 4 H ), 2.93 (s, 12 H ); 2.08 (bs, 4 H ). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ): 164.3;164.2; 140.8; 131.0; 128.0; 125.8; 125.7; 124.8; 124.6; 124.4; 124.2; 121.2; 121.1; 117.5; 116.1; 95.6; 95.3; 55.1; 42.0; 36.7; 23.0.

Compound 12.3 HCl : Blue solid (yield $22 \%$; m.p. dec. $>200^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$ ): $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~s}, 12 \mathrm{H}) ; 2.12(\mathrm{bs}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, CD ${ }_{3}$ OD): 165.4; 165.1; 162.1;161.1; 142.5; 141.5; 132.1; 131.9; 128.8; 128.7; 126.8; 126.5; 125.1; 121.7; 120.3; 119.0; 118.3; 117.0; 96.0; 95.8; 55.4; 42.2; 37.1; 37.3; 23.1; 23.0.

## Supplementary References

1. Perrone, R.; Doria, F.; Butovskaya, E.; Frasson, I.; Botti, S.; Scalabrin, M.; Lago, S.; Grande, V.; Nadai, M.; Freccero, M.; et al. Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes. J. Med. Chem. 2015, 58, 9639-52.
2. Zuffo, M.; Guédin, A.; Leriche, E.-D.; Doria, F.; Pirota, V.; Gabelica, V.; Mergny, J.-L.; Freccero, M. More is not always better: finding the right trade-off between affinity and selectivity of a G-quadruplex ligand. Nucleic Acids Res. 2018, 46, e115.
3. Zuffo, M.; Doria, F.; Botti, S.; Bergamaschi, G.; Freccero, M. G-quadruplex fluorescence sensing by coreextended naphthalene diimides. Biochim. Biophys. acta. Gen. Subj. 2017, 1861, 1303-1311.
4. Cornish, J.; Callon, K.E.; Lin, C.Q.-X.; Xiao, C.L.; Mulvey, T.B.; Cooper, G.J.S.; Reid, I.R. Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. Am. J. Physiol. Metab. 1999, 277, E779-E783.
5. Gilbert-Girard, S., Gravel, A., Artusi, S., Richter, S.N., Wallaschek, N., Kaufer, B.B., Flamand, L. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration. J Virol. 2017, 91, pii: e00402-17.
6. Perrone, F.; Jocollè, G.; Pennati, M.; Deraco, M.; Baratti, D.; Brich, S.; Orsenigo, M.; Tarantino, E.; De Marco, C.; Bertan, C.; et al. Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma. Eur. J. Cancer 2010, 46, 2837-48.
