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Abstract: Cholangiocarcinoma (CCA) is a deadly malignant tumor of the liver. It is a significant
health problem in Thailand. The critical obstacles of CCA diagnosis and treatment are the high
heterogeneity of disease and considerable resistance to treatment. Recent multi-omics studies revealed
the promising targets for CCA treatment; however, limited models for drug discovery are available.
This study aimed to develop a patient-derived xenograft (PDX) model as well as PDX-derived
cell lines of CCA for future drug screening. From a total of 16 CCA frozen tissues, 75% (eight
intrahepatic and four extrahepatic subtypes) were successfully grown and subpassaged in Balb/c
Rag-2-/-/Jak3-/- mice. A shorter duration of PDX growth was observed during F0 to F2 transplantation;
concomitantly, increased Oct-3/4 and Sox2 were evidenced in 50% and 33%, respectively, of serial
PDXs. Only four cell lines were established. The cell lines exhibited either bile duct (KKK-D049 and
KKK-D068) or combined hepatobiliary origin (KKK-D131 and KKK-D138). These cell lines acquired
high transplantation efficiency in both subcutaneous (100%) and intrasplenic (88%) transplantation
models. The subcutaneously transplanted xenograft retained the histological architecture as in the
patient tissues. Our models of CCA PDX and PDX-derived cell lines would be a useful platform for
CCA precision medicine.
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1. Introduction

Cholangiocarcinoma (CCA) is a rare subtype of liver cancer for which the highest incidence and
mortality have been reported in northeastern Thailand [1,2]. The prognosis of CCA is dismal because
of delayed diagnosis and poor response to conventional chemotherapy and targeted treatment [3].
Surgery is the only treatment option that provides a curative outcome [3,4], but limited numbers of the
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patients are candidates [5]. Nonetheless, this outcome is influenced by factors such as tumor subtype,
complete resection (R0), lymph node involvement, and vascular invasion [6]. Moreover, more than
85% of patients suffer from the disease recurrence [6]. The benefits of postoperative adjuvant treatment
from a recent systematic review and meta-analysis are not convincing [7]. Therefore, it is urgently
important to develop a novel CCA treatment.

CCA has high heterogeneity in nature [8]. Several risk factors of CCA have been established [9].
A common risk factor for of CCA in Thailand is the presence of a liver fluke, Opisthorchis viverrini
(Ov), through ingestion [1,10]. A unique feature of Ov-associated CCA is increased xenobiotic
metabolizing gene expression [11]. Mutational analysis of Ov-associated CCA identified a distinct
signature with higher rates of TP53, SMAD4, and ARID1A mutations but lower frequencies of IDH1/2
and BAP1 mutations when compared to other Asian and Western populations [12–14]. These differing
characteristics might complicate the usage of newly identified targets for CCA treatment [15–17].
However, the recent advances in multi-omics analyses have led to the identification of the targets
for Thai CCA [18,19]. The majority of Ov-associated CCAs were gathered in cluster 1 and cluster 2
in Jusakul’s study [18]. The molecular signature of cluster 1 showed some degree of similarity to
CCA-C1 subgroup in Chaisaingmongkol’s study [19] and to the proliferation subclass in Sia’s study [17].
Potential usage of Her2/neu (ERBB2) [18] and cycle regulatory molecules [19] as targets for treatment
are suggested in these CCA subclasses. Therefore, the development of a model for CCA treatment
prediction and validation is urgent.

There are several models for CCA, including a previously established cell line, a cell
line-transplanted xenograft, and a genetically engineered mouse model. The limitation of these
models is disease homogeneity [20,21]. The generation of a patient-derived model might be better
representative of tumor biology. However, primary culture of patient tissue is laborious and less
efficient. In highly desmoplastic tumors (e.g., CCA and pancreatic cancer), the overgrowth of stromal
cells will reduce the establishment efficiency [22,23]. In our experience, the success rate of cell line
establishment from patient-derived primary culture was less than 5%, (unpublished data), comparable
to that of pancreatic cancer (7%) [22].

The patient-derived xenograft (PDX) model is a promising tool for the propagation of a patient’s
tumor in an immunodeficient mouse. This PDX is an invaluable asset for the advancement of cancer
precision medicine, particularly for rare and aggressive cancers [24]. A higher success rate of cell line
development from PDX has been reported [25–27]. These cell lines show a certain degree of disease
heterogeneity [26]. Limited numbers of CCA PDX and PDX-derived cell lines are available [16,27,28].
This prompted us to develop PDX as well as the PDX-derived cell line for high-throughput drug
screening. These models might be useful as a platform for future anti-CCA development.

2. Materials and Methods

2.1. Cell Line

Four CCA cell lines—KKU-055, KKU-100 [29], KKU-213, and the hepatocellular carcinoma (HCC)
cell line-HuH-7 [30] were selected as reference liver cancer cell lines for current study. KKU-055 and
KKU-213 were derived from intrahepatic CCA, while KKU-100 was derived from the extrahepatic
(perihilar) CCA [29]. CCA cell lines were obtained from the Japanese Collection of Research Bioresources
Cell Bank (Osaka, Japan). HuH-7 was kindly provided by Prof. Kyoko Tsukiyama-Kohara (Kagoshima
University, Kagoshima, Japan). Cells were maintained in DMEM (Wako, Osaka, Japan) or RPMI1640
(Wako) as per recommendations. FBS (10%; HyClone, Logan, UT, USA), 100 U/mL penicillin, and
100 µg/mL streptomycin were supplemented in the media. Cultures were maintained at 37 ◦C in a
humidified 5% CO2 atmosphere.
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2.2. CCA Tissue Collection and Storage

Sixteen CCA tissue samples were obtained from the Department of Pathology, Faculty of Medicine,
Khon Kaen University, Thailand, after the clinical specimens were obtained from the operating room
and the pathological specimens were taken as the standard protocol for pathological staging. All
tissue samples were histologically diagnosed; 10 were of intrahepatic CCA (ICC), and six were of
the extrahepatic subtype (ECC). The study protocol was reviewed and approved by the Ethical
Committee for the Human Research of Khon Kaen University (HE571283), based on the Declaration
of Helsinki of 1975. Written informed consent was obtained from each subject. Demographical and
pathological characteristics of patients and CCA tissues are listed in Table 1. CCA tissues were cut into
0.5 × 0.5 × 0.5 cm pieces and were stored in the freezing media containing 10% DMSO and 90% FBS,
with 3–4 pieces per frozen vial. Tissues were stored at −80 ◦C until needed.

For transplantation, frozen CCA tissues were thawed and vigorously washed with PBS three
times. Tissues were cut into 8–27 mm3 pieces (2–3 mm each dimension). Non-viable cells were
removed. Each tissue was divided into two parts: (1) for transplantation and (2) for molecular
characterization and paraffin-embedded tissue preparation. Tissues were transplanted into flank areas
of Balb/c Rag-2/Jak3 double-deficient (Balb/c RJ) [31] or Balb/c nude Rag-2/Jak3-deficient (Nude RJ)
mice [32] subcutaneously. Implanted tissues were observed three times a week and were removed
when the masses reached 8–10 mm in diameter. Xenograft tumors from mice were sub-divided into
four parts: (1) for serial transplantation, (2) for frozen tissue stock, (3) for cell line development, and (4)
for histological purposes. All experimental protocols were approved by The Institutional Animal Care
and Use Committee, Kumamoto University, Japan.

Table 1. Characteristics of patients and cholangiocarcinoma tissues.

Code Gender Age Subtype TMN ** Stage ** Ov # PDX ## Histological Classification

D039 F 66 ICC T3N0M0 III No − WD, papillo-tubular adenocarcinoma

D042 M 56 ECC T2bN0M0 II No −
Invasive, intraductal papillary
carcinoma

D049 * M 55 ICC T2bN0M0 II Ov + WD, tubular adenocarcinoma

D058 F 64 ICC T3N1M0 IVA Ov + WD, tubular adenocarcinoma

D068 * M 61 ICC T2aN1M0 IVA No +
WD, tubular adenocarcinoma with
micropapillary foci

D070 M 65 ICC T3N1M0 IVA No + WD, tubular adenocarcinoma

D078 F 44 ECC T4N1M0 IVA No + WD, tubular adenocarcinoma

D088 F 68 ICC T3N0M0 III No + MD, tubular adenocarcinoma

D090 F 65 ECC T2bN0M0 II No +
Invasive, intraductal papillary
carcinoma

D096 M 45 ECC T3N1M0 IIIB No + WD, tubular adenocarcinoma

D106 M 54 ECC T2bN1M0 IIIB No +/−
Invasive, intraductal papillary
carcinoma

D113 M 70 ICC T3N0M0 III No +
Invasive, intraductal papillary
carcinoma

D117 M 58 ICC T3N1M0 IVA No −
WD, tubular adenocarcinoma with
micropapillary foci

D119 M 71 ECC T3N1M0 IIIB No + WD, tubular adenocarcinoma

D131 * M 66 ICC T3N1M0 IVA No + WD, tubular adenocarcinoma

D138 * F 60 ICC T3N0M0 III No + Adenosquamous carcinoma

* Cell lines were established; ** classification is based on the 7th edition of the AJCC cancer staging classification
[33]; # Opisthorchis viverrini (Ov) is observed in the tissues; ## serial transplanted tissues are successfully established,
+/− indicates only F0 tumor was obtained; F: female; M: male; ECC: extrahepatic cholangiocarcinoma; ICC:
intrahepatic cholangiocarcinoma; MD: moderately-differentiated subtype; WD: well-differentiated subtype; PDX:
patient-derived xenograft.



Cells 2019, 8, 496 4 of 15

2.3. Cell Line Establishment

For cell line development, fresh xenograft tissues were prepared as previously described [34].
Cells were cultured in DMEM/F12 (Wako) containing 1–10% FBS and insulin-transferrin-selenium (ITS,
Gibco BRL, Carlsbad, CA, USA). Stromal cells were sequentially removed by partial trypsinization and
mechanical removal. Cancer cells were subsequently cultured in DMEM containing 10% FBS when
becoming morphologically homogenous. All media were supplemented with 100 U/mL penicillin and
100 µg/mL streptomycin. The cultures were maintained at 37 ◦C in a humidified 5% CO2 atmosphere.
Cells were maintained in vitro culture system at least 6 months to ensure the immortalization properties.

All four newly established cell lines were deposited into the Japanese Cancer Research Resources
Bank (JCRB), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN),
Osaka, Japan.

2.4. The Expressions of Bile Duct and Hepatocyte-Related Genes

To demonstrate the liver cell origin of the cell lines, the expression profile of bile duct
or hepatocyte-related genes including cytokeratin 7 (CK7), CK19, γ-glutamyl transferase (GGT),
α-fetoprotein (AFP), and albumin (ALB) were determined as previously described [35]. RNA was
isolated from the cell line, and cDNA was prepared as mentioned elsewhere [36]. Alpha-smooth
muscle actin (αSMA) primers were used for the exclusion of fibroblast contamination. Primers used in
the current experiment are listed in Table S1.

PCR products were separated in 1.5% agarose gel in Tris-Borate-EDTA (TBE) buffer. A gel was
stained with ethidium bromide solution (Sigma-Aldrich, St. Louis, MO, USA) and the images were
captured by Bio-Rad Gel Doc 2000 (Bio-Rad, Hercules, CA, USA).

2.5. Cell Line Authentication and TP53 Mutation Analysis

To determine the genetic stabilities of the cell lines, 16 short tandem repeats (STR) of cell lines,
original tumor tissues, and patient’s white blood cells (WBC) were compared using AmpF`STR®

Identifiler® Plus PCR Amplification Kit (Applied Biosystems, Carlsbad, CA, USA). DNA was extracted
by the QIAamp® DNA Micro Kit (QIAGEN, Stanford, CA, USA). PCR products were analyzed using
ABI Prism 3130 Genetic Analyzer and GeneMapper® ID Software v3.2 (Applied Biosystems).

TP53 gene mutation was analyzed as previously described in [37]. Briefly, PCR reactions were
performed using the HotStarTaq Master Mix Kit (QIAGEN) and the amplification reactions were
carried out on a GeneAmp 9700 Thermal cycler (Applied Biosystems) as suggested. Sequencing was
achieved by using BigDye Terminator V3.1 cycle sequencing reaction kit (Applied Biosystems) and the
Genetic Analyzer ABI 3130 (Applied Biosystems). TP53 sequences were compared to the reference
sequence (NC_000017.9) by Lasergene 10.1 (DNASTAR, Madison, WI, USA).

2.6. Xenograft Transplantation of Cell Lines

The xenograft transplantation ability of the cell lines was determined. One to two million cells of
each cell line were transplanted subcutaneously into both flanks of Balb/c RJ mice. For intrasplenic
transplantation, 5 × 104 cells were injected intrasplenically as previously described [38]. Tissues, spleen,
and liver were removed at 1 month after transplantation. Paraffin-embedded tissues were prepared as
per standard protocol.

2.7. Histological Characterization and Evaluation

Hematoxylin and eosin staining of the original CCA tissues and transplanted tumors was
performed regularly. For immunohistochemistry staining, a standard protocol using citrate buffer
retrieval buffer was used. Signals were enhanced by EnVision-system-HRP (Dako, Glostrup, Denmark)
or the Vectastain Elite ABC standard kit (Vector Laboratories, Burlingame, CA, USA). Detection was
performed using the Histofine® DAB substrate kit (Nichirei Bioscience, Tokyo, Japan).
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The sources of antibodies were as follows: anti-CK19 (HPA002465,) was from Sigma-Aldrich,
anti-Ki-67 (MIB-1) was from Dako, anti-epithelial cell adhesion molecule (EpCAM, C-10) and
anti-Oct-3/4 (C-10) were from Santa Cruz Biotechnology (Dallas, TX, USA), anti-Sox2 (D6D9) was from
Cell Signaling Technology (Danvers, MA, USA), and biotinylated goat anti-mouse IgG and biotinylated
goat anti-rabbit IgG were from Vector Laboratories.

The comparison of tissue architecture between the original CCA tissue and transplanted tissue
was made by the pathologists. The images were taken by the BZ-8100 Biozero fluorescent microscope.
For the quantitation, the immunoreactivity signals were quantified by BZ-II Analyzer (Keyence, Osaka,
Japan) as previously described [36].

2.8. Statistical Analysis

For the correlation study, Pearson’s correlation coefficient (r) was calculated using GraphPad
Prism version 6.07 (San Diego, CA, USA).

3. Results

3.1. CCA Patient Tissue Transplantation

From 16 CCA tissues, 10 tissue samples were of the intrahepatic subtype (ICC) while six were of
the extrahepatic subtype (ECC) based on the 7th edition of the AJCC cancer staging classification. The
most extended storage duration with successful transplantation was 134 days (19–134 days). After
defrosting and cleaning, tissues were transplanted into both flanks of Balb/c RJ mice. Thirteen tissue
samples (eight ICC and five ECC) successfully grew in the subcutaneous areas of the mice (Table 1). No
mass was observed in three mice (D039, D042, and D117). Unfortunately, only 12 tissue samples were
successfully transplanted into F1 (Figure 1). D106 formed a tumor in the F0 mouse, but it was lethal to
the F1 mouse. We repeated D106 F1 transplantation twice but mice died within a month without a
specific cause and alarming signs. The durations of F0 tumor formations ranged from 24 to 194 days.
The duration of tumor formation was not related to either tumor cell density evaluated by percentage
of CK19 immunoreactivity or the proliferative potential of the tumor cells determined by percentage of
Ki-67 positive nuclei (Table S2 and Figure S1).
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Figure 1. The summary of PDX transplantation and PDX-derived cell line development.
CCA: cholangiocarcinoma.

A similar experiment was carried out in nude RJ mice. Three samples were transplanted into
both flanks of mice. The transplantation success rate was comparable to those in Balb/c RJ, but F0
growth in nude RJ took approximately 2 weeks longer. Thus, we selected the Balb/c RJ mice for our
PDX generation and further testing.
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From our protocol, we successfully established the method for generation of the CCA-PDX model,
which is highly efficient (67–80% success rate) (Figure 1). The duration of xenograft transplantation
was not related to either tumor density or the proliferative capability of the tumor cells indicated by
CK19 and Ki-67 immunostaining. Nonetheless, it is worth mentioning that the duration of tumor
establishment was shorter when the PDX was serially transplanted (Figure 2). Mean durations of PDX
growth in F0, F1, F2, F3, and F4 were 110, 60, 47, 46, and 43 days, respectively. The xenograft tumor
growth might be related to the Oct3/4 and Sox2 expressions. Oct-3/4 was detectable in 11 xenografts
(92%) and Sox2 was observed in eight xenografts (67%). Interestingly, increased Oct3/4 was observed
in 50% of serially transplanted tumors (6/12 xenografts) and increased Sox2 was observed in 33% of
tumors (4/12 xenografts). Representative PDXs with Oct-3/4 and Sox2 increments are demonstrated
in Figure 3. It should be noted that EpCAM was observed on almost all tumor cell surfaces and no
significant alteration of the EpCAM signal was observed in our serially transplanted PDXs (Figure S2).
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3.2. Cell Line Establishment and Characterization

Among 12 serially transplantable tissues, four tissues were successfully developed into cell lines.
All cell lines were of intrahepatic origin; three were histologically characterized as well-differentiated
subtypes (WD; KKK-D049, KKK-D068, and KKK-D131) and one was characterized as a mixed
adenosquamous subtype (AS; KKK-D138). KKK-D068 and KKK-D131 were established from the
F0-transplanted tumor while KKK-D138 and KKK-D049 were established from the F1 and F2 tumors,
respectively. The morphologies of the cell lines are presented in Figure 4a. All cell lines exhibit
epithelial-like features with a high nuclear to cytoplasmic ratio. KKK-D049 shows a unique feature of
tight clustering. KKK-D068, KKK-D131, and KKK-D138 contain both polygonal and spindle-like cells.
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Figure 3. Comparison of Oct-3/4 and Sox2 expressions between original tumor tissue from the
patient (original) and serially transplanted tissues (F0, F1, and F2). (a) Oct-3/4; (b) Sox2 expressions.
Representative samples of nuclear expressing and non-expressing CCA are shown. Bar = 100 µm.
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Figure 4. The morphologies (a) and gene expression profile (b) of PDX-derived CCA cell lines
KKK-D-49, KKK-D068, KKK-D131, and KKK-D138. Huh7, KKU-100, KKU-055, and KKU-213 were
used as references. WD: well differentiated subtype; AS: adenosquamous subtype; 1: cytokeratin 7
(CK7); 2: CK19, 3: γ-glutamyl transferase (GGT); 4: α-fetoprotein (AFP); 5: albumin (ALB).

The authentications of cell lines were performed by STR analysis (Table 2). DNA from patient’s
tissue and WBC were used as references. Fifteen STR loci and amelogenin were detected. One locus of
D18S51 was lost in the D049 tissue and KKK-D049 cell line. One locus of D16S539 and Y amelogenin
was lost in the KKK-D068 cell line but not in D068 tissue. A locus of CSF1PO, TH01, D16S539, D19S433,
D5S818, FGA, and Y amelogenin was lost in KKK-D131. A 31.2 locus of D21S11 was lost in KKK-D138.

Further characterization of cell lineage marker was performed using RT-PCR (Figure 4b).
Comparisons of the previously developed HCC (HuH-7), CCA (KKU-100, KKU-055, KKU-213)
and the newly established cells showed all new cell lines expressed two bile duct markers, CK7,
and CK9, similar to the previously established cell lines (KKU-100 and KKU-213); only KKK-D138
expressed GGT. KKK-D131 and KKK-D138 expressed the hepatocyte marker, ALB. None of the newly
established cell lines expressed AFP but a previously developed cell line, KKU-100 did. Alpha-SMA
was not detectable in any cell lines (data not shown).

TP53 mutation analysis revealed CCC to CGC at codon 72, which will cause missense P72R
mutations in KKK-D138 but is not detected in KKK-D068 and KKK-D131. The TP53 mutation of
KKK-D049 has not yet been analyzed.
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Table 2. Comparison of STR profiles of CCA tissues, patient WBC, and newly established cell lines.

Loci
D049 D068 D131 D138

WBC Tissue Cell WBC Tissue Cell WBC Tissue Cell WBC Tissue Cell

D8S1179 12, 17 12, 17 12, 17 12, 16 12, 16 12, 16 12, 13 12, 13 12, 13

ND **

10, 14 10, 14

D21S11 29, 30 29, 30 29, 30 30, 33.2 30, 33.2 30, 33.2 29 29 29 29, 31.2 29

D7S820 * 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 11 8, 11 8, 11 10, 11 10, 11

CSF1PO * 11, 12 11, 12 11, 12 11 11 11 12, 13 12, 13, 14 14 10, 11 10, 11

D3S1358 15, 16 15, 16 15, 16 15 15 15 14, 15 14, 15 14, 15 16, 18 16, 18

TH01 * 9 9 9 7 7 7 8, 9.3 8, 9.3 9.3 8, 9.3 8, 9.3

D13S317 * 8, 9 8, 9 8, 9 8, 12 8, 12 8, 12 10, 11 10, 11 10, 11 8, 11 11

D16S539 * 13, 14 13, 14 13, 14 9, 11 9, 11 9 9, 11 9, 11 11 9, 11 9, 11

D2S1338 19, 25 19, 25 19, 25 19 19 19 20, 23 20, 23 20, 23 24, 25 24, 25

D19S433 13, 15.2 13, 15.2 13, 15.2 14, 14.2 14, 14.2 14, 14.2 13.2, 14 13.2, 14 13.2 13.2, 14.2 13.2, 14.2

vWA * 14, 17 14, 17 14, 17 14, 16 14, 16 14, 16 14, 16 14, 16 14, 16 14, 18 14, 18

TPOX * 8, 9 8, 9 8, 9 8, 11 8, 11 8, 11 8, 11 8, 11 8, 11 11 11

D18S51 11, 16 11 11 12 12 12 17 17 17 15 15

D5S818 * 10, 12 10, 12 10, 12 11, 12 11, 12 11, 12 10, 12 10, 12, 13 13 9, 10 9, 10

FGA 23, 24.2 23, 24.2 23, 24.2 23, 25 23, 25 23, 25 19, 21 19, 21 21 18, 24.2 18, 24.2

Amelogenin X, Y X, Y X, Y X, Y X, Y X X, Y X, Y X X, X X, X

* Eight markers are common short tandem repeat (STR) markers for cell authentication; ** White blood cells (WBCs) are not available for comparison.
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3.3. Cell Line Transplantation

To test the in vivo tumorigenesis properties of the newly developed cell lines, the cell lines were
separately injected into both flanks of Balb/c RJ (two mice/cell line, n = 4). Tumors were grown in the
mice for a month, and tumor masses were observed twice a week. We observed tumor masses from all
injected sites (Figure 5a). The successful rate of subcutaneous xenograft was 100% (Table 3).
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Table 3. PDX-derived cell line transplantation rate in subcutaneous (SC) and intrasplenic (IS) xenograft
mouse model.

Cell Lines Route Transplantation Rate (%)

KKK-D049
SC 4/4 (100%)

IS 1/2 (50%)

KKK-D068
SC 4/4 (100%)

IS 2/2 (100%)

KKK-D131
SC 4/4 (100%)

IS 2/2 (100%)

KKK-D138
SC 4/4 (100%)

IS 2/2 (100%)

The transplantation was further performed in the intrasplenic transplantation model. Fifty
thousand cells of each cell line were injected into Balb/c RJ spleen (two mice/cell line, n = 2). Spleen,
liver, and lungs were removed at 1 month after injection. Tumors were observed in 88% of transplanted
livers and spleens (7/8 mice) (Figure 5b). No tumors were detected in one mouse injected with
KKK-D049 (Table 3). No tumors were observed in lungs of mice (data not shown).

The subcutaneous tumor masses were prepared for the histological comparison with the tumor
tissues from the patients (Figure 6). These transplanted tumors exhibited similar architectures to the
original tumors. KKK-D049 showed tubular formation, while KKK-D068, KKK-D131, and KKK-D138
exhibited epithelial like characteristics.
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4. Discussion

Cholangiocarcinoma (CCA) is a rare, aggressive tumor of liver found worldwide [1,2]. The
world’s highest incidence and mortality of CCA are in Thailand, and the disease is a significant
health concern. CCA treatment is difficult given the great heterogeneity of the disease. The unique
causative agent of Opisthorchis viverrini (Ov) infection has been demonstrated by distinctive molecular
signatures [11–13,18,19]. The typical signatures suggest Ov-related CCA might be vulnerable to distinct
treatment. Several attempts were made to provide opportunities for Ov-related CCA treatment [18,19].
Despite this, pre-clinical models that are patient-representative are limited. Therefore, a model for
target validation is urgently required.

Patient-derived xenograft (PDX) models are preclinical models that are ideally developed for the
implementation of personalized medicine. PDX models are a powerful tool for cancer propagation that
retain disease complexity and heterogeneity [24]. Moreover, PDX-derived cell lines with some degree
of cellular heterogeneity are useful tools for the larger scale of drug screening. We have developed the
PDX and PDX-derived cell lines which acquire very high efficiency for transplantation in conventional
subcutaneous and intrasplenic models.

The newly developed CCA-PDX model is highly efficient, with 75% transplantable efficiency
compared to 6–35% engraftment rates in the previously described models [27,28]. This high efficiency
is not related to the tumor stage, patient survival, tumor density, or proliferative potential of cells. This
might be due to the different genetic backgrounds of the recipient mice. Balb/c RJ or nude RJ mice in
our study have no natural killer (NK) cells, but the non-obese diabetic (NOD)/Shi-severe combined
immunodeficient (SCID) mice in Cavalloni’s study and the athymic C.B17/Icr-scid(scid/scid) mice
in Ojima’s study retain functional NK cells [27,28]. The roles of NK cells in syngeneic or xenograft
tumor rejection are widely accepted [39]. The usefulness of the PDX model has been explored as the
resources for cell line development [25–27]. A comparable cell line establishment rate (25% in our
study vs. 32% in Ojima’s study) was observed, which might be due to the selective power of the PDX
model [20]. Increased Oct-3/4 or Sox2 expressing cancer cells were observed during PDX passaging.
Similar observations of increased cancer stem cell (CSC) proportions in the PDX model were observed
in other cancers [40]. The identification and characterization of CSCs in CCA-PDX are beyond the
scope of this study and require more attention.

PDX-derived cell lines developed in this study show some degree of heterogeneity in vitro and
in vivo, yet keep the characteristics of tissue organization, which are common in PDX models [25–27].
The loss of the Y chromosome or Y amelogenin was observed in two cell lines (KKK-D068 and
KKK-D131). The loss of the Y chromosome is also observed in hepatocellular carcinoma (HCC) [41]
and pancreatic cancer [42]. The functional significance of the Y chromosome loss is still under debate.
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Our PDX-derived cell lines acquire the expressions of the bile duct or hepatobiliary-related genes.
This might suggest a cellular origin, perhaps committed bile duct cells (CK7- and CK19-expressing
cells) or bipotential progenitor cells (CK7/CK19 and ALB-expressing cells) [35]. Cellular origins of
cell lines require further investigation. The newly established cell lines have very high efficiency
for xenotransplantation. Owing the PDX development was in Balb R/J, these cell lines might be
adapted to the selection power of the mouse model. Testing of xenotransplantation efficiency in other
immunodeficient will be explored.

We propose the platform for anti-cancer drug screening using a PDX-derived cell line, and a PDX
mouse model as demonstrated in Figure 7. In cases where immunodeficient mice are not commonly
available, cancer tissues might be kept as frozen stock. Transplantation might be performed upon
readiness. In parallel, the omics identification of drug targets and the development of PDX-derived
cell lines might be performed. This cell line might be useful for high-throughput drug screening or
target testing. To validate the information from omics study or high-throughput drug screening, the
PDX model may play a critical role. Moreover, this PDX biobank would be a precious resource for
future drug development.
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5. Conclusions

In conclusion, in this study we established a highly effective CCA PDX model and highly
transplantable PDX-derived cell lines. Cell authentications and characterization have been
demonstrated. The cellular heterogeneity and preserved tissue architecture have been confirmed in
PDX-derived cell lines and cell line xenografts. These PDX-derived cell lines and PDX models might be
a promising platform for anti-CCA development. The advantage of our PDX model for personalized
medicine seems to be limited by the long transplantation duration in some cases.
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496/s1.
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