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Abstract: Telomere length (TL) is associated with cardiovascular disease (CVD) and cancer. Obstructive
sleep apnea (OSA) is also linked to higher risk of CVD and cancer, and to TL. We investigated the
association between TL and risk of major adverse cardiac events (MACE) and cancer in OSA patients.
We studied 210 individuals undergoing sleep-related studies between 2000 and 2007. Baseline
characteristics and follow-up data (available in 164 subjects) were obtained from clinic records.
Incidence rates were calculated for the entire group and by OSA status. Hazard ratios were calculated
to estimate effects of OSA and TL on risk of MACE and cancer. In total, 32 individuals (20%) developed
MACE and/or cancer during 12.7-year follow-up. The OSA group had a higher likelihood of cancer
(16.0 vs. 4.9 events per 1000 person-years, P = 0.044) but no clear evidence of an elevated incidence of
MACE (10.8 vs. 4.8 events per 1000 person-years, P = 0.293) compared to the non-OSA group. There
was no association between TL and MACE- (HR = 1.01, 95% CI 0.78–1.28), or cancer-risk (HR = 1.18,
95% CI 0.96–1.43). Our study warrants further investigation of any modulating effect of OSA on TL
and the risk of MACE and cancer.
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1. Introduction

Cardiovascular disease (CVD) and cancer are the leading causes of death worldwide, accounting
for 31% and 17% of all global deaths, respectively [1]. Obstructive sleep apnea (OSA), a common
sleep breathing disorder affecting up to 38% of adults in the general population, is recognized as an
independent risk factor for cardiovascular and metabolic disease, including hypertension, cardiac
arrhythmias, congestive heart failure, stroke and diabetes [2,3].

Interestingly, there is compelling emerging evidence documenting the association between
sleep-disordered breathing, including OSA, and the risk of developing cancer, cancer progression
and related mortality [4–6]. Recent epidemiological studies have highlighted common risk factors for
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CVD and cancer, such as obesity and diabetes, suggesting shared pathophysiologic mechanisms [7].
OSA has also been shown to affect telomere length (TL) [8]. These observations highlight potential
synergistic links between cancer, cardiovascular diseases and sleep apnea through overlapping
molecular mechanisms, such as telomere dynamics.

Telomere shortening is recognized as a fundamental mechanism underlying biological aging and
age-related disorders [9]. Telomere length is suggested to accumulate a burden of stressors (such as
oxidative stress and inflammation) over the life-time, and therefore better reflect biological age of
each individual and disease risk [10–12]. Although there are still conflicting findings in the literature,
short telomeres are generally proposed to be associated with CVD (arteriosclerosis, coronary artery
disease, myocardial infarction etc.) [13–17], while both short and long telomeres were linked with
neoplasm onset and progression [18]. Some studies also showed that OSA is associated with altered
telomere dynamics, but the direction of the association is contradictory across observational studies.
Some of them have linked OSA with telomere shortening [8,19]; however our previous and other
studies suggest more complex telomere dynamics, in that telomere length changes may be disease
context-dependent [20–24].

Although there is emerging evidence of the value of telomere length in predicting cardiovascular
events and cancer, the role of OSA in modifying the link between telomere length and risk of CVD and
cancer has not previously been studied. Therefore, in this exploratory hypothesis-generating study,
we sought to prospectively investigate the association between telomere length and the risk of major
adverse cardiac events (MACE) and cancer in OSA and non-OSA patients.

2. Materials and Methods

2.1. Study Population

In this prospective study, we collected data from 210 individuals participating in sleep-related
research studies conducted at the Mayo Clinic (Rochester, MN) between 2000–2007. The Mayo Clinic
Institutional Review Board approved the study protocol (IRB #15-006260). The enrollment process and
telomere findings in this cohort have been described in detail previously [23]. Briefly, all subjects had
undergone a polysomnography (PSG) evaluation to confirm or exclude the diagnosis of OSA at the
baseline. Baseline information regarding anthropometric and demographic data and medical history
was collected from the Mayo medical records and patient questionnaires. Baseline was defined as the
date of blood sample collection upon the enrollment to the study.

2.2. Clinical Follow-Up and Outcomes

Detailed clinical data related to the follow-up outcomes were abstracted from Mayo Clinic medical
records. The primary outcome was a clinical diagnosis of Major Adverse Cardiac Events (MACE) or
cancer. MACE was defined as a composite of clinical events including cardiovascular-related death,
non-fatal myocardial infarction, congestive heart failure, coronary artery disease (stent thrombosis,
target lesion revascularization, target vessel revascularization, coronary artery bypass grafting),
and cerebrovascular accident [25]. Cancer was defined as any type of neoplasia. The end of follow
up was defined as the date of primary outcome diagnosis or the date of last available clinical record
for those who were event-free at the end of observation (November 2018). Patients with no clinical
evidence of defined outcomes were censored. Survival time was calculated from the date of baseline to
the date of clinical diagnosis of outcome or the date of last clinical record available. Patients with no
follow-up information (no medical records available) were excluded from the study.

2.3. Polysomnography Examination

All participants underwent polysomnographic (PSG) evaluation at the Clinical Research and Trials
Unit or the Center for Sleep Medicine at the Mayo Clinic in Rochester. Sleep was scored according
to standard criteria [26,27]. The apnea-hypopnea index (AHI) was computed as a total number of
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respiratory events per hour of sleep (n/hr). Individuals with AHI ≥ 5 were classified as OSA group.
OSA subjects were further grouped as moderate-to-severe OSA based on AHI ≥ 15 [2].

2.4. Leukocyte Telomere Length Measurements

DNA was extracted from peripheral blood samples with the Puregene Blood Kit (Qiagen).
Cawthon’s qPCR method was used to determine relative TL [28,29] which was next converted into base
pairs (bp) using the validated formula as previously described [23]. We recognize that the calculations
derived from telomere qPCR data are used to infer telomere repeat containing products and therefore
infer telomere length and do not actually reflect the absolute telomere length.

2.5. Statistical Analysis

The distribution of TL was examined, and 3 subjects with TL above 5871 bp (>3 times the
interquartile range above the third quartile) were excluded. Data are presented as mean and standard
deviation (SD) and percentage. Comparisons between those with and without OSA were assessed using
t-tests for continuous variables and Pearson chi-square or Fisher’s exact tests for nominal variables.

Crude MACE and cancer rates per 1000 person-years (incidence density describing the occurrence
of a defined outcome) were calculated for the entire sample and by OSA status/categories. A log-rank
test compared the survival distribution of OSA and non-OSA subjects. Multivariable Cox proportional
hazard regression models were used to estimate hazard ratios (HRs) to describe the association between
baseline OSA status and TL on the risk of MACE and the risk of cancer over a long-term follow-up
period. Models were adjusted for age, a main determinant of telomere length and a risk factor for both
cardiovascular disease and cancer. In the first step, HR was calculated separately for each predictor
(OSA status, TL and age); in the second step, adjusted HRs (adjusted for age in a multivariable
Model 1 and adjusted for age, BMI, and sex in a multivariable Model 2) were calculated to examine the
association between OSA status, TL and the risk of MACE or cancer. No other model adjustments
were performed to avoid model overfitting. Median follow up was calculated with the Kaplan–Meier
method to estimate median time-to-censoring.

A power calculation was not done a priori as we did not have available data to anticipate an
event rate in this sample. However, based on the observed sample size for analysis of 161 subjects,
approximate standard deviation for TL of 200 bp, and an event rate of 10% for the endpoint (MACE
alone or cancer alone), we would have 80% power to detect an unadjusted hazard ratio of 1.42 per
100 bp for the relationship between TL and the endpoint.

3. Results

3.1. Population Characteristic

Out of 210 subjects included in the study, 181 had no diagnosis of MACE and/or neoplasm at
baseline, 164 had available follow-up information (90%), and 3 were identified as extreme outliers.
Individuals lost for follow-up were mostly without OSA (n = 14). Finally, 161 patients were included
into the analysis (Figure 1). Baseline characteristics of subjects are presented by OSA status in Table 1.

There were significantly more men than women in the OSA group (P = 0.002). In the OSA
group there were more non-Hispanic Whites than in the non-OSA group (92% vs. 64%, P < 0.001).
The frequency of post-graduate education among the non-OSA group was more than double the rate
in the OSA group (39% vs. 15%, P < 0.001). The prevalence of dyslipidemia (P = 0.0) and hypertension
(P = 0.01) was higher in the OSA group. OSA patients were also significantly older (P < 0.001), had
higher body mass index (P < 0.001), higher systolic and diastolic blood pressure (P = 0.003 and P = 0.030,
respectively), and heart rate (P = 0.044). The mean AHI for the OSA group was 33.9 ± 27.3 with an
average oxygen saturation of 81.8 ± 9.2%. Average oxygen saturation nadir for the moderate-to-severe
OSA group was 79.6 ± 9.7%.
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Male sex, n (%) 59 (67%) 64 (87%) 0.002 

Diabetes mellitus, n (%) 1 (1%) 0 (0%) 1 
Dyslipidemia, n (%) 6 (7%) 13 (18%) 0.031 
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OSA-obstructive sleep apnea, bp–base pair, BP–blood pressure, *Hispanic/Latino includes subjects of 
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The dispersion of TL according to OSA status is presented in Figure 2. The significance of outliers 
remains uncertain; however, it is conceivable that TL may be affected by unique factors related to 
genetic background and environmental exposure not included in this study, as discussed later.  

As previously described in this patient cohort [23], there was no significant difference in TL, on 
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Figure 1. Flow chart of participant inclusion in the study.

Table 1. Baseline characteristics of the study group.

Variable Non-OSA
n = 88

OSA
n = 73 P-Value

Telomere length, bp 4842 ± 180 4865 ± 226 0.482
Age, years 35.6 ± 11.0 47.3 ± 11.9 <0.001

Systolic BP, mmHg 124.1 ± 15.3 131.7 ± 15.3 0.003
Diastolic BP, mmHg 73.1 ± 9.8 76.4 ± 9.1 0.030
Heart rate, beats/min 69.6 ± 11.3 73.9 ± 14.0 0.044

Body mass index, kg/m2 26.9 ± 5.1 33.0 ± 7.7 <0.001
Male sex, n (%) 59 (67%) 64 (87%) 0.002

Diabetes mellitus, n (%) 1 (1%) 0 (0%) 1
Dyslipidemia, n (%) 6 (7%) 13 (18%) 0.031
Hypertension, n (%) 7 (8%) 17 (23%) 0.010

Current smoking, n (%) 7 (8%) 5 (7%) 0.775
Race/Ethnicity, n (%)

African American 3 (3%) 0 (0%) 0.252
Asian 18 (20%) 3 (4%) 0.002

Pacific Islander 1 (1%) 0 (0%) 1.0
White 56 (64%) 67 (92%) <0.001

Hispanic/Latino * 7 (8%) 3 (4%) 0.314
Unknown 3 (3%) 0 (0%) 0.252

Education, n (%)
High school graduate 9 (10%) 17 (23%) 0.025

Collage graduate/degree 42 (48%) 44 (60%) 0.112
Post graduate degree 34 (39%) 11 (15%) <0.001

Unknown 3 (3%) 1 (1%) 0.627
Apnea-hypopnea index, n/h 1.0 ± 1.3 33.9 ± 27.3 <0.001

Minimum blood O2 saturation, % 90.1 ± 5.2 81.8 ± 9.2 <0.001

OSA-obstructive sleep apnea, bp–base pair, BP–blood pressure, * Hispanic/Latino includes subjects of any race that
identify as Hispanic/Latino ethnicity.

3.2. Telomere Length

The dispersion of TL according to OSA status is presented in Figure 2. The significance of outliers
remains uncertain; however, it is conceivable that TL may be affected by unique factors related to
genetic background and environmental exposure not included in this study, as discussed later.

As previously described in this patient cohort [23], there was no significant difference in TL,
on average, between the non-OSA and OSA group (P = 0.482); however, a J-shaped association
between TL and OSA severity, with the longest average TL in moderate-to-severe OSA (4912 ± 234 bp),
and shortest average TL in mild OSA (4739 ± 148 bp) was observed.
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Figure 2. Telomere length dispersion according to obstructive sleep apnea (OSA) severity. Horizontal
lines indicate medians: non-OSA (–), mild OSA (–), moderate-to-severe OSA (–). Outliers are marked
as (�).

3.3. MACE and Cancer Risk

During the median follow up period of 12.7 years, 20% of individuals (n = 32) experienced the
primary outcome: A new clinical diagnosis of MACE alone (n =14), cancer alone (n = 16), both cancer
and MACE (n = 2) (Supplementary Table S1).

The overall MACE and cancer risk (incidence density) over the period of follow-up was 8.0 and
10.6 cases per 1000 person-years, respectively. OSA individuals had higher incidence rates of cancer
than non-OSA individuals: 16.0 vs. 4.9 events per 1000 person-years (P = 0.044) (Figure 3). Rates were
numerically higher for the MACE endpoint, but the unadjusted difference was not statistically
significant (10.8 vs. 4.8 events per 1000 person-years, P = 0.293). Moderate-to-severe OSA status was
associated with a 4.2 times higher incidence of cancer compared to the non-OSA individuals (20.6 vs.
4.9 events per 1000 person-years, P = 0.006).
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Figure 3. Major adverse cardiac events (MACE) and cancer risk presented as the incidence rates per
1000 person-years. Sample size for non-OSA is n = 88, for OSA is n = 73, and for moderate-to-severe
OSA is n = 53.
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Next, Cox proportional hazards regression was used to investigate MACE risk and cancer risk
depending on OSA status and TL (Table 2). In an univariate model, age and BMI, but not sex, showed
a significant association with risk of cancer and risk of MACE. Each year increase in age was associated
with 7% higher risk of MACE (P = 0.002) and 8% higher risk of cancer (P < 0.001). Each unit increase in
BMI was associated with 7% higher risk of MACE (P = 0.052) and 5% higher risk of cancer (P = 0.032).
OSA, regardless of OSA severity, was associated with 3.3 times increased risk of cancer [HR = 3.30, 95%
CI (1.08–10.03), P = 0.036], but the association was not statistically significant for MACE [HR = 1.87,
95% CI (0.57–6.15), P = 0.301].

In an age-adjusted model with TL and OSA status as predictors, TL showed no association with
the risk of MACE [HR = 1.01, 95% CI (0.78–1.28), P = 0.905], but there was a potentially meaningful
association between long TL and cancer risk [HR = 1.18, 95% CI (0.96–1.43, P = 0.109]. A point estimate
indicated that each 100 bp increase in TL was associated with 18% higher risk of developing cancer.
Additional model adjustment for BMI and sex did not change significantly the association between TL
and risk of MACE.

The relationship between OSA and risk of cancer [HR = 1.65, 95% CI (0.50–5.41), P = 0.409],
and risk of MACE [HR = 0.96, 95% CI (0.27–3.48), P = 0.954] was not significant in the OSA group
overall when controlling for TL and age. Additional adjustment for BMI and sex did not change this
observation. A model that further adjusted for smoking status suggested similar relationships for OSA
and TL with risk of MACE and risk for cancer. The age-adjusted risk of cancer tended to be higher
in individuals with moderate-to-severe OSA than in healthy individuals, but the difference was not
statistically significant [HR = 2.04, 95% CI (0.60–6.95), P = 0.255].
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Table 2. Hazard Ratios (HRs) for the development of MACE and cancer with OSA status, age and TL as individual (univariable model) and combined
predictors (multivariable).

Univariable Model Multivariable Model 1 Multivariable Model 2

MACE HR (95% CI) P-Value HR (95% CI) P-Value HR (95% CI) P-Value

OSA vs. non-OSA 1.87 (0.57–6.15) 0.301 0.96 (0.27–3.48) 0.954 0.51 (0.12–2.19) 0.368
TL, per 100 bp 1.02 (0.79–1.29) 0.877 1.01 (0.78–1.28) 0.905 1.05 (0.81–1.34) 0.705

Age, yrs 1.07 (1.03–1.12) 0.002 1.07 (1.02–1.12) 0.003 1.07 (1.02–1.13) 0.003
BMI, kg/m2 1.07 (0.99–1.13) 0.052 1.08 (1.00–1.15) 0.041
Male sex 2.75 (0.36–21.20) 0.333 3.92 (0.47–32.64) 0.205

CANCER
OSA vs. non-OSA 3.30 (1.08–10.03) 0.036 1.65 (0.50–5.41) 0.409 1.73 (0.44–6.72) 0.428

TL, per 100 bp 1.15 (0.93–1.39) 0.175 1.18 (0.96–1.43) 0.109 1.21 (0.98–1.48) 0.068
Age, yrs 1.08 (1.04–1.12) <0.001 1.07 (1.03–1.12) <0.001 1.07 (1.03–1.12) <0.001

BMI, kg/m2 1.05 (1.00–1.10) 0.032 1.03 (0.96–1.09) 0.422
Male sex 0.58 (0.21–1.63) 0.301 0.45 (0.13–1.54) 0.204

MACE—major adverse cardiac events, OSA—obstructive sleep apnea, TL—telomere length, bp—base pair, BMI—body mass index.
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4. Discussion

This study shows that while there was evidence of an association between OSA severity and
telomere dynamics in this patient cohort [23], there was no compelling evidence of an association
between telomere length and the risk of MACE, but a suggestive, though non-significant, association
between telomere length and the risk of cancer in this population.

First, we acknowledge the limited sample size and the relatively small number of events.
This resulted in wide confidence intervals of estimates describing the risk of MACE and risk of cancer,
indicating a high level of uncertainty of the observed association. Also, because of the lack of complete
data, we were not able to account for confounding factors other than age, sex and BMI which may
inflate the overall risk of MACE and cancer attributable to other factors such as lifestyle choices,
exposure to mutagens and genetic predisposition [30]. These results should thus be interpreted
cautiously. However, we anticipate that findings observed in the dataset may represent real effects in
OSA populations, and may therefore have implications for the design of clinical and experimental
studies aimed to address telomere-related mechanisms underlying cardiovascular and cancer risk
in OSA.

Our study adds to growing epidemiological and clinical evidence that patients with sleep breathing
disorders, including OSA, tend to have higher rates of cancer [31–33]. In this study, we observed
that OSA patients, who were free of any neoplasm at baseline, were 3.2 times more often diagnosed
with cancer over a median follow-up of 12.7 years. This association agrees with findings from other
studies [34–36]. Furthermore, we showed that moderate-to-severe OSA was associated with even
higher incidence of cancer compared to overall OSA individuals. Our observation is consistent with
previous studies which reported that the severity of baseline sleep-disordered breathing is associated
with increased cancer incidence and mortality in a dose-response fashion [37–39].

The potential link between cancer and OSA is particularly interesting, yet the underlying
mechanisms are still poorly understood. Given the established role of hypoxemia in tumorigenesis
and cancer progression, the hypothesis that intermittent hypoxemia may be one of the common
molecular pathways between both disorders is robust [40]. Animal models of melanoma, breast, and
prostate cancer have provided evidence that intermittent hypoxemia, which is a hallmark of OSA,
enhances tumorigenesis, tumor growth and metastasis [41–43]. This hypothesis is strengthened by
epidemiological observations indicating a considerably highly prevalence of OSA in cancer populations.
For example, 50% of patients with lung cancer were also diagnosed with moderate-to-severe OSA [44,45].
Some studies have also suggested that sleep disordered breathing may be associated with cancer
aggressiveness and worse prognosis [37,46,47].

The cancer promoting effect of OSA has been linked with a number of genetic, molecular and
cellular mechanisms promoting a permissive inflammatory microenvironment for tumorigenesis
and cancer cell survival by mechanisms potentially related to telomere length [43]. Telomere length
defines proliferative potential or the number of cell divisions before crisis leading to cell growth
arrest (senescence) or cell death (apoptosis) [48]. It is widely described that short telomeres lead
to genomic instability, and therefore an increased risk for cancer. However, there is also growing
evidence describing a cancer-telomere length paradox where individuals with long telomeres also
showed an increased risk for developing cancer [49]. Whether these individuals also had undiagnosed
moderate-to-severe OSA, contributing to both long telomeres and to increased cancer risk, is unknown.

In our study, we detected no statistically significant effect of TL on the risk of MACE; however
there was a considerable effect size of TL on the risk of cancer. Furthermore, moderate-to-severe
OSA individuals, who had longer telomeres on average, showed higher age-adjusted risk of cancer
(but not MACE) than non-OSA individuals. This observation raises the possibility that OSA-related
telomere elongation may increase the risk of developing cancer, but moderate the risk of cardiovascular
disease [50]. We hypothesize that telomere elongation may be linked to up-regulated telomerase
expression and/or activity as an adaptive response to the repetitive oxygenation disturbances related
to OSA [51,52].
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On the other hand, longer telomeres and a sustained cell proliferation capacity increase the
probability of attaining a critical number of genetic mutations [49]. Oxygen desaturations experienced
by OSA patients may increase oxidative stress and consequently induce DNA damage and increase risk
of genetic mutations leading to genome instability and neoplastic transformation [53]. We speculate
that the combination of OSA-mediated telomere elongation and a higher rate of genetic mutation
accumulation (related to more severe oxygen desaturations observed in moderate-to-severe OSA) may
represent a survival advantage of precancerous cells, and thus predispose OSA patients to higher risk
of cancer.

Our study highlights the need for further experimental, clinical, and epidemiological studies to
explore these hypotheses further and provide comprehensive evidence of any casual effect of OSA on
telomere length and the risk of cancer and cardiovascular events. This may guide the development of
screening approaches for early cancer detection in OSA patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/5/381/s1,
Table S1: List of neoplasms in the dataset.
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