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Early Stroke Induces Long-Term Impairment of Adult
Neurogenesis Accompanied by
Hippocampal-Mediated Cognitive Decline
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Abstract: Stroke increases neurogenesis in the adult dentate gyrus in the short term, however,
long-term effects at the cellular and functional level are poorly understood. Here we evaluated
the impact of an early stroke lesion on neurogenesis and cognitive function of the aging brain.
We hypothesized that a stroke disturbs dentate neurogenesis during aging correlate with impaired
flexible learning. To address this issue a stroke was induced in 3-month-old C57BI/6 mice by a
middle cerebral artery occlusion (MCAO). To verify long-term changes of adult neurogenesis the
thymidine analogue BrdU (5-Bromo-2’-deoxyuridine) was administrated at different time points
during aging. One and half months after BrdU injections learning and memory performance were
assessed with a modified version of the Morris water maze (MWM) that includes the re-learning
paradigm, as well as hippocampus-dependent and -independent search strategies. After MWM
performance mice were transcardially perfused. To further evaluate in detail the stroke-mediated
changes on stem- and progenitor cells as well as endogenous proliferation nestin-green-fluorescent
protein (GFP) mice were used. Adult nestin-GFP mice received a retroviral vector injection in the
hippocampus to evaluate changes in the neuronal morphology. At an age of 20 month the nestin-GFP
mice were transcardially perfused after MWM performance and BrdU application 1.5 months later.
The early stroke lesion significantly decreased neurogenesis in 7.5- and 9-month-old animals and also
endogenous proliferation in the latter group. Furthermore, immature doublecortin (DCX)-positive
neurons were reduced in 20-month-old nestin-GFP mice after lesion. All MCAO groups showed an
impaired performance in the MWM and mostly relied on hippocampal-independent search strategies.
These findings indicate that an early ischemic insult leads to a dramatical decline of neurogenesis
during aging that correlates with a premature development of hippocampal-dependent deficits.
Our study supports the notion that an early stroke might lead to long-term cognitive deficits as
observed in human patients after lesion.
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1. Introduction

Ischemic stroke is a major cause of long-term disability and death worldwide. Recover from initial
paresis, movement problems, and sensory disturbance and/or aphasia is often associated with cognitive
impairments resulting from the stroke [1,2]. Moreover, progressive decline in cognitive function
after an ischemic stroke in the subcortical or cortical areas of the brain doubles the risk of dementia.
In addition, deficits in targeted attention as well as visual-spatial performances and depression were
reported after a stroke [1]. Most of affected individuals did not show any improvement in cognitive
functions two years after the lesion [2]. Furthermore, 50% still showed a below-average performance even
ten years following injury [3]. Aside from vascular dementia, the causes of these cognitive impairments
have not yet been sulfficiently clarified, not the least because of their diversity. However, it is noticeable
that patients with cortical or subcortical infarcts have impaired cognitive functions [4]. Cognitive deficits
associated with cortical or sub-cortical areas result either directly from dysfunction of the affected area or
from hypoperfusion in adjacent tissues, as well as from a dysfunction in remote brain areas including
the hippocampal formation. This brain region is deeply involved in learning and memory consolidation.
It has been suggested that cortical and subcortical infarcts disturb the integrity of the complex hippocampal
network essential for proper function and thereby contributes to cognitive impairment [5,6]. However,
the underlying mechanisms responsible for cognitive dysfunction are still poorly understood.

Numerous studies indicate that new neurons are generated throughout a lifetime in the
dentate gyrus region of the hippocampal formation in the healthy brain [7-9]. Following a stroke,
neural progenitor cells increase their proliferation rate leading to the formation of new neurons.
Newly formed neurons functionally integrate into the existing network and contribute to learning and
memory. However, following lesion, morphologically aberrant neurons also appear in addition to
the regularly integrating neurons [5,6]. These aberrant neurons are characterized by bipolar dendritic
arborization and ectopic location, and are also able to integrate into the hippocampal network [5,6].
Moreover, aberrant neurogenesis has been associated with hippocampal-dependent memory deficits [6].

Most studies evaluate the impact of stroke on brain function in the short-term following
lesion [10-12]; however, to what extent a stroke lesion early in life affects neural precursor populations,
neurogenesis and integration of new neurons over an extended period of time after lesion, is still
not fully investigated. Furthermore, whether alterations in the neurogenic niche are associated with
changes in brain function (i.e., learning and memory) has yet to be addressed. Therefore, here we
evaluated the impact of a prefrontal stroke induced in the young mice on the neurogenic niche
and cognitive function in mice during aging. We hypothesize that a stroke lesion in young mice,
which significantly increases neurogenesis during the first weeks, will disturb the neurogenic niche,
and lead to a long-lasting cognitive impairment during aging. To test our hypothesis, we induced a
stroke in 3-month-old mice using the middle cerebral artery occlusion (MCAO) model and evaluated
the cellular and functional consequences in the dentate gyrus during aging. To assess long-term effects
on cognitive outcome we used a modified version of the Morris water maze, which permits the use of
a re-learning paradigm and the differentiation between hippocampus dependent- and independent
search strategies.

Our study clearly demonstrates that MCAO in young adult mice leads to a significant reduction
of dentate neurogenesis and disturbs endogenous proliferation over the lifespan. These changes in
the neurogenic niche are correlated with impairments in flexible learning and deficits in the usage of
hippocampal-dependent strategies.

2. Materials and Methods

2.1. Animals and Experimental Design

The study was performed with a total of 48 male C57Bl/6] mice (3-month-old) and 27 nestin-
green-fluorescent protein (GFP) mice (4—6 months old; Figure 1). The nestin-GFP mice were used
to evaluate the different precursor subpopulations. The C57Bl/6] mice were randomly divided in
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three groups: group 1 (6-month-old mice; MCAO n = 8; Sham n = 8), group 2 (7.5-month-old mice;
MCAQO n =7; Sham n =9), and group 3 (9-month-old mice; MCAO n = §; Sham n = §; Figure 1A).
Nestin-GFP mice (group 4) were divided into MCAO (n = 16) and Sham (n = 11), and received a retroviral
vector injection 4 days after surgery (Figure 1B). Cognitive function was assessed in C57Bl/6] and
nestin-GFP mice using the Morris water maze (MWM) test for 5 days, one week (group 1-3) or 7 weeks
(group 4) before perfusion. For nestin-GFP mice, the MWM was performed before BrdU injections in
order to avoid an influence on stem- and precursor cell proliferation (Figure 1B). The C57Bl/6] mice
were transcardially perfused at 3, 4.5, and 6 months and nestin-GFP mice at 14-16 months after infarct
induction (Figure 1). Mice were held in standard cages (54 cm X 38 cm X 19 cm) on a 14 h light/10 h
dark light circle and food pellets and water ad libitum. All procedures were approved by the German
Animal Care and Use Committee in accordance with European Directives.

A MCAQ B MCAOQ/Sham
Sham I RFP viral vector J5d BrdU injections
4  +15m !r +15m_ [ I} 5d WaterMaze  [}transcardial perfusion
Im old 6m old
4 +3m 4 +#5m L
3m old 7.5m old
3 +4.5m 3 +#15m I
B
MCAQ
Sham
n 03 +15m Il
4-6m 20m
old old

Figure 1. Experimental design. (A) After surgery, C57Bl/6] mice received BrdU injections twice daily
for five consecutive days at 1.5, 3, and 4.5 month after surgery. The Morris water maze (MWM) was
performed 1.5 month after BrdU injections. (B) 20-month-old nestin-GFP mice received a retroviral
vector injection four days after stroke or sham surgery and MWM was performed 7 weeks before
perfusion, followed by an intraperitoneal injection of BrdU twice daily for five consecutive days.

2.2. Induction of Brain Infarcts

Ischemic infarcts were induced in 3 months (group 1-3) and 4-6 months (group 4) old mice using
the middle cerebral artery occlusion model (MCAO). Mice were anesthetized with 2.5% isoflurane in a
N>0O:0; (3:1) mixture. A midline-neck incision was performed to expose the right common carotid
artery (CCA). The two bifurcation of the CCA, the external carotid artery (ECA) and the internal
carotid artery (ICA), were localized and cleaned from surrounding tissue. The CCA and ECA were
closed with a 7.0 polyfilament (Medicon eG, Tuttlingen, Germany). A 6.0 monofilament suture (Doccol
Corporation, Sharon, MA, USA) with a rounded tip was inserted into the ICA. The procedure leads to
the occlusion of the middle cerebral artery. The MCAO was performed for 45 min in the C57Bl/6] mice
and for 30 min in the nestin-GFP mice, in order to keep the lesion volume homogenous between the
mice strains used in the study. The suture was then removed and the wound closed. During MCA
occlusion, mice body temperature was maintained using a heating pad. Sham-operated control mice
underwent the same surgical procedure except for filament occlusion [6,13].

2.3. Injection of Retroviral Vector and BrdU

A red fluorescent protein (RFP)-retroviral vector was injected into the dentate gyrus of the
20-month-old group on day 4 after surgery, in order to determine the impact of stroke on the morphology
of newly generated neurons, according to a procedure previously described [5,6]. The CAG-red
fluorescent protein (RFP) retroviral vectors were developed from a mouse Moloney leukemia virus by
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co-transfection of HEK 293 T cells with the compound promoter CAG, the reporter gene RFP, the CMV
enhancer protein, the VSV-G rabies virus coating glycoprotein, and the woodchuck hepatitis virus
post-transcriptional regulatory element (WPRE). The final titer was 1 x 107 colony forming units/mL.
For the injections, mice were anesthetized with 2.5% isoflurane in a N,O:O, (3:1) mixture. A sagittal
section was made to open the scalp. The following coordinates were used: lateral —1.5 mm from the
midline and —1.9 mm posterior to bregma. A glass cannula, containing 1.2 uL of viral vector was
inserted into the opening from the scalp, dorsoventral from the dura mater, 2 mm deep into the brain
tissue on the side of the stroke. During injection, body temperature was maintained using a heating
pad. Sham-operated control mice underwent the same surgical procedure [6].

For labeling of proliferating cells, animals were treated with 5-bromo-deoxyuridine (BrdU;
50 mg/kg, i.p.) twice daily for five consecutive days, six weeks before perfusion (Figure 1).

2.4. Morris Water Maze (MWM)

In order to assess cognitive function, a Morris water maze test was carried out [14]. In this
test, mice have to find a hidden platform (d = 18 cm; 1 cm beneath the water surface) in a large
water pool (diameter: 180 cm). The pool was filled with milky water at a temperature of 20 + 1 °C.
The experiment was divided into two phases: an acquisition and a reversal phase. For the acquisition
phase, the platform was positioned in the middle of the northeast quadrant on days 1-3 and for the
reversal phase on days 4 and 5, it was placed on the opposite side in the southwest quadrant. On each
experimental day, mice had to find the platform from another starting position. Each mouse trial was
run six times per day and each trial lasted either as long as it took the mouse to find the platform
or for 120 s. After 120 s, mice were guided to the platform, where they waited for 15 s before being
returned to the cage. Each trial was tracked with a video camera using the Videomod 2 (TSE version
6.04; Germany) software. A probe trial was performed at the beginning of day 4 and at the end of day
5 [6]. For the probe trial, the platform was removed and each trial lasted 60 s. Learning performance
was evaluated using the parameters latency, distance, and velocity to reach the platform, and the
search strategies used.

The search strategies were classified into hippocampus-dependent and independent.
The hippocampus-dependent strategies include: direct search (strat7), characterized by a constant
course in the direction of the platform (>80% of the time in the target corridor); focal search (strat6),
characterized by a highly localized search near the platform (>50% of the trial in the target zone);
directed search (strat5) characterized by the preference for a corridor towards the platform or the
platform quadrant (>80% time in target corridor); chaining (strat4), defined by the search close to the
correct radial distance from the platform to the wall; scanning (strat3), defined by a preference for the
central pool area; thigmotaxis (stratl), characterized by maintaining proximity to the wall (>65% of
the time in wider wall zone and >35% in closer wall zone); perseverance (strat8), characterized by an
erroneous preference for a non-target area (>60% attempt in one or >75% in two adjacent non-target
quadrants); and random search (strat2), defined by >60% surface coverage (Figure 9). Analyses of the
different search strategies were performed on video recordings from each animal and trial using the
Matlab software and an algorithm previously described [14]. The algorithm evaluates the swimming
path from the animals in each trial and assigns the corresponding strategy according to the criteria
previously described. The percentage of usage of each strategy per day for every group is then
calculated. In addition, the hippocampus-dependent strategies were analyzed by determining the
percentage of direct swim, focal, and directed search from each animal per trial per day. The mean of
the percentage of hippocampus-dependent strategies from stroke versus sham groups per day for each
age group is depicted in Figure 9.

2.5. Tissue Preparation and Immunocytochemistry

Mice were anesthetized and transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate
buffer. Brains were removed, postfixed for 24 h and cryoprotected with 10% and 30% sucrose. Brains were
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sliced into 40 um sections using a freezing microtome and stored at —20 °C [15]. Peroxidase staining
was used to determine the volume from infarct area, whole brain, hippocampus, and dentate gyrus.
Ki67 and BrdU staining were used for quantification of cell proliferation, differentiation, and survival.

Immunocytochemistry was performed on free floating sections. Sections were incubated for
30 min with 0.6% hydrogen peroxide in tris-buffered saline (IBS), washed several times with TBS,
denaturized with 2 N hydrochloric acid for 30 min and rinsed with 0.1 M boric acid for 10 min.
After washing several times with TBS and blocking with 3% donkey serum and 0.1% triton in TBS
(TBS-plus solution) for 30 min, slices were incubated in primary antibody in TBS-plus (Supplement S1)
overnight at 4 °C. After washing with TBS and blocking with TBS-plus solution, sections were incubated
with secondary antibodies diluted in TBS-plus (Supplement S1) for 2 h at room temperature. Sections
were rinsed and incubated in avidin-biotin—peroxidase complex (Vector Laboratories, Burlingame, CA,
USA) for 60 min. Labeled cells were visualized using 3.3-diaminobenzidine solution (0.25 mg/mL,
Sigma Aldrich, Munich, Germany). Sections were washed, mounted, and covered.

Immunofluorescence on free floating sections was used to identify BrdU-positive cells. Slices
were denatured with 2 N hydrochloric acid for 30 min and rinsed with 0.1 M boric acid previously
described. Sections were washed with TBS and blocked in TBS-plus solution for 30 min followed by
incubation with primary antibodies (Supplement S1) in TBS-plus overnight at 4 °C. After washing
with TBS and blocking with TBS-plus solution, sections were incubated in secondary antibody diluted
in TBS-plus (Supplement S1) for 24 h at 4 °C. After washing several times with TBS sections were
mounted with Moviol (Calbiochem, Frankfurt, Hessen, Germany).

Precursor cells subpopulations were identified immunocytochemically using triple-labeling and
RFP-positive neurons by double-labeling. After washing steps and blocking with TBS-plus solution
(6% serum), sections were incubated with a primary antibody cocktail for 24 h at 4 °C. After washing
and blocking for 30 min with TBS-plus solution, sections were incubated with secondary antibodies
(Supplement S1) for 2 h at room temperature. After rising with TBS, slides were stained with DAPI
solution (Sigma Aldrich, St. Luis, MO, USA) in a cuvette for 5 min, washed in phosphate-buffered
saline and mounted with Moviol.

2.6. Analysis of the Dendritic Arborization in Virally-Labeled Neurons

The complexity of dendritic trees in RFP viral-labeled neurons was quantitated by means of a
sholl analysis. Sections of 40 um in thickness were prepared and the RFP signals were amplified using
immunofluorescence. Z-stacks of RFP-positive cells were performed in the dentate gyrus and a Sholl
analysis was carried out by using Image] with the “Sholl analysis” plugin. The interval between
concentric circles was 5 pm with the center point at the soma.

2.7. Volume Assessment and Cell Number Quantifications

For the analysis of the infarct area, whole brain, hippocampus, and dentate gyrus volume,
each sixth MAP2 peroxidase stained section (from Bregma 3.20 mm/Interaural 7.00 mm to Bregma
—4.70 mm/Interaural —0.92 mm) was assessed with a digital camera (Hamamatsu Photonics K.K.,
San Jose, CA, USA) and measured using Simple PCI software (version 6, Hamamatsu Photonics K.K,
San Jose, CA, USA). The area of each section was measured and the value was multiplied by the section
thickness (40 um) as previously described [6,16].

Quantification of BrdU- and Ki67-positive cells was performed employing an Axioplan 2 imaging
microscope (Carl Zeiss, Jena, Germany). The number of positive cells on ipsi- and contralateral sides
of the brain was determined in every sixth section.

To quantify the distinct cell subpopulations and PCNA-positive cells in the SGZ, DAPI stained
nuclei in every 12th section were co-labeled for both nestin-GFP and glial fibrillary acidic protein
(GFAP; type 1), only for nestin-GFP (type 2a), for nestin-GFP and doublecortin (DCX; type 2b), or only
for DCX (type 3, with short horizontal processes) and assessed using confocal microscopy (LSM
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710, Carl Zeiss Jena, Germany). The total numbers of each cell subpopulation were calculated by
multiplying the cell counts with the factor 12 [6,12].

Quantification of new neurons was undertaken for every twelfth section (480 um interval) along
the dentate gyrus for both hippocampi by analyzing the co-expression of BrdU and NeuN. The total
number of newly generated neurons was calculated by multiplying the percentage of BrdU-positive
cells co-expressing the neuronal marker NeuN with the corresponding total number of BrdU-positive
cells in the dentate gyrus, as previously described [17].

2.8. Statistical Analysis

All data for cell quantifications, volumetry and probe trail of the MWM were calculated by a
Mann-Whitney U test due to their skewed distribution. Median (Mdn) as well as interquartile range
(IQR) are reported for each group. In this exploratory analysis, each p value should be considered as
the level of evidence against each null hypothesis. Therefore, nominal p values without adjustment for
multiple testing are presented.

Sholl analysis of dendritic complexity in the 20-month-old group was tested using the one-way
ANOVA (dependent variable: intersections, factor: groups sham versus MCAQO). The data are reported
as mean + SEM.

For classic parameters (latency, distance and velocity) and hippocampus-dependent and
-independent strategies of the water maze, statistical analyses were performed as follows:

1.  For the analyses of latency, distance or velocity in both groups (MCAO, sham control) at the
different ages, a 2 way-ANOVA with repeated measures and post-hoc Tukey test was performed
(dependent variable: latency, distance or velocity; inner-subject variables: days and trails; between
subject factor: ages).

2. For the analysis of latency, distance or velocity in both groups (MCAO, sham control) at the
different ages, a 2 way-ANOVA with repeated measures and post-hoc Tukey test was used
(dependent variable: latency, distance or velocity; inner-subject variables: days and trails;
between subject factor: groups).

3. For the comparison of latency, distance or velocity in both groups (MCAO versus sham controls) on
each day at the different ages, a 2 way-ANOVA with repeated measures and post-hoc Bonferroni
test was used (dependent variable: latency, distance or velocity; inner-subject variables: trails;
between subject factor: groups).

4.  For the analysis of hippocampus-dependent strategies in both groups (MCAOQO, sham controls) at
the different ages, groups and days a binary logistic regression and post-hoc Bonferroni test was
performed (dependent variable: hippocampus-dependent strategies; subject variables: animal;
between subject factor: ages, days, groups or interaction between days and groups).

5. Inorder to characterize the use of hippocampus-dependent strategies by both groups (MCAO,
sham controls), at the different days and ages, we performed an exploratory data analysis by
applying a binary logistic regression (dependent variable: hippocampus-dependent strategies;
subject variables: animal; between subject factor: groups).

6.  Forthe analysis of each strategy in both groups (MCAOQO, sham controls) at the different ages, groups
and days a binary logistic regression and post-hoc Bonferroni test was performed (dependent
variable: each strategies (stratl to strat8); subject variables: animal; between subject factor: ages,
days, groups, or interaction between days and groups).

7. The different hippocampal-dependent and -independent search strategies used in the MWM
were analyzed performing an exploratory data analysis by means of an algorithm based on the
generalized estimating equations method [14].

Classical parameters of the MWM (latency, distance, and velocity) and hippocampus-dependent
strategies are given as mean + SEM.
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Statistical analyses were performed using SPSS 22.0 for Windows (IBM Corp., Armonk, NY, USA).
A p value of <0.05 was considered to be statistically significant.

3. Results

All stroke animals showed typical subcortical damage in the striatum (Figure 2D). Control
mice did not exhibit any structural changes after the sham surgery. Brain volume (Figure 2A);
hippocampal volume (Figure 2B); and dentate gyrus volume (Figure 2C) from lesioned and control
mice within the 6, 7.5, 9, and 20-month groups showed no statistically significant differences (Figure 2).
No statistical differences in brain volume were observed between the MCAO groups (Supplement S2).
In the sham groups a larger brain volume was found in the 9-month-old group compared to 6-, 7.5-,
and 20-month-old groups (Supplement S2). The lesion volume was significantly reduced between 6
and 20 months (Figure 2D; Supplement 52).
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Figure 2. Impact of middle cerebral artery occlusion (MCAO) on (A) total brain volume, (B) hippocampal
volume, (C) dentate gyrus volume, and (D) total lesion volume. Box plots represent the median, upper
and lower quartiles and min and max values. (D) Location of the ischemic infarct in MAP2-stained
sections and infarct volumetry in the different groups. Red surroundings mark the ischemic infarcts.
There are no significant differences between sham and MCAO groups. Analyses were performed using
the Mann-Whitney test; all p- and n-values are shown in Supplement S2; bars = 1 mm.
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3.1. Stroke-Dependent Reduction in Proliferation and Adult Neurogenesis during Aging

An age-dependent reduction in the number of Ki67-positive cells was observed in the dentate
gyrus between 6 and 9 months of age in the sham and MCAO groups (sham groups: 6 m versus 9
m: U < 0.001; n =10; p = 0.009; 7.5 m versus 9 m: U < 0.001; n = 10; p = 0.009; MCAO groups: 6 m
versus 7.5 m: U =>5.00; n =12; p =0.042; 6 m versus 9 m: U < 0.001; n = 13; p = 0.003; 7.5 m versus 9 m:
U =3.00; n = 11; p = 0.009; Supplement S3).

In addition, a significant stroke-dependent decline was detected in the 9-month-old mice (9-month
group: sham Mdn = 300 cells; IgR = 78.00; MCAO Mdn = 132 cells; IqR = 72.00; U < 0.001; n = 11;
p = 0.006; Figure 3).
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- By o
=3
- Yo
£ 200

=
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Figure 3. Stroke-induced reduction of endogenous proliferation. Images show Ki67-positive
peroxidase-stained section of sham controls and the MCAO group. Box plot represents the median,
upper and lower quartiles and min and max values. During aging there is a continuous reduction in
the number of proliferating Ki67-positive cells. Analyses were performed using the Mann—-Whitney
test all p- and n-values Supplement S3; bars = 100 pm.

Adult neurogenesis significantly decreased during aging and also after MCAO. Neurogenesis
was significantly decreased in the 6, 7.5, and 9-month-old group compared to the 20-month-old group
(Figure 4, Supplement S3).
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Figure 4. Stroke-induced reduction of newly born neurons. (A) Confocal images of immunofluorescent

number of intersections
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sections for the proliferation marker BrdU (red), mature neurons NeuN (blue), and DAPI
(4’ ,6-diamidino-2-phenylindole, grey) showed newly born neurons. Impaired survival of newly
generated neurons in 7.5 and 9-month-old groups. Box plots represent the median, upper and
lower quartiles and min and max values. Analysis was performed using the Mann—-Whitney test;
bars = 10 um. (B) Confocal images of immunofluorescent sections for red-fluorescent protein of the
viral vector, bars = 10 um. Evaluation of the dendritic complexity of virally-labeled neurons using
Sholl analysis. The graph represents the means + SEM using one-way ANOVA, * p < 0.05; all p- and
n-values Supplement S4.
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A significant decrease in adult neurogenesis was also found in 7.5 and 9-month-old mice after
lesion, as compared to sham controls (6-month group: sham Mdn = 1614 cells; IqR = 927, MCAO
Mdn = 1270 cells; IqR = 924; U = 12.50; n = 12; p = 0.432; 7.5-month group: sham Mdn = 1492 cells;
IgR = 750; MCAO Mdn = 801 cells; IqR = 374; U = 1.00; n = 12; p = 0.005; 9-month group: sham Mdn
= 1604 cells; IqR = 680; MCAO Mdn = 1026 cells; IqR = 830; U = 1.00; n = 10; p = 0.019; Figure 4A).
The 20-month-old group showed no stroke-associated changes in the number of newly formed neurons
(sham Mdn = 13 cells; IqR = 28.13; MCAO Mdn = 28 cells; 37.50; U = 15.00; n = 13; p = 0.445; Figure 4A).
In addition, we found only small differences in the dendritic branching between sham control and
MCAO from the 20-month-old group (Figure 4B/Supplement 54). At the time point evaluated we did
not observe any aberrant neuron.

3.2. Stroke-Dependent Changes in the Aged Neurogenic Niche

To further evaluate the stroke-dependent long-term changes in the neurogenic niche,
different neural subpopulations were analyzed in the 20-month-old nestin-GFP mice (Figure 5).
The distinct precursor cells were quantified by triple-immunofluorescence with antibodies against GFP,
GFAP, and DCX. Morphological characteristics and co-localization of specific markers were used to
differentiate between five different precursor subtypes as follows: type 1 stem cells that express the
astrocytic marker GFAP and nestin-GFP and carry a long apical harbor extending into the molecular
layer; type 2 cells that show short horizontally oriented processes and express early neuronal marker
(type 2a nestin-GFP; type 2b nestin-GFP, DCX); type 3 cells that express only DCX; the immature
neurons that show dendrites and express DCX (Figure 5A).

The largest number of precursors was represented by type 1 stem cells, followed by type 2a cells
(sham: 19% + 9% versus MCAO 20% + 9%). Type 2b cells represented 6% =+ 3% in the sham versus 4%
+ 3% in the MCAO group. Type 3 cells represented 6% =+ 3% in the sham versus 3% + 1% in the MCAO
group. No stroke-related changes were detected in the typel, type 2, and type 3 cells (Figure 5B).

The 20-month-old sham group showed significantly more immature neurons compared to
the infarct animals (type 1 cells: sham Mdn = 1800 cells; IqR = 1404; MCAO Mdn = 2928
cells; IqR=1728; U = 12; n = 13; p = 0.242; type 2a cells: sham Mdn = 624 cells; IqR = 540;
MCAO Mdn = 768 cells; IgR = 516; U = 13.00; n = 11; p = 0.715; type 2b cells: sham Mdn = 168 cells;
IgR =180; MCAO Mdn = 120 cells; IgQR = 162; U = 7.5; n = 11; p = 0.169; type 3 cells: sham Mdn = 240
cells; IqR =228, MCAO Mdn = 132 cells; IgR = 78; U = 11.00; n = 11; p = 0.460; immature cells: sham
Mdn = 240 cells; IqR = 204; MCAO Mdn = 72 cells; IqR = 90; U = 2.50; n = 11; p = 0.022; Figure 5B,
Supplement S5).

We further analyzed the proliferative response of the distinct subpopulations using the endogenous
proliferation marker PCNA (Figure 6). The largest fraction was formed by type 2a cells (sham 51% + 24%
versus MCAO 58% + 10%). Type 2b cells represented 11% + 4% in the sham versus 17% + 13% in the
MCAO group. Proliferating type 3 cells were also detected (sham 8% + 5% versus MCAO 2% + 4%).

Concerning the absolute cell numbers of each subpopulation, only 1% + 1% of the type 1 cells in
the sham and 2% + 1% were active in the MCAO group, while other groups showed higher proliferative
activity (type 1 cells: sham Mdn = 12 cells; IqQR = 48; MCAO Mdn = 42 cells; IqR = 21; U = 7.00;
n=29; p =0.453; type 2a cells: sham Mdn = 192 cells; IqR = 204; MCAO Mdn = 144 cells; IqR = 93;
U =8.00;,n=9;p=0.623; type 2b cells: sham Mdn = 24 cells; IqR = 18; MCAO Mdn = 42 cells; IqR = 75;
U =6.00;n=9;p=0.317; type 3 cells: sham Mdn = 24 cells; IqR = 18; MCAO Mdn = 0 cells; IgR = 18;
U =5.00; n = 11; p = 0.180; Figure 6B). There were no significant differences between the two groups
(Supplement S5).
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Figure 5. (A) Confocal images of immunofluorescent sections for green-fluorescent protein (GFP;
green), glial fibrillary acidic protein (GFAP; blue), or doublecortin (DCX; blue) and DAPI (grey) reveal
radial glia-like type 1 cells positive for nestin-GFP and GFAP, type 2a cells positive for nestin-GFP but
not for GFAP; type 2b cells positive for nestin-GFP and the early neuronal marker DCX; DCX-positive
type 3 cells, which lack nestin-GFP and DCX immature neurons containing dendrites, bars = 10 pum.
(B) Total numbers of precursor cell subpopulations. The number of immature neurons was significantly
decreased in the MCAO group as compared to the sham group. Box plots represent the median,
upper and lower quartiles and min and max values. Analysis was performed using the Mann-Whitney
test; all p- and n-values Supplement S5.
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Figure 6. (A) Confocal images of immunofluorescent sections for PCNA-positive subpopulations
(radial glia-like type 1 cells, type 2a, and 2b cells), bars = 10 um. (B) Total numbers of PCNA-positive
precursor cell subpopulations. There were no significant differences in cell proliferation between sham
and MCAO groups. Box plots represent the median, upper, and lower quartiles and min and max
values. Analysis was performed using the Mann-Whitney test; all p- and n-values Supplement S5.

We further divided the type 1 stem cells into branched and unbranched types in order to better
assess their state of development [18,19] (Figure 7). Unbranched type 1 stem cells were described as
having a major apical harbor branching into the molecular layer, whereas the branched type 1 stem cells
already branched out in the granular cell layer and had additional basal and somatic spurs (Figure 7A).
In both groups, branched type 1 stem cells were significantly higher in the control or MCAO group
compared to the unbranched type 1 stem cells (Figure 7B). There were no differences in the distribution
of branched and unbranched cells between the stroke and control groups (branched stem cells: sham
65% + 12%; MCAO Mdn = 69% =+ 14%; U = 16.50; n = 13; p = 0.607; unbranched stem cells: sham 35%
+ 12%; MCAO Mdn = 31% + 14%; U = 16.50; n = 13; p = 0.607; Figure 7B; Supplement S5).
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Figure 7. Quantification of branched and unbranched radial glia-like type 1 cells in the 20-month-old
nestin-GFP mice. (A) Confocal images of immunofluorescent sections for green-fluorescent protein
(GFP; green), glial fibrillary acidic protein (GFAP; blue), and DAPI (grey). RGLs, which express
nestin-GFP and GFAP, separated into branched and unbranched type 1 cells, bars = 10 um. (B) Stroke
did not influence the ratio of branched and unbranched RGLs compared to sham controls. Box plots
represent the median, upper and lower quartiles and min and max values. Analysis was performed
using the Mann-Whitney test; all p- and n-values Supplement S5.

3.3. Stroke-Dependent Effects on Learning and Memory

In order to assess the learning performance, the classical parameters of latency, swimming distance,
and velocity were evaluated (Figure 8).

Stroke and control mice showed typical sigmoidal learning curves between day 1 and day 3
(Figure 8B,C). After changing the platform position on day 4 there was a rise in latency and distance.
An improvement in the reversal behavior was discernible on day 5. In sham control mice we found no
significant differences in distance between different age-groups but there was a significant difference in
latency between 9 and 20 month over 5 days (sham groups distance: p = 0.148, F(3) = 1.958; 6 m versus
7.5m: p =1.000; 6 m versus 9 m: p = 0.302; 6 m versus 20 m: p = 1.000; 7.5 m versus 9 m: p = 0.427;
7.5 m versus 20 m: p = 1.000; 9 m versus 20 m: p = 0.304; latency: p = 0.037; F(3) = 3.337; 6 m versus
7.5m: p =1.000; 6 m versus 9 m: p = 0.237; 6 m versus 20 m: p = 1.000; 7.5 m versus 9 m: p = 0.371;
7.5 m versus 20 m: p = 1.000; 9 m versus 20 m: p = 0.031; Supplement S6).

We also found no differences in latency between the stroke groups; however, there were significant
differences in distance over 5 days. (MCAO groups distance: p < 0.001; F(3) = 21.069; 6 m versus 7.5 m:
p =1.000; 6 m versus 9 m: p < 0.001; 6 m versus 20 m: p = 0.001; 7.5 m versus 9 m: p < 0.001; 7.5 m versus
20 m: p < 0.001; 9 m versus 20 m: p = 0.232; latency: p = 0.065; F(3) = 2.840; 6 m versus 7.5 m: p = 1.000;
6 m versus 9 m: p = 1.000; 6 m versus 20 m: p = 0.203; 7.5 m versus 9 m: p = 1.000; 7.5 m versus 20 m:
p =0.131; 9 m versus 20 m: p = 1.000). Stroke-dependent changes between 6- and 9-months-old group,
6- and 20-months-old groups, 7.5-month and 9-month-old group, and also between 7.5-month and
20-month-old group were significant.

Analysis of the water maze performance over the 5 days showed significant differences between
sham and MCAO in the 6-month-old group (MCAO versus sham groups distance: p < 0.001;
F(1) = 31.635; 7.5 m p < 0.001; F(1) = 39.212; 9m p = 0.341; F(1) = 1.024; 20 m p = 0.179; F(1) = 2.016
(Figure 8 B/C, Supplement S6); latency: 6 m p < 0.001; F(1) = 30.755; 7.5 m p = 0.004; F(1) = 13.188; 9 m
p = 0.584; F(1) = 0.326; 20 m p = 0.105; F(1) = 3.029.
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Figure 8. Impact of stroke on learning and re-learning. (A) Experimental design of the MWM changing

platform position on day 4. Arrows represent the starting position per day. (B-D) Graphs show

distance, latency and velocity to navigate to the platform in MWM. Strong impairments of learning

were observed in the 6- and 7.5-month-old mice. Re-learning was reduced in 7.5-, 9-, and 20-month-old
MCAO groups. The graph represents the means + SEM using 2-way ANOVA with repeated measures
and post-hoc Tukey (per group) or Bonferroni (per day), * p < 0.05; all p- and n-values Supplement Sé6.

The comparison between sham and MCAO at the different days revealed significant changes
in all groups. During the first 3 days of learning the 6-, 7.5-, and 9-month-old groups showed
significant differences, whereas the re-learning of a new platform position was impaired in 7.5-, 9-, and
20-month-old group.

The path length to find the hidden platform was increased in the 6-month-old and 7.5-month-old
stroke groups during the first 3 days. During re-learning phase, the 7.5-month-old group and the
9-month-old stroke groups showed higher distances to reach the platform (MCAO versus sham
distance: D1: 9 m p = 0.018; F(1) = 8.834; D2: 6 m p < 0.001; F(1) = 77.833; 7.5 m p = 0.042; F(1) = 5.292;
D3: 6 m p = 0.008; F(1) = 10.246; 7.5 m p = 0.046; F(1) = 5.05; D4: 7.5 m p < 0.001; F(1) = 29.856; D5:
7.5mp < 0.001; F(1) = 78.973; 9 m p = 0.032; F(1) = 6.737; Figure 8B, Supplement S6).

Mice in the 6-month-old stroke group showed significantly increased latency on the first and

second days compared to the controls. The platform change on day 4 increased the latency significantly
in the 7.5-month-old and 20-month-old stroke groups (MCAOQ versus sham latency: D1 6 m p = 0.030;
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F(1) = 6.174; D2: 6 m p < 0.001; F(1) = 60.429; D4: 7.5 m p = 0.004; F(1) = 13.639; D5: 7.5 m p < 0.001;
F(1) = 38.874; 20 m p = 0.042; F(1) = 4.816; Figure 8C, Supplement S6).

The stroke animals in the 7.5-month-old group showed significantly higher latency and distance
during the reversal on the fourth and fifth days in contrast to the controls. The 6-month-old stroke
group showed strong deficits in the first learning phase. In the 7.5-month-old stroke group the learning
and re-learning was affected, whereas the 9-month-old and 20-month-old-group showed deficits in
re-learning. This impairment in re-learning in the 7.5-, 9-, and 20-month-old groups correlated with a
significant decrease in neurogenesis.

The analysis of the velocity indicates a general decrease in the 9-month-old groups for the sham
as well as for the MCAO group. The MCAO groups tended to show a higher velocity than the sham
groups in the 7.5-month-old group. Thus, an impairment in velocity due to the stroke, as compared to
the sham controls, could not be recorded (Figure 8D, Supplement S6).

The comparison between MCAO and sham at different days after lesion showed significant
differences on days 2, 3, and 4 in the 7.5-month-old group, on day 1 in the 9-month-old and day 1 and
day 5 in the 20-month-old group (MCAO versus sham D1: 9 m p = 0.019; F(1) = 8.605; 20 m p = 0.008;
F(1) =8.948; D2: 7.5 m p = 0.041; F(1) = 5.36; D3: 7.5 m p = 0.001; F(1) = 38.767; D4: 7.5 m p = 0.011;
F(1) =9.224; D5: 20 m p = 0.039; F(1) = 4.97; Figure 8D; Supplement S6).

Evaluation of the probe trails took place on days 4 (before reversal) and 5 (after reversal)
(Figure 9). The probe trails were used to evaluate the preference towards the learned platform
position. The 6- and 7.5-month-old mice showed no differences in the probe trial on day 4, whereas
the 9-month-old stroke mice showed significantly decreased learning performance compared to
sham controls. The 20-month-old stroke group showed no significant differences to the controls.
(NE-quadrant: 6 month group: sham Mdn = 54%; MCAO Mdn = 35%; U = 17.00; n = 14; p = 0.366;
7.5 month group: sham Mdn = 58%; MCAO Mdn = 45%; U = 13.00; n = 14; p = 0.156; 9 month group:
sham Mdn = 62%; MCAO Mdn = 36%; U = 2.00; n = 11; p = 0.017; 20 month group: sham Mdn =
32%; MCAO Mdn = 46%; U = 49.00; n = 23; p = 0.321; Figure 8). The probe trail on day 5 showed
significantly reduced preference for the new platform position in the 7.5- and 9-month-old stroke group
(SW-quadrant: 6 month group: sham Mdn = 46%; MCAO Mdn = 51%; U = 16.00; n = 12; p = 1.00;
7.5 month group: sham Mdn = 57%; MCAO Mdn = 33%; U = 3.00; n = 14; p = 0.005; 9 month group:
sham Mdn = 56%; MCAO Mdn = 38%; U = 1.00; n = 11; p = 0.017; 20 month group: sham Mdn = 35%;
MCAO Mdn = 38%; U = 50.00; n = 23; p = 0.352; Figure 9, Supplement S6).
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Figure 9. Recall of learning was performed using probe trail on day 4 (before reversal) and day 5 (after
reversal). At day 4, most deficits in recall were observed in 9-month-old MCAO mice. At day 5, the
7.5-month-old, and 9-month-old stroke mice showed an impaired spatial learning compared to sham
mice in the probe trail. Box plots represent the median, upper and lower quartiles, and min and max
values. Analysis was performed using the Mann-Whitney test, all p- and n-values Supplement Sé.
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To conclude, stroke induced in 3-month-old mice showed long-term changes in flexible learning
in the MWW, as indicated by altered latencies, distance, and probe trail.

Since neurogenesis is strongly associated with hippocampus-dependent learning, we determined
the impact of stroke on strategies used by the animals to find the platform (Figure 10).
All groups used hippocampus-independent strategies at the beginning of the test, which
changed during ongoing training to more hippocampus-dependent strategies. The ratio of
hippocampus-dependent/independent strategies (strat) increased during the water maze performances.
After the platform location was changed on day 4, fewer hippocampus-dependent strategies were
observed, however, these increased again on day 5 (Figure 10). Whether the strategy development is
influenced by age, days and the different groups binary logistic regression analysis with Bonferroni
correction were used. The hippocampus-dependent strategies are affected by the different groups,
days and group per day (group: p < 0.001; df = 1; Chi_Square = 16.605; age: p = 0.694; df = 3;
Chi_Square = 1.451; day: p < 0.001; df = 4; Chi_Square = 110.248; interaction between group and day: p
= 0.058; df = 4; Chi_Square = 9.144). The detailed analysis of MCAO and sham controls at the different
ages reveals less usage of hippocampal-dependent strategies during the learning phase (day 1 to day
3) in the 6- and 7.5-month-old groups and the re-learning phase (day 4 to day 5) in the 6-, 7.5-, and
9-month-old group (MCAO versus sham hippocampal-dependent strategies: 6 m D1 p = 0.003, 95% CI
(1.828; 16.927); D2 p < 0.001, 95% CI (4.336; 208.13); D3 p = 0.015, 95% CI (0.13; 22.22); D5 p < 0.001,
95% CI (0.19; 12.186); 7.5 m D2 p = 0.008, 95% CI (1.02; 9.737); D3 p = 0.043, 95% CI (1.042; 5.437); D4
p = 0.003, 95% CI (0.039; 0.612); D5 p < 0.001, 95% CI (16.03; 775.479); 9 m D5 p = 0.016, 95% CI (1.223;
6.823); Figure 10, Supplement S7).

For a more detailed analysis, we additionally verified the usage of each hippocampus-dependent
and hippocampus-independent search strategy. Global analysis by binary logistic regression analysis
with Bonferroni correction revealed dependencies of group, day, age, and interaction between day and
group (Figure 10, Supplement S7).

Due to the statistical differences, explorative analysis of search strategies for each day and group
were verified. During the learning phase, the 6-, 7.5-, and 9-month-old stroke groups used significantly
more random search, scanning paths and less direct search paths to locate the platform as compared to
sham groups (Figure 10).

After reversal, 6-, 7.5-, and 9-month-old MCAO groups used significantly less
hippocampus-dependent strategies on day 5 as compared to sham controls (Figure 10, Supplement S7).
The 20-month-old stroke group showed significantly more random search paths (Figure 10, Supplement
S7) compared to the controls at day 4.

Analysis of all three hippocampus-dependent strategies following reversal of the platform revealed
that all old sham controls used more specific spatial navigation compared to stroke animals.

Stroke mice showed large and long-term deficits in learning, re-learning, and memory in the
Morris water maze, both in terms of classical parameters and hippocampal-dependent strategies.
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Figure 10. Usage of hippocampal-dependent and independent search strategies in the MWM test.

The colorful images show differences in learning and re-learning between MCAO- and sham control

mice during aging. (A) Each color represents hippocampus-dependent or -independent search strategies.

(B-E) For the analysis of each strategy at the different ages, groups and days a binary logistic regression

and post-hoc Bonferroni test was performed. The different hippocampal-dependent and -independent

search strategies for each day an exploratory data analysis by means of an algorithm based on the

generalized estimating equations method was performed. Strategies with significant differences in

usage are represented by colorful squares for each day, * p < 0.05. n- and p- values Supplement S7.
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4. Discussion

In the present study, we hypothesized that a stroke induced in adult mice leads to long-term
deficits in the neurogenic niche and impairment in learning, re-learning, and memory at higher ages,
as described in human stroke patients. To test our hypothesis, we induced a prefrontal stroke lesion in
3-month-old adult mice and evaluated the long-term consequence in 6-, 7.5-, 9-, and 20-month-old mice.
Our results clearly demonstrate a stroke-dependent reduction of dentate neurogenesis correlating with
deficits in flexible learning and a decline in the usage of hippocampus-dependent strategies, indicating
memory impairment.

During adult neurogenesis new neurons are formed, which functionally integrate into the existing
neuronal network [20-24]. This is achieved through the proliferation of stem- and progenitor cells
and their subsequent differentiation into mature neurons [25,26]. Notably, both age and stroke
strongly affect these processes. In particular, previous studies have shown that stem cells, progenitors,
and neurogenesis dramatically decrease during the first 6 months of life. After this initial decline,
neurogenesis remains stable or decreases slightly until old age. In our study, we focused on the time
points where neurogenesis and cognitive function critically change [27,28].

Various stroke models lead to an increase in adult neurogenesis both in young and aged mice on
the short-term [29,30]. In order to evaluate the long-term effects of an early stroke lesion, we induced
stroke in 3-month old mice and analyzed its effects in 6, 7.5-, and 9-months aged mice. Changes
associated with advanced ages were assessed in 20-month-old mice. In comparison to sham mice,
there were statistically relevant differences in neurogenesis in lesioned animals between 6-month
and 9-month old groups and between 9-month and 20-month old animals. This is in agreement with
available evidence indicating that neurogenesis decreases between 9 and 20-month-old mice [28,31].
We also found a statistical decline in neurogenesis in the 7.5 month and 9-month old groups compared
to sham controls. This decrease in neurogenesis can be due to the reduction of stem- and progenitor
cell populations. Previous studies have shown that aging drives stem cells into quiescence and also
differentiation into mature astrocytes, which leads to a loss of stem cells and the capacity to generate
progenitors and neurons [18,32,33]. The putative mechanisms leading to increased stem cell quiescence
are still under debate.

In contrast to aging, which acts as a negative regulator of neurogenesis, stroke is described as a
potentiating stimulus, which dramatically increases stem cell and progenitor proliferation, and dentate
neurogenesis directly after infarct induction [34-36]. In previous studies, focal infarcts were induced at
different ages to analyze the stroke-dependent effects on neurogenesis and cognition [37,38]. Already
six hours after a small cortical infarct, proliferation of type 1 stem cells and type 2a cells increases
significantly in 3-month old mice. Furthermore, after 24-72 h, type 2b and type 3 cells also show
increased proliferation. Following MCAO, the maximum number of proliferating cells was present
after six to eleven days [29,39]. Proliferative activity then decreases 2-5 weeks after lesion [39].
The number of neurons rises up 6 weeks after stroke induction. In previous investigations we found
that stroke induced in aged mice leads to a dramatic decrease in the proliferation rate of stem and
progenitor cells compared to lesioned young mice, however, it increases proliferation compared to
sham controls in the same aged group [10]. Here, we evaluated the long-term effects of a stroke
induced in young animals on stem- and progenitor cell proliferation and neurogenesis during aging.
Both, endogenous proliferation and neurogenesis were significantly diminished below control levels in
middle-aged mice. Although stroke stimulates neurogenesis directly after infarct induction, it seems
to have an age-associated negative impact on endogenous proliferation and neurogenesis on the
long-term, in agreement with previous investigations [6,12]. Therefore, age at stroke onset is a critical
determinant of stroke-dependent effects on neurogenesis. Whether stroke-dependent long-term effects
on neurogenesis are associated with cognitive impairments, as observed in human patients, is not
well understood. In the present study, we focused on the effect of an early stroke on development
of cognitive impairment and its correlation to changes in adult neurogenesis in mice. We clearly
demonstrated that, following stroke, neurogenesis is reduced below control levels during aging,
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which is accompanied by a decrease in learning, re-learning, and memory performance. This cognitive
impairment might be associated with a decrease in the number of new neurons or a reduced lifespan
of newly generated neurons after stroke in older brains. This issue has to be further investigated.
Survival of new neurons depends on the integration of these neurons into the existing networks.

The contribution of post-stroke neurogenesis on cognitive function is still under debate.
Under physiological conditions, a decrease of neurogenesis due to aging or different interventions
(cytostatic drugs and knockout model) correlates with impairments in cognitive function, represented
by a reduction of hippocampal-dependent strategies [6,40,41]. Consequently, an impairment in
neurogenesis leads to a reduced use of hippocampal-dependent strategies. Under pathophysiological
conditions such as a stroke, it is not clear to what extent network activity is disturbed and how these
changes are due to the reduction of neurogenesis. Here we show that neurogenesis increased directly
after a stroke, which correlated with learning and memory deficits and further with the reduction
of hippocampal-dependent strategies in the water maze. Underlying mechanisms were not clear,
but might involve neuronal network disturbance caused by the presence of aberrant neurons (already
described in young mice after stroke), which leads to the wrong connectivity [42]. A previous study
showed that stroke at the age of three months generates aberrant new nerve cells in the dentate gyrus [5].
Moreover, up to 10% of the new neurons exhibited abnormal bipolar morphology with additional
basal dendrites in the hilus. In addition, ectopic neurons were detected after incorrect migration into
the hilus. In the long run, these aberrant neurons and network connections may also lead to decreased
cognition as reflected by a lesser use of hippocampal-dependent strategies. The lifespan of aberrant
neurons generated after stroke and their putative contribution to cognitive impairment still needs to
be addressed.

On the other hand, it is also feasible that strongly reduced neurogenesis on the long term per
se leads to impairment of cognition. The possible mechanisms linking changes in neurogenesis and
network connectivity to learning and memory are still not clear and also require further investigations.

The significance of stroke-induced changes in adult neurogenesis for cognitive function of the
hippocampus has still not been sufficiently clarified. Under physiological and stroke conditions,
new functional neurons integrate into the hippocampal network. Studies have shown a correlation
between adult neurogenesis and re-learning for solving tasks in similar spatial environments [43-46].
The need for new neurons in spatial memory has been shown in studies using various ablation
models to suppress neurogenesis [14]. These studies linked reduced neurogenesis to poorer results in
spatial learning and memory in the water maze. In particular, the use of different search strategies
in the Morris water maze has been described to distinguish between hippocampal- dependent and
-independent learning processes in detail. The so-called reversal protocol is considered to be suitable
for demonstrating the influence of adult neurogenesis on cognitive flexibility [41]. After the platform
is readjusted, a reduction in the number of new neurons results in a much longer-lasting preference for
the old target position and the use of independent-hippocampal strategies, mostly in the re-learning
phase. Earlier studies showed an age-related impairment of spatial learning in the Morris water maze
in rodents, independent of the type of brain lesion [47].

The extent to which stroke-induced neurogenesis contributes to the hippocampal cognitive
function is unclear and is to date controversially discussed. Evaluation of the pathway and latency
showed a significantly worse re-learning capabilities after the change in the platform position in the
stroke groups. In addition, the 6 and 7.5-month-old stroke animals also showed deficits in re-learning
with respect to finding the hidden platform position. Further memory deficits were observed in
7.5- and 9-month-old lesion mice. All stroke animals showed less usage of hippocampus-dependent
strategies, mainly in the re-learning phase of the task. Previous studies showed that genetic ablation of
neurogenesis weakens learning of hippocampus-dependent memory tasks. Blaiss and colleagues [37]
used transgenic mice with reduced adult neurogenesis and found no significant differences after a
cranial brain injury in fear conditioning and in the rotarod tasks, whereas in the Morris water maze,
a worsening in latency and thigmotaxis was observed. Additional studies using cytostatic drugs [48]
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and irradiation [30] to impair adult neurogenesis and cognitive function, showed a worsening of
learning curves compared to controls.

In summary, the present study shows that an early stroke lesion results in a long-term reduction
of adult neurogenesis during aging, characterized by both a decline in endogenous proliferation and
the number of distinct precursor cell subpopulations. This significant decrease in adult neurogenesis
associates with poor flexible learning and memory in the Morris water maze, reflecting deficits in
cognitive function of the aging brain.

The present study supports the notion that early stroke lesions might be involved in development
of early dementia. Furthermore, results suggest that a lesion-induced decline in adult neurogenesis
could be a possible mechanism involved in impaired learning and memory associated with dementia.
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