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Abstract: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, with an
increasing mortality rate. Aberrant expression of fibroblast growth factor 19–fibroblast growth
factor receptor 4 (FGF19–FGFR4) is reported to be an oncogenic-driver pathway for HCC patients.
Thus, the FGF19–FGFR4 signaling pathway is a promising target for the treatment of HCC. Several
pan-FGFR (1–4) and FGFR4-specific inhibitors are in different phases of clinical trials. In this review,
we summarize the information, recent developments, binding modes, selectivity, and clinical trial
phases of different available FGFR4/pan-FGF inhibitors. We also discuss future perspectives and
highlight the points that should be addressed to improve the efficacy of these inhibitors.
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1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, with the fourth highest
mortality rate [1]. Despite advancements in therapeutic strategies, the response rate and overall
survival rate are still low [2]. The most common cause of HCC is liver cirrhosis from any etiology
including hepatitis B and hepatitis C infection, excessive alcohol consumption, diabetes mellitus,
and non-alcoholic fatty liver disease [3]. Moreover, various molecular pathways are involved in the
initiation and progression of HCC [4]. With respect to these pathways, there is evidence demonstrating
the role of fibroblast growth factor pathway genes in HCC prognosis [5].

The fibroblast growth factors (FGFs) family comprises a large family of growth factors that are
found in different multicellular organisms [6]. The FGFs signal through four transmembrane tyrosine
kinase fibroblast growth factor receptors (FGFRs) namely FGFR1, FGFR2, FGFR3, and FGFR4 [7].
FGFs–FGFRs are involved in regulation of many biological processes such as embryonic development,
cell proliferation, differentiation, and tissue repair [8]. FGF–FGFR dysregulation is also widely reported
in different types of diseases, disorders, and cancers [9]. Notably, aberrant expression of FGF19/FGFR4
contributes to HCC progression [10].

Since sorafenib marked a new era in molecularly targeted therapy in advanced HCC [11], various
drugs such as lenvatinib, regorafenib, cabozantinib, nivolumab, and ramucirumab have subsequently
demonstrated overall survival benefits for patients [12–16]. However, the treatment outcome of
metastatic HCC is still unsatisfactory, with a median overall survival below 15 months [12]. Thus,
more effective treatment options for advanced HCC are needed. This can be achieved by a better
understanding of the underlying genetic mechanisms involved in HCC. This review aims to provide
comprehensive landscape of current information available on the FGF19–FGFR4 pathway. It also
discusses recent advancements on FGF19–FGFR4 inhibitors in HCC. The data is obtained by systematic
analysis of the literature and by using different text-mining approaches.
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2. Overview of FGFR4 and FGF19

2.1. Structure and Function of FGFR4

Fibroblast growth factor receptor 4 (FGFR4) is a protein coding gene and is a member of tyrosine
kinase receptors family. The human FGFR4 gene is located on chromosome 5 and measures 11.41 bp in
length [17]. The FGFR4 protein coded by two full transcripts of FGFR4 gene consists of ~800 amino
acids, with molecular weight of around 95–110 kDa [18]. The structure of FGFR4 proteins contains
three immunoglobin-like domains (D1–D3), a transmembrane domain, and the kinase domain [19].
(Figure 1) Among these immunoglobin-like domains, first two have role in receptor auto-inhibition,
while the third domain is involved in specific binding of ligands [20]. The kinase domain (intracellular)
is important in activation of downstream pathways [21]. Further, the kinase domain comprises
the N-terminal (smaller) and C-terminal (larger) canonical domains [22]. FGF receptors differ from
each other in tissue specificity and ligand-binding affinity. However, good identity scores are found
between the kinase domains of FGFR4 and other FGF receptors [22]. The expression of FGFR4 is
highly tissue-specific due to its unique ligand binding affinity [23]. At a functional level, FGFR4
is predominantly involved in regeneration of muscles, regulation of lipid metabolism, bile acid
biosynthesis, cell proliferation, differentiation, glucose uptake, and myogenesis [24]. Of note, it is
reported that FGFR4 is mostly expressed in liver tissue [25].
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Figure 1. Structural overview of fibroblast growth factor receptor 4 (FGFR4) protein.

2.2. FGFR4 in Cancer

FGFR4 exerts a combination of biological effects that contribute to different hallmarks of cancer
(Figure 2) [26]. Functional analysis demonstrated induction of both increased local growth and
enhanced metastasis by mutated FGFR4 [27]. Xu et al. described germline mutations in FGFR4 i.e.,
glycine to arginine transition at position 388 in the transmembrane domain of FGFR4 receptor, which
results in the formation of FGFR4 arg388 allele, leading to higher cancer risk [28]. Due to broad ligand
binding spectrum of FGFR4, it is reportedly involved in multiple tumor types including HCC, breast
cancer, colorectal cancer, rhabdomyosarcoma, and lung cancer [29–33].
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2.3. Structure and Function of FGF19

Out of three endogenous fibroblast growth factors (FGF19, FGF21, and FGF23), FGF19 binds to
FGFR4 with highest affinity [34]. The human FGF19 gene is located on chromosome 11q13. In mice, the
FGF15 gene is an orthologue of the human FGF19 gene [6]. The farnesoid X receptor (FXR) is activated
by the secretion of bile acid from the gall bladder to the small intestine, which ultimately stimulates
FGF19 secretion from the ileum [35,36]. The primary roles of FGF19 are found in bile acid synthesis,
gallbladder filling, glycogen synthesis, gluconeogenesis, and protein synthesis [37]. FGF19 contributes
to several hallmarks of cancer (Figure 3). Interestingly, FGF19 and FGF21 (endogenous fibroblast
growth factors) are also most commonly involved in regulation of different functions occurring in
liver [38]. Nicholes et al. demonstrated in transgenic mice that overexpression of FGF19 is involved in
liver dysplasia [39]. In our recent study, amplification of FGF19 was found to be significantly associated
with cirrhosis and also increased the risk of HCC [40]. Similarly, in our other study we used the
fluorescence in situ hybridization technique and found the similar oncogenic patterns of FGF19 in
HCC [41]. Copy number amplification of FGF19 is also highly reported in The Cancer Genome Atlas
(TCGA) data [42]. Notably, the role of FGF19 at expression level is also frequently reported in HCC
prognosis [43,44].
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2.4. Mechanism of FGFR4 Activation

Specific ligand receptor binding spectrum in FGFs lead to autophosphorylation and formation of
multiple complex [45]. FGFR4 is regulated using its co-receptor klotho-beta (KLB) (a transmembrane
protein) [46]. The involvement of KLB co-receptor is reported in hepatocytes and adipose and pancreatic
tissues [47]. FGFR4 and KLB are found to be overexpressed in mature hepatocytes [48]. In addition,
KLB is required for FGF19–FGFR4 complex activation [49] (Figure 4).
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The interaction network is based on various parameters including co-expression, genetic interactivity,
shared protein domains, co-localization and physical interactions.

FGFR4 related pathways have predominant involvement in proliferation, differentiation, survival,
and migration of cells. (Figure 4) Multiple signaling cascades such as GSK3β/β-catenin, PI3K/AKT,
PLCγ/DAG/PKC, and RAS/RAF/MAPK are modulated by FGFR4 activation [10,50,51] (Figure 5).

FGFR4 selectively binds FGF19 ligand [49,52]. FGF19 is also reported as a functional partner of
FGFR4, with the highest score in analysis through the STRING (https://string-db.org/) database.

https://string-db.org/
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2.5. FGF19–FGFR4 Pathway in HCC

FGF19/FGFR4 activation leads to the formation of FGF receptor substrate 2 (FRS2) and growth
factor receptor-bound protein 2 (GRB2) complex, ultimately activating Ras–Raf –ERK1/2MAPK and
PI3K–Akt pathways. (Figure 6) These pathways are predominantly involved in tumor proliferation
and anti-apoptosis. (Figure 6).Cells 2019, 8, x 7 of 16 

 

 
Figure 6. Binding mechanism of FGF19 to FGFR4 leads to FRS2 along with recruitment of growth 
factor receptor-bound protein 2 (GRB2), ultimately leading to activation of the Ras–Raf–ERK1/2 MAPK 
and PI3K–Akt pathways. 

3. Targeting FGF19–FGFR4 in HCC 

FGF19/FGFR4 inhibition is thought to lead to anti-tumor activities [55]. Thus, several FGFR (1–
4) inhibitors are under trial for different types of malignancies including HCC [56] (Figure 7). 

 
Figure 7. Selected overview of pan-FGFRs and FGFR4-specific inhibitors in different stages of clinical 
trials for hepatocellular carcinoma (HCC). 

Figure 6. Binding mechanism of FGF19 to FGFR4 leads to FRS2 along with recruitment of growth factor
receptor-bound protein 2 (GRB2), ultimately leading to activation of the Ras–Raf –ERK1/2 MAPK and
PI3K–Akt pathways.

As discussed, frequent studies reported the anomalous expression of FGF19–FGFR4 complex
enhances the progression of HCC [31,44]. In a study conducted on mice model, Cui et al. suggested
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FGF19 as a potential therapeutic target for the treatment of HCC [53]. FGFR4 dysregulation and its
correlation with TGF-β1 also suggested FGFR4 as potential therapeutic target of HCC patients with
invasiveness and metastasis [43,54].

3. Targeting FGF19–FGFR4 in HCC

FGF19/FGFR4 inhibition is thought to lead to anti-tumor activities [55]. Thus, several FGFR (1–4)
inhibitors are under trial for different types of malignancies including HCC [56] (Figure 7).
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3.1. Pan-FGFR (1–4) Inhibitors

Multiple pan-FGFR (1–4) inhibitors are under-development in different phases of clinical trials
(Figure 7). LY2874455 (NCT01212107), AZD4547 (NCT02038673), infigratinib (NCT02160041), and
erdafitinib (NCT02365597) drugs are designed to target pan-FGFRs and are in phase II of development
and clinical trials (Table 1).

LY2874455 is a small molecule inhibitor developed by Eli Lilly [53] (Figure 8). It has shown
promising effects against advanced and metastatic cancers such as myelomas, lung, bladder, and gastric
cancer [57]. Its highly effective inhibitory action suggests that it can be effective potential drug for
HCC in the near future.
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Table 1. Pan-FGFR inhibitors in different phases of clinical trials.

Drug Company Indication Drug Target Study Phase Route of
Administration

Clinical
Trial ID

LY2874455 Eli Lilly Advanced and metastatic
cancers

Pan-FGFR (1–4)
inhibitor Phase II Oral NCT01212107

AZD4547 Astra Zeneca

Stage IV squamous cell
lung cancer

Pan-FGFR (1–4)
inhibitor

Phase II
Oral

NCT02965378

ER+ breast cancer NCT01791985

Muscle-invasive bladder
cancer (MIBC) Phase I NCT02546661

Infigratinib
(BGJ398)

Novartis
Pharmaceuticals

Tumors with FGFR genetic
alterations

Pan-FGFR (1–4)
inhibitor

Phase II

Oral

NCT02160041

Advanced or metastatic
cholangiocarcinoma Phase II NCT02150967

Recurrent resectable or
unresectable glioblastoma Phase II NCT01975701

Solid tumor Phase I NCT01697605

Advanced solid
malignancies Phase I NCT01004224

Erdafitinib
(JNJ-42756493)

Janssen
Pharmaceuticals

Urothelial cancer Advanced
hepatocellular carcinoma

Pan-FGFR (1–4)
inhibitor

Phase II Oral

NCT02365597

Advanced non-small lung
cancer Esophageal cancer NCT02699606

Lymphoma NCT02952573

PRN1371 Prinicipia
Biopharma Inc. Solid tumor Pan-FGFR (1–4)

inhibitor Phase I Oral NCT02608125

ASP5878 Astellas Solid tumor Pan-FGFR (1–4)
inhibitor Phase I Oral NCT02038673

ER+ breast cancer: estrogen-receptor-positive breast cancer.Cells 2019, 8, x 9 of 16 
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domain (PDB code 5JKG).

AZD4547 was developed to specifically target pan-FGFR (1–4) in solid tumors. However, AZD4547
showed good efficacy against FGFR (1–3) but weaker activity against FGFR4 [58], suggesting low
efficacy when specifically targeting FGFR4.

Infigratinib (BGJ398), which targets FGFR (1–3) with high affinity and FGFR4 with less affinity,
was developed by Novartis Pharmaceuticals. It is currently in phase II for tumors with alteration of FGFR
and for glioblastomas, solid tumors, hematologic malignancies, and advanced cholangiocarcinoma.
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Infigratinib showed an effective response against FGFR signaling pathways in HCC [59]. However,
FDA-approved clinical trials are yet to be conducted for infigratinib in HCC [59].

Janssen Pharmaceuticals reported erdafitinib (JNJ-42756493), a pan-FGFR (1–4) inhibitor (Figure 9),
which is currently under phase II of clinical trials for advanced HCC. It significantly inhibited
FGFR-overexpressing tumor cells in HCC [60].
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PRN1371 (NCT02608125) and ASP5878 (NCT02038673) are drugs designed to target pan-FGFRs
and are in phase I of development and clinical trials. PRN1371 was developed by Principia Biopharma
Inc. for solid tumors. It is an irreversible inhibitor that specifically targets FGFRs. The inhibitory action
of this drug has been reported in many tumor types like HCC, gastric, and lung cancer [61]. Astellas
developed ASP5878 to target pan-FGFRs (1–4) in solid tumors. Importantly, ASP5878 also inhibited
HCC cell lines exhibiting overexpression of FGF19 in the pre-clinical phase. In addition, this small
inhibitor molecule improved the efficacy of sorafenib [62].

3.2. FGFR4-Specific Inhibitors

As discussed, the overexpression of FGFR4 is most frequently reported receptor compared to FGFR
(1–3) in HCC initiation and progression. However, selectivity of pan-FGFR inhibitors is comparatively
lower for FGFR4. Thus, Prieto-Dominguez et al. outlined different targeted therapeutics available for
the FGF19–FGFR4 complex [29]. A number of drugs are under different phases of clinical trials which
specifically target FGF19/FGFR4. Two potential drug candidates in the phase II stage of clinical trials,
namely IONIS-FGFR4Rx (NCT02476019) and FGF-401 (NCT02325739), are reported (Table 2).
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Table 2. FGFR4-specific inhibitors under different phases of clinical trials.

Drug Company Indication Drug Target Study Phase Route of
Administration

Clinical
Trial ID

IONIS-FGFR4Rx Ionis
Pharmaceuticals

Obesity and insulin
sensitivity FGFR4-specific Phase II Subcutaneous NCT02476019

FGF401 Novartis AG
Hepatocellular

carcinoma Solid
malignancies

FGFR4-specific
Phase II

(recruiting
status)

Oral NCT02325739

H3B-6527 H3 Biomedicine
Inc.

Hepatocellular
carcinoma FGFR4-specific Phase I Oral NCT02834780

U3-1784 Daiichi Sankyo
Inc.

Advanced solid
tumor

Hepatocellular
carcinoma

FGFR4-specific Phase I
(Terminated) Intravenous NCT02690350

BLU-554 Blueprint
Medicines Corp.

Hepatocellular
carcinoma (orphan

drug designation for
HCC by the U.S.

FDA)

FGFR4-specific Phase I Oral NCT02508467

AZ709 AstraZeneca Hepatocellular
carcinoma FGFR4-specific Inactive

(Pre-clinical) Unspecified

U.S. FDA: U.S. Food and Drug Administration.

IONIS-FGFR4Rx, previously known as ISIS-FGFR4Rx, exhibited antisense inhibitor activity
against FGFR4 [59]. IONIS-FGFR4Rx has undergone a phase II clinical trial for obesity, specifically
targeting FGFR4 in liver and fat tissues. It is not only effective in reducing obesity but also improves
insulin sensitivity [63]. Thus, we suggest that conducting trials with IONIS-FGFR4Rx in HCC patients
may give significant results.

FGF401 was developed by Novartis and specifically targets FGFR4 in HCC patients. According
to the most recent update, FGF401 is in phase II of clinical trials for HCC, expected to be completed by
the year 2020. FGF401, with an IC50, exhibited at least 1000-fold potency for inhibiting FGFR4 kinase
activity compared to other FGFRs (1–3) [64].

H3B-6527 (NCT02834780), U3-1784 (NCT02690350), and BLU-554 (NCT02508467) are reported to
be in phase I clinical trials to specifically target FGFR4.

H3B-6527 is a small inhibitor molecule developed by H3 Biomedicine Inc for targeting
FGFR4-overexpression in advanced HCC and cholangiocarcinoma (IHCC) patients. In preclinical trials,
H3B-6527 proved to be effective in terms of repressing tumor growth in a xenograft model of HCC
which exhibited activated aberrant FGF19–FGFR4 signaling [65].

The human monoclonal drug U3-1784 is under-development by Daiichi Sankyo Inc for HCC and
other solid tumors. This antibody specifically binds to FGFR4 and is most effective (approximately
90%) in FGF19-expressing models, suggesting it as a potential drug for HCC with an activated
FGF19–FGFR4 pathway. However, according to a recent update, the clinical trials for this drug have
been terminated [66].

BLU-554, a FGFR4-specific inhibitor, is under recruiting phase by Blueprint Medicines Corp. for
HCC and cholangiocarcinoma patients. In addition, it was also granted an orphan drug designation in
2015 by the U.S. FDA for HCC [67].

Lastly, AZ709 showed good selective inhibition of FGFR4 in HCC, as recently reported by
AstraZeneca, and is in the preclinical stage of development. However, no progress has been reported
on this drug to date (reported at the 2013 NCRI Cancer Conference, Liverpool, UK).

3.3. Irreversible FGFR4 Inhibitors

Two irreversible FGFR4 inhibitors have also been recently reported, including INCB62079
(ClinicalTrials.gov Identifier: NCT03144661) and BLU9931 [68] (Figure 7, Table 3). INCB62079,
developed by the Incyte Corporation, showed effective dose-dependent and compound-selective
activity against cancer cells exhibiting active FGF19–FGFR4. Additionally, it showed good efficacy in
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Hep3b hepatocellular cancer xenograft model in pre-clinical trial phase. INCB62079 is currently in
phase I clinical trials (ClinicalTrials.gov Identifier: NCT03144661) for HCC.

Table 3. FGFR4-specific irreversible inhibitors under different phases of clinical trials.

Drug Company Indication Drug Target Study Phase Route of
Administration

Clinical
Trial ID

INCB62079 Incyte
Corporation Liver cancer FGFR4-specific

(irreversible) Phase I Unspecified NCT03144661

BLU9931 Blueprint
Medicines Corp.

Hepatocellular
carcinoma

FGFR4-specific
(irreversible) Pre-clinical Oral

Blueprint Medicines Corp reported the remarkable drug BLU9931, a small irreversible inhibitor
of FGFR4. It is currently in the pre-clinical stage of development for HCC and has not been approved
by the U.S. FDA. In the preclinical trial phase, BLU9931 exhibited potent antitumor activity in mice
with an HCC tumor xenograft with amplified FGF19 and high expression of FGF19 at the mRNA level.
Recently, it has been reported that FGF19 shows resistance to sorafenib, but BLU9931 is involved in
improving sorafenib efficacy by inactivating FGFR4 signaling [68].

Apart from the drugs reported in different clinical trials, different studies are underway to find
new potent inhibitors against FGF19/FGFR. For instance, Cheuk et al. developed a chimeric antibody
3A11ScFvFc (mice antibody Fv + Human IgG1Fc) to specifically target FGFR4 in HCC [69]. Chen et al.
found ABSK-011 to be involved in suppressing high FGFR4 expression, which ultimately results in
HCC tumor suppression. ABSK-011, acting as irreversible inhibitor, selectively modifies cys552, which
is the residue present within the active site of FGFR4. Of note, safety studies have also been conducted
for this inhibitor [70]. Lee et al. examined the effect of the HM81422 inhibitor on the FGFR4–FGFR19
pathway. They successfully demonstrated that HM81422 can potentially target FGFR4 activated
pathways. However, further elucidation is still required to understand the role of this inhibitor in
HCC [71]. Furthermore, different pharmacological approaches suggested significant involvement of
the drug sorafenib in inhibiting tyrosine kinase pathways. Initially, Gao et al. reported sorafenib
as potential tyrosine kinase inhibitor which improves overall survival rate in HCC patients [68].
Later, Matsuki et al. revealed that sorafenib has no particular effect on the oncogenic FGF signaling
pathway. However, the involvement of the drug lenvatinib was also recently reported [68]. Lenvatinib
reportedly inhibits FGF pathways in HCC cell lines. Of note, studies suggested that it can be used
as a pan-FGFR (1–4) inhibitor [68]. However, the specificity of lenvatinib against the FGF19–FGFR4
signaling pathway still remains unclear [72].

4. Discussion and Conclusions

Compelling evidence supports the involvement of the FGF19–FGFR4 signaling pathway in
HCC [43]. Therefore, this pathway is considered to be a promising therapeutic target for the treatment
of HCC. Interestingly, a number of different inhibitors and drugs have been reported to target FGF
and FGFR signaling pathways. Despite promising advancements, it is still challenging to completely
address all the underlying perspectives of this pathway. These perspectives, if clearly addressed, can
improve the efficacy and potency of drugs available for HCC. The detailed analysis of available data
revealed that FGFR4 is structurally distinct from other FGF receptors (1–3) and also exhibits variable
inhibition potency towards different available FGFR drugs [73]. Perhaps, this distinct characteristic of
FGFR4 should be exploited in depth to develop FGFR4-specific inhibitors to improve drug efficacy for
HCC. Importantly, the evidence derived from primates suggests that anti-FGF19 antibody treatment is
mostly accompanied with dose-related liver toxicity [74]. Therefore, the likelihood of adverse effects of
FGF/FGFR drugs should be properly envisaged to assure best possible and safe outcomes along with
reduced dose-dependent side effects.
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In addition, the correlation of FGF19 gene amplification and HCC is reported to be highly
significant, and it is consequently thought to act as potential biomarker for HCC [75]. Therefore,
copy number gain of FGF19 and FGFR4 should be taken into consideration when designing potential
inhibitors of these genes and their pathways.

Conceptually, it is shown that the patients having elevated bile acid concentrations and diabetes
have a higher risk of developing HCC [44,53]. Therefore, these complications should be taken into
account along with the inhibition of FGF19–FGFR4 pathways to avoid potential adverse impacts and
minimize safety risks in HCC patients.

Overall, the degree of FGF–FGFR inhibition in HCC is not satisfactory. This perhaps gives
an indication towards elucidating other factors that are simultaneously involved in the FGF–FGFR
signaling pathway. For instance, KLB (the co-receptor of FGFR4) is reportedly considered as a novel
drug candidate as it is mostly found involved in inducing FGFR4 overexpression and is also found in
an elevated state in HCC [46,76]. Thus, in the future klotho-specific inhibitors can be considered to
potentially maximize antitumor and therapeutic benefits in HCC by terminating FGF19-binding to
FGFR4. Lastly, developing drugs that act on key SNPs of FGFR4 i.e., Gly388 to Arg388, may also be
clinically relevant.

In conclusion, most of the FGFR4-specific inhibitors are in pre-clinical phases. Progression of
these potential inhibitors to advance clinical trial phases coupled with comprehensive research and
improvements can revolutionize the available therapeutic options for HCC.
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