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Abstract: Gastric cancer (GC) is one of the most wide-spread malignancies in the world. The oncogenic
role of signaling of fibroblast growing factors (FGFs) and their receptors (FGFRs) in gastric
tumorigenesis has been gradually elucidated by recent studies. The expression pattern and clinical
correlations of FGF and FGFR family members have been comprehensively delineated. Among
them, FGF18 and FGFR2 demonstrate the most prominent driving role in gastric tumorigenesis
with gene amplification or somatic mutations and serve as prognostic biomarkers. FGF-FGFR
promotes tumor progression by crosstalking with multiple oncogenic pathways and this provides
a rational therapeutic strategy by co-targeting the crosstalks to achieve synergistic effects. In this
review, we comprehensively summarize the pathogenic mechanisms of FGF-FGFR signaling in
gastric adenocarcinoma together with the current targeted strategies in aberrant FGF-FGFR activated
GC cases.
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1. Introduction

Gastric cancer (GC), the third leading cause of cancer death globally, is considered a heterogeneous
disease. Although the prevalence has declined over the past decades, more than half of newly
diagnosed cases are found to possess local advancement or metastasis [1,2]. Late diagnosis and
lack of effective therapeutics still make GC a challenge globally. For decades, researchers have been
dedicated to uncover the mysteries behind GC, not only the medication strategies to alleviate or cure
the disease, but the key factors for detecting the challenging disease at its early stage. It has been
proven that environmental, etiological, and genetic factors largely contribute to GC development, for
example, high salt diets, H. pylori infections [3], and CDH1 mutations [4,5]. Systematically, in-depth
and comprehensive mechanistic studies revealed the crosstalk of oncogenic signaling pathways during
GC progression as well as pre-cancerous gastric lesion development [6–9]. Of note, inactivation of the
Hippo pathway has been substantially demonstrated in the pathogenesis of GC, via the accumulation
of nuclear YAP1 in an uncontrollable manner [10–12]. Moreover, recent studies have further uncovered
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the emerging roles of fibroblast growing factors (FGFs) and their receptors (FGFRs) in the carcinogenesis
of some GC subtypes, owing to their molecular characteristics [13]. It has been well documented that
the FGF and FGFR families are important regulators for biological development [14,15]. Aberration of
FGF-FGFR signaling substantially results in skeletal disorders as well as cancer development, including
GC [16]. Since genetic aberrations of FGFR2 have been recently defined, it serves as a diagnostic
marker and clinical drug target for GC [17–19]. However, development of FGFR2-targeted therapy has
been largely decelerated due to recently reported disadvantages. Thus, further investigation of the
FGF-FGFR must be continued in order to identify drug targets for GC therapy. This review aims to
summarize the updated discoveries and discuss the further prospects of FGF-FGFR signaling in GC
pathogenesis and therapy development.

2. Emerging Role of FGF-FGFR in Solid Tumors

2.1. FGF Family Induces Tumor Growth

FGFRs belong to the receptor tyrosine kinases (RTKs) superfamily. Most of the RTKs are membrane
receptors with high affinity to multiple growth factors, cytokines, and hormones, and they contain
intracellular domains with tyrosine kinase activity. Canonically, FGFRs are monomers in their
inactivation state. Dimerization of the intracellular part occurs after binding with their ligand FGFs.
Functional binding of FGF and FGFR leads to cross-phosphorylation and activation of the receptor.
Activated FGFRs then transduce biochemical signals into cytosolic activities [20]. Indeed, the FGF
family comprises 22 secreted factors that are generally divided into seven subgroups in terms of their
phylogenetic relation, homology, and biochemical function [21]. As reported, five FGF subfamilies are
released in paracrine and autocrine manners, including FGF1 (FGF1, FGF2), FGF4 (FGF4, FGF5, FGF6),
FGF7 (FGF3, FGF7, FGF10, FGF22), FGF8 (FGF8, FGF17, FGF18), and FGF9 (FGF9, FGF16, FGF20).
In contrast, the FGF15 (FGF15, FGF19, FGF21, FGF23) subfamily is secreted through endocrine glands
as a hormone for metabolic modulation with α- and β-Klotho family proteins. Nevertheless, there
are intracellular FGFs (FGF11, FGF12, FGF13, FGF14) that lack secretory N-terminal peptides, which
execute their functions independent of FGFRs [22].

FGFs not only show regulatory roles in cell fate and survival, but also exerts biological
functions in tissue regeneration and repair [23,24]. In the last few decades, clinical reports have
highlighted the importance of FGFs in tumorigenesis, including excessive cell growth and angiogenesis.
For example, basic fibroblast growth factor (bFGF) promotes angiogenesis for hepatoma progression [25],
and a follow-up study suggested serum bFGF as a biological indicator for invasive and recurrent
hepatocellular carcinoma (HCC) [26]. The clinical significance of bFGF was first recognized in patients
who received surgical removal of colorectal cancer (CRC) at serological and pathological levels,
where expression of bFGF indicated the independency in lymphatic invasion [27]. In addition, FGF
amplification rated 10% in human malignancies, as overproduction of FGFs enables the communication
between epithelial cells and stromal cells in the tumor microenvironment for tumorigenesis [28,29].

2.2. FGFR Family Drives Oncogenesis

2.2.1. Functional Structures of FGFR

Interestingly, FGF ligands interact with only four FGFRs (FGFR1–4), which are highly conserved
in mammals, although FGFs harbor many family members. In general, FGFRs can be classified into
three major domains based on their location relative to the cell membrane: (1) a ternary extracellular
immunoglobulin (Ig) (domain I, II, III) that is in charge of binding with ligands; (2) a signal-pass
transmembrane helix that acts as a connection; and (3) an intracellular tyrosine kinase (TK) that conveys
the signals [30,31]. Generally speaking, the extracellular part of the FGFR provides binding sites
for ligand binding, while the intracellular part is responsible for potentiating the relevant signaling
pathways. Between the extracellular domains I and II, there is an acidic box region for the FGFR to
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interact with some molecules other than FGFs, while domains II and III possess the heparin binding site
and FGF binding site [32]. The Ig domain III in FGFR1-3 has alternative splicing sites. The domain IIIa
remains invariant while the other half varies according to the encoded exon IIIb or IIIc, which are based
on tissue-dependent expression [33,34]. This means that the FGFRs only differ between certain parts of
the Ig that governs the affinity and specificity of their ligands. There is a single-pass transmembrane
domain connecting the Ig domains and the intracellular FGFR domains. The intracellular part of the
FGFR includes a juxtamembrane domain for phosphotyrosine binding of adaptors, and two tyrosine
kinase (TK) domains. As soon as the TK domains are phosphorylated, the downstream cascades
are activated to further expand the signal [35]. Special FGFRs devoid of TK activity, namely FGFR5
or FGFRL1, have been identified and proposed as decoys, interfering with downstream signaling
pathways [36]. Due to the diversity of receptor structure and transcript sequence, there are a number of
FGFR variants that have been identified. For example, the FGFR2 IIIb isoform has high binding affinity
to FGF3, FGF7, and FGF10, while its IIIc form is much preferable to FGF2, FGF4, and FGF20 [20,29].
Further investigation may lead to the discovery of a potential FGFR variant for GC management.

2.2.2. Mechanisms of FGFR in Driving Cancer

Recently, the oncogenic roles of FGFRs have been extensively demonstrated, and somatic alterations
and differential expression patterns of FGFR have been seen in different human cancers. Helsten et al.
recently depicted a landscape of FGFR aberrations from a large-cohort high-throughput sequencing of
cancer patients. In total, FGFR aberrations were detected in 7.1% of the malignancies, including gene
amplification (66%), mutations (26%), and rearrangements (8%), suggesting the occurrence of FGFR
aberration in most cancer types [37]. Mechanistically, FGFR disorder drives oncogenesis mainly via the
following mechanisms: (1) FGFR gene amplification: It makes up the majority of the genetic alterations
and results in abundant membrane FGFRs, which further augment the activation of its downstream
signaling. Gene amplification is common in FGFR1, followed by FGFR2, but rare in FGFR3 and
FGFR4. (2) Activating mutations: Most of the mutations exist in the extracellular receptor domains and
cause constitutive activation of FGFRs automatically, without the participation of ligands. Activating
mutations are frequently found in FGFR2 and FGFR3. (3) FGFRs fusion protein via chromosomal
translocation: In this mechanism, the final exon at the C-terminus of the FGFR is replaced by another
gene, which results in increasing dimerization and constitutive kinase activity, while ligands are also
not required in this manner. (4) Hyperactivation of FGFRs under FGF overproduction from cancer
and stromal cells: Additionally, the alternative splicing reconstitutes FGFRs from IIIb to IIIc isoforms,
the binding specificity and affinity between FGF and FGFR is altered accordingly. (5) Apart from the
genetic alterations of FGF and FGFR, more and more evidence supports that the differential expression
of their downstream partners also evidently contributes to the oncogenic progression in multiple
cancers [35].

2.3. Partner Proteins Mediate FGF-FGFR Signal Transduction

Signal transduction of FGF-FGFR cannot proceed without the participation of partner proteins.
Cell adhesion molecules (CAMs), other types of RTKs, and G-Protein-Coupled Receptors (GPCRs) have
been found to interact with FGFR family members and regulate a broad range of cell behaviors [38].
Intrinsically, FGFs can be anchored to the extracellular matrix by heparan sulfate proteoglycans
(HPSGs) and thus avoid degradation by proteases. FGFs then bind to certain cell-surface FGFRs to
form a ternary complex FGF-FGFR-HPSG [39,40]. Otherwise, a deficiency of HPSG results in the
enhanced FGF ligand diffusion and failure of the FGF-FGFR signal transduction, which imposes a
restriction on cell polarity and motility [41]. As the complex is formed, intracellular tyrosine kinases of
FGFR dimerize and cross-phosphorylate on their tyrosine residues at the activation chain. The main
intracellular substrates of FGFR are known as phospholipase C (PLCγ) (FRS1), FGFR substrate 2
(FRS2α), and FGFR substrate 3 (FRS2β) [42,43]. These proteins function as adaptors and are directly
phosphorylated by the activating FGFRs [44,45]. FRS2 is a lipid-anchored protein and is located on the
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juxtamembrane domain to recruit signaling components toward the receptor in response to stimulation
by ligands [46]. The functional domain of the FRS2 recruits growth factor receptor-bound 2 (GRB2) by
four main phosphorylation sites (Tyr196, Tyr306, Tyr349, Tyr392) [47]. GRB2 then enrolls either the
guanine nucleotide exchange factor son of sevenless (SOS) or the GRB2-associated binding protein
1 (GAB1) [42]. These proteins form a scaffold for initiating downstream signaling and compose a
significant part for signal transduction of the FGF-FGFR signaling. It is noted that some negative
regulators exist on the cell surface to counteract the effect of FGFR. One such family is called similar
expression to FGF (SEF), members of this family interact with the intracellular domain of FGFRs and
inhibit downstream responses. In tumors, the expression of SEF is significantly decreased [48,49].

2.4. Signaling Pathways Respond to FGF-FGFR Activation

Upon the recruitment and activation of the FGF-FGFR complex, extracellular signals are turned into
intracellular events. Cytosolic signaling pathways aroused by the FGF-FGFR complex are recognized as
downstream of FGF-FGFR. It has been well-defined that the Ras-dependent mitogen-activated protein
kinase (RAS-MAPK), Ras-independent phosphoinositide 3-kinase (PI3K-Akt), PLCγ-Ca2+-PKC, and
Janus kinase-signal transducers and activators of transcription (JAK-STAT) act as canonical downstream
signaling pathways of FGF-FGFR [50–53]. On one hand, phosphorylation of FRS2 and GRB2 further
initiates the RAS-MAPK and PI3K-AKT signaling pathways by recruiting SOS and GAB1 to the protein
complex, respectively. RAS phosphorylates a series of MAPKs such as extracellular signal-regulated
kinase 1 (ERK1) and ERK2, which potentiate E26 transformation-specific (ETS) transcription factors to
interact and regulate their target genes related to cell proliferation, survival, and transformation [50,54].
As a feedback, inhibitory factors can also be induced by FGF signals. Sprouty (SPRY) interrupts the
activation of GRB2, and MAPK phosphatase 3 (MKP3) dephosphorylates ERK1/2 [15]. The PI3K-AKT
signaling pathway works differently. After FGF stimulation, GRB2 phosphorylates PI3K-AKT and
then inhibits nuclear localization of a pro-apoptotic effector, promoting expression of genes associating
with cell survival [55]. In contrast, inhibiting FGFR impairs the function of this pathway and leads
to retardation of tumor growth and metastasis [51]. On the other hand, phosphorylation of PLCγ

by the FGFR kinase domain hydrolyzes phosphatidylinositol 4,5-bisphosphate to produce inositol
triphosphate (IP3) and diacylglycerol (DAG), which support intracellular calcium release and activate
protein kinase C (PKC), respectively [56]. Moreover, it has been suggested that amplification of FGFR
is required for the signal transducers and activators of transcription-3 (STAT3) activation in cancers.
The interaction of FGFR and STAT3 depends on the involvement of JAK [57]. It should be noted that
FGF-FGFR signaling cascades also cooperate with other signaling pathways, including Notch [58],
Wnt [59], Hedgehog [60], and BMP signaling [61]. Fine-tuning of the cascades ensures homeostasis
among normal cells, but their dysfunction may induce multiple diseases and even cancers.

3. Deregulation of the FGF-FGFR Signaling in Gastric Carcinogenesis

3.1. Significance of FGFR2 in Gastric Tissues

FGF-FGFR signaling exerts multiple biological functions and effects. FGFR2 isoforms IIIb and
IIIc are predominantly expressed in the epithelial and mesenchymal tissues [62–64]. Along with the
understanding of FGFR2, their FGF ligands have been gradually identified. Structurally, FGFR2-IIIb
bonds to FGF1, FGF3, FGF7, FGF10, and FGF22 in epithelial tissues; while FGFR2-IIIc responds
to a number of FGFs (i.e., FGF1, FGF2, FGF4, FGF5, FGF6, FGF8, FGF9, FGF16, FGF17, FGF18,
FGF19, and FGF20) in mesenchymal cells [65,66]. Interestingly, different FGFs will result in various
downstream effects via FGFR activation. In gastric tissue, FGFR2 is involved in early epithelial
growth before differentiation, and FGF10 and FGFR2-IIIb promote proliferation and patterning of the
forestomach. In contrast, silence of both FGF10 and FGFR2 severely induces abnormal lining of gastric
epithelium [67].
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3.2. Aberrant FGF-FGFRs Advance Gastric Tumorigenesis

FGFR2 not only has physiological roles in normal gastric tissue, but also contributes to the
development and progression of GC. Indeed, FGFR2 amplification was detected in GC cells three
decades ago [68,69]. The understanding of FGFR2 is extensive, especially in terms of its abnormal
genetic alterations that are rare in other FGFR members. FGFR amplification is the main genetic
alteration in GC, accounting for up to 9% in western populations and 1.2–4.9% in Asian cohorts [13,70].
Nevertheless, mutation and fusion genes are rare in GC patients. From tissue-based studies, incidence
of FGFR2 amplification is equivalent to that of ERBB2 and KRAS, ranging from 2% to 9% according
to different methodologies and geographies. Clinical data also manifest that the frequency of FGFR2
amplification basically contributes to diffuse-type GC [71–74]. In addition, amplification of FGFR2
in GC is mutually exclusive with HER2 and KRAS amplification by FISH assay [18,75], suggesting
they are independent prognostic biomarkers. Gene amplification is a common cause for mRNA
overexpression. In fact, a recent in situ analysis showed that FGFR2 mRNA is highly correlated with
FGFR2 amplification in primary cases clinically, where a high expression level of FGFR2 is associated
with poor survival rate of GC patients [76]. Recently, FGFR2 overexpression has been detected in
a great portion of GC cases by immunohistochemistry staining, the high level FGFR2-IIIb isoform
predicts poor overall survival in patients [19]. A retrospective study revealed that FGFR2 expression
was negatively associated with relapse-free survival in a Japanese diffuse-type GC cohort. In that
study, although association between FGFR2 expression and survival outcomes in patients with stage
II/III GC after surgery and S-1 chemotherapy was insignificant, patients with recurrence after five
years of treatment made up a relatively large proportion of the high FGFR2 levels, implying the FGFR2
overexpression may be relevant to GC development [77]. FGFR2 may also contribute to drug resistance
of GC. A GC model with FGFR2 amplification was sensitive to a FGFR inhibitor AZD4547. However,
another study questions the efficacy and safety of AZD4547 in GC patients since their progression-free
survival rate did not significantly improve with AZD4547 monotherapy compared with paclitaxel,
which may due to the intratumor heterogeneity of the FGFR2 copy-number aberration [78]. Based
on these studies, aberrant FGFR2 is largely involved in gastric tumorigenesis and is a candidate to
be a diagnostic marker and has the potential to be a therapeutic target for GC treatment. However,
challenges will exist until the complexity of the FGFR2 signaling network is resolved.

Autocrine and paracrine FGFs constitute an important functional role in the FGFR2 signaling
cascade. In the last two decades, FGF ligands have been reported in multiple cancers, but only a
few FGFs were investigated in GC. For example, gastric fibroblast-derived FGF7 increases scirrhous
GC cell proliferation in a paracrine manner. Although intrinsic levels of FGF7 are low in GC cells,
its corresponding receptor FGFR2 is highly expressed. Subsequently, FGF7 was reported to interact
with FGFR2 to promote cell migration and invasion in GC [79,80]. On the other hand, a study
found that FGF9 triggers proliferation and inhibits apoptosis of GC cells in an autocrine manner
in a Chinese GC cohort [81]. At the genetic level, amplification of FGF genes may lead to their
overproduction in GC, specifically, FGF10 amplification has been reported in 3% of GC and in 5.7% of
gastric adenocarcinomas [82,83]. FGF10 is correlated to GC cell invasion and has been suggested as a
prognostic biomarker and potential drug target in gastric adenocarcinoma [84]. In our recent study, we
explored the FGF mRNA profiling in 10 GC cell lines by microarray analysis, where FGF18 showed
the highest expression among all the FGF members. This study also identified clinical correlation
of FGF18 and highlighted FGF18 as a potent diagnostic indicator in GC. Upon FGF18 stimulation,
cell growth is facilitated by activation of SMAD2/3 and suppression of ATM signaling [85]. Nevertheless,
the molecular network of FGF-FGFRs responsible for GC progression remains to be revealed.

3.3. FGFR2 Crosstalk in GC

It is believed that the FGFR2 aberration fundamentally contributes to GC development, but how
FGFR2 coordinates with other regulatory signaling remains unclear. Investigations of FGFR2 and other
oncogenic signaling have been conducted to decipher the comprehensive network.
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The amplification of FGFR2 has been implied to facilitate cell growth in GC through crosstalking
with other RTKs. It is reported that activated epidermal growth factor receptor (EGFR), human
epidermal growth factor receptor 3 (HER3), and MET correlate with drug hyposensitivity of GC cells
with FGFR2 amplification. Interestingly, a combination of an FGFR2 inhibitor and EGFR neutralizing
antibody partially enhanced drug sensitivity of GC in vitro and in vivo, suggesting these RTKs may
cause drug resistance in cancer cells under FGFR2 inhibition. Eventually, a novel mechanism was
identified whereby RTKs can coexpress with FGFR2 and synergistically promote the growth of GC [86].
In contrast, another study reported that HER2, MET, and FGFR2 are mutually exclusive oncogenic
drivers, where a large number of HER2-negative patients were highly sensitive to the MET- and
FGFR2-targeted therapies [87]. However, these contradictory conclusions may be attributable to the
differences of the GC cohorts and the experimental models applied in the studies. One possible reason
is that the former study focused on FGFR2 amplification cases where patients were hyposensitive to
AZD4547, while the later one concerned both gene amplification and overexpression. Nevertheless,
these results examined the potential relationship between FGFR2 and other RTKs, though the underlying
molecular mechanisms are not fully understood. Combined therapy for targeting both FGFR2 and
RTKs may be a new strategy for clinically treating GC.

In addition, several signaling pathways have been highlighted as downstream of FGFR2 that may
also be involved in GC development (Figure 1). Lau et al. revealed a survival mechanism for developing
acquired-resistance under FGFR inhibition. They established drug resistance on both primary and
patient derived xenograft (PDX) models of various GCs with different FGFR2 amplification levels by
applying FGFR2 inhibitors. Interestingly, they observed that MAPK and AKT signaling pathways
were dispensable for drug resistance, but the constitutive inhibition of GSK3β, which depends on
activation of PKC, was required for cell survival [88]. Therefore, the FGFR2-PKC-GSK3β axis is
considered as the main mechanism causing resistance in GC during anti-FGFR2 therapy. Additionally,
PI3K-Akt-mTOR signaling contributes to the oncogenic activity of FGFR signaling in GC. Huang et al.
recently suggested that FGFR2 signaling promotes GC by regulating the expression of Thrombospondin
1 (THBS1) and THBS4 via the PI3K-Akt-mTOR pathway. They indicated that FGF7-FGFR2 signaling
upregulates THBS1, while THBS4 is decreased by the FGFR2-Akt cascade [80,89]. These studies
established that PI3K-Akt signaling partially contributes to the tumor-promoting function of FGFR2
in GC, although the contribution of the THBS family to GC is still not fully understood. Therefore,
further studies are required to reveal the detailed mechanisms. Moreover, epithelial mesenchymal
transition (EMT) is a well-known mechanism that facilitates tumor cell transformation and distant
metastasis during oncogenic progression. FGF-FGFR signaling has been shown to potentiate EMT [20].
The basic components of EMT, WNT signaling, and Twist-related protein 1 (Twist1) have been found
to upregulate FGFR2 in GC cell lines. In turn, FGFR2 further amplifies Twist1 mediated EMT and cell
invasion, implying dual inhibition of these pathways is needed for GC therapy [90]. Of note, under the
FGFR2 signaling cascade, nuclear accumulation of β-catenin and EMT transcription factors, such as
SNAIL, have also been proposed [91].

Current findings have uncovered the complicated interactions between FGFR2 signaling and
other RTKs and oncogenic signaling pathways in GC. These signaling networks trigger primary
and secondary resistance of GC cells under treatment and eventually lead to the advanced stage of
disease. Fortunately, a better understanding of the FGFR signaling network will gradually help in the
development of novel therapeutic options for GC.
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processes. The intracellular region of the FGFR has tyrosine kinase (TK) activity. FGF stimulation 
leads to dimerization, phosphorylation, and activation of FGFR. The inhibitory effect of SEF is 
attenuated in GC cells. Secondly, after FGFR activation, adaptor proteins are recruited and also 
activated by phosphorylation. FRS2 further recruits GRB2, GAB1, and SOS to form a complex. The 
complex activates RAS-MAPK and PI3K-Akt-mTOR signaling pathways and transduces FGF 
stimulation into transcriptional regulation to forward tumorigenesis. The inhibitory effects of SPRY 
and MKP3 are abrogated in GC cells. PLCγ hydrolyzes PIP2 to IP3, increases Ca2+ levels, triggers 
DAG-PKC signaling, and phosphorylates GSK3β. Then, GSK3β is decreased and β-catenin is released 
to the nuclei. β-catenin and other EMT transcription factors, SNAIL and TWIST, initiate expression of 
oncogenes that are required for GC progression. Besides, JAK-STAT3 is activated by FGFR and 
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Figure 1. The FGF-FGFR cascade interplays with the downstream signaling network in GC progression.
Firstly, FGFR is aberrantly activated in GC cells. FGFs can be released mainly in two ways, in a paracrine
manner by gastric fibroblasts, and in an autocrine manner from cancer cells. Gene amplification of
FGFs and FGFRs leads to overproduction of FGFs and FGFRs. FGFs are stabilized and bind to FGFR via
HSPG. Alternative splicing of FGFR induces two isoforms that highly are expressed in GC. The isoforms
show different affinity to FGFs and contribute to diverse cellular processes. The intracellular region of
the FGFR has tyrosine kinase (TK) activity. FGF stimulation leads to dimerization, phosphorylation, and
activation of FGFR. The inhibitory effect of SEF is attenuated in GC cells. Secondly, after FGFR activation,
adaptor proteins are recruited and also activated by phosphorylation. FRS2 further recruits GRB2,
GAB1, and SOS to form a complex. The complex activates RAS-MAPK and PI3K-Akt-mTOR signaling
pathways and transduces FGF stimulation into transcriptional regulation to forward tumorigenesis.
The inhibitory effects of SPRY and MKP3 are abrogated in GC cells. PLCγ hydrolyzes PIP2 to IP3,
increases Ca2+ levels, triggers DAG-PKC signaling, and phosphorylates GSK3β. Then, GSK3β is
decreased and β-catenin is released to the nuclei. β-catenin and other EMT transcription factors, SNAIL
and TWIST, initiate expression of oncogenes that are required for GC progression. Besides, JAK-STAT3
is activated by FGFR and contributes to transcriptional regulation of GC progression. (Arrows represent
the activation or release routes; dash dots indicate the weakening of inhibitory effects).

4. Targeting Aberrant FGF-FGFR Activation in GC by Specific Antibodies or Small Molecules

As the FGF-FGFR singling plays an oncogenic role in tumorigenesis by crosstalking with or
regulating multiple crucial other pathways, targeting of FGF-FGFR by specifically designed therapeutic
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agents has shed light on the precision of medicine [92]. These agents include specific anti-FGFR
monoclonal antibodies, FGF traps [93], non-selective RTK inhibitors, and selective RTK inhibitors.

4.1. Specific Antibodies and FGF Traps

In the aberrant FGF-FGFR-activation GC cases, anti-FGF (FGF traps) or anti-FGFR monoclonal
antibodies might exert anti-cancer effects for the treatment (Table 1). Compared with tyrosine kinase
inhibitors, the specific antibodies targeting FGFs or FGFRs have more specificity and less toxicity
because they can avoid the off-target effects.

Table 1. A list of anti-FGFR monoclonal antibodies and FGF traps potentially employed in GC.

Monoclonal Antibodies Targets References

GAL-FR21 and GAL-FR22 FGFR2 [94]
FPA144 (Bemarituzumab) FGFR2 amplification or overexpression [98]

BAY 1179470 FGFR2 amplification or overexpression [95]

FGF traps

GSK3052230 FGFs [93,96]
NSC12 FGFs [97]

The specific monoclonal antibodies generated and effectively employed for targeting FGFRs in GC
research are quite limited [22]. They include GAL-FR21 and GAL-FR22 antibodies. GAL-FR21 binds
only the FGFR2IIIb isoform, whereas GAL-FR22 and GAL-FR23 can directly bind to both the FGFR2IIIb
and FGFR2IIIc isoforms, with binding regions respectively in the D3, D2-D3, and D1 domains of FGFR2.
GAL-FR21 and GAL-FR22 block the binding of FGF2, FGF7, and FGF10 to FGFR2IIIb. GAL-FR21
inhibits FGF2- and FGF7-induced phosphorylation of FGFR2, and both antibodies dramatically
down-modulate the activation of FGFR2 in SNU16 cells (with FGFR2 amplification). These monoclonal
antibodies also effectively inhibit the tumor growth of established SNU16 and OCUM-2M xenografts
in mice [94]. Another FGFR2b-specific antibody, FPA144, can not only treat GC patients with FGFR2
amplification, but also patients with FGFR2b overexpression who lack FGFR2 gene amplification.
FPA144 is still being evaluated in a phase III clinical trial of GC. Another novel antibody-drug
conjugate (ADC), namely BAY 1179470, provides preclinical efficacy. It consists of a fully human FGFR2
monoclonal antibody, which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated
through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug
auristatin (FGFR2-ADC). Functional studies demonstrated that FGFR2-ADC administration leads
to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived
xenograft models of human gastric or breast cancer. Similar to FPA144, FGFR2 amplification or mRNA
overexpression predicted high response to BAY 1179470 treatment [95].

As some FGF members, such as FGF18, are abundant in gastric carcinogenesis, using FGF ligand
traps is another strategy to neutralize FGF and quench malignancies [85]. An FGF “ligand trap” is
comprised of a fusion protein of an immunoglobulin Fc fragment and a soluble FGFR extracellular
domain that competitively binds with FGF1, 2, 3, 7, and 10 to suppress ligand-dependent FGFR
signaling [93]. For example, the FGF traps FP-1039 (GSK3052230) and sFGFR3 are soluble proteins that
contain the extracellular regions of FGFR1 and FGFR3, respectively [96], thus they can successfully
neutralize the oncogenic role of FGFs. Another good example is NSC12, acting as an extracellular FGF
trap. It can be employed in anti-angiogenic and anti-vascular endothelial growth factor therapy as an
FGF antagonist [97].

4.2. Small Molecules: Non-Selective and Selective FGFR Inhibitors

Apart from the antibodies or traps, small molecules can also generally and effectively inhibit
tyrosine kinase receptor-related signaling (non-selective FGFR inhibitors). SOMCL-085 is a novel
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FGFR-dominant multi-target kinase inhibitor. This compound can simultaneously inhibit the
angiogenesis kinases such as vascular endothelial growth factor receptor (VEGFR) and platelet-derived
growth factor receptor (PDGFR). SOMCL-085 potently inhibits FGFR1, FGFR2, and FGFR3 kinase
activity, with IC50 values of 1.8, 1.9, and 6.9 nmol/L, respectively [99]. In the FGFR1-amplified lung
cancer cell line H1581-xenograft mice and FGFR2-amplified GC cell line SNU16-xenograft mice,
oral administration of SOMCL-085 for 21 days substantially inhibited tumor growth without loss of
body weight. Nintedanib, a triple-angiokinase inhibitor, is a potent and selective inhibitor for tumor
angiogenesis through the blocking of the tyrosine kinase activities of VEGFR1-3, PDGFR-alpha and
-beta, together with FGFR1-3 [100]. In combination with docetaxel, nintedanib has been approved for
the second-line treatment of adenocarcinoma non-small cell lung cancer (NSCLC). In human GC cell
lines driven by an FGFR2 amplification, such as KatoIII, nintedanib is also confirmed to be highly
effective. Regorafenib has also demonstrated survival benefits in patients with metastatic colorectal
and gastrointestinal stromal tumors. More importantly, FGFR2 amplification was the only genetic
alteration associated with in vitro sensitivity to regorafenib. Regorafenib induces G1 phase cell cycle
arrest in SNU16 and KATOIII GC cells and suppresses their xenograft formation abilities [101]. S49076
is a novel and potent inhibitor of MET, AXL/MER, and FGFR1/2/3. S49076 potentially blocks cellular
phosphorylation of MET, AXL, and FGFRs and inhibits downstream signaling pathways in vitro and
in vivo. S49076 alone can cause tumor growth arrest in bevacizumab-resistant cancer cells. Based on
the favorable and novel pharmacologic profile of S49076, a phase I study is currently being conducted in
patients with advanced solid tumors [102]. Ponatinib (AP24534), an oral multitargeted tyrosine kinase
inhibitor, has been explored in a pivotal phase II trial in patients with chronic myelogenous leukemia
due to its potent ability against BCR-ABL. It has also been shown to inhibit the in vitro kinase activity
of all four FGFRs. In a panel of 14 cell lines representing multiple tumor types (endometrial, bladder,
gastric, breast, lung, and colon) and containing FGFRs dysregulated by amplification, overexpression, or
mutation, ponatinib inhibited FGFR-mediated signaling with IC50 values below 40 nmol/L, supporting
it as a potent pan-FGFR inhibitor in patients with FGFR-driven cancers [103].

To avoid the off-target effects of non-selective inhibitors, novel selective FGFR inhibitors were
generated and employed for specifically blocking the FGF-FGFR cascade in GC. Among all the selective
FGFR inhibitors, AZD4547 is the most famous [17]. It is a selective FGFR1, 2, 3 tyrosine kinase inhibitor
with potent preclinical activity in FGFR2-amplified gastric adenocarcinoma SNU16 and SGC083
xenograft animal models, together with the patient-derived cells (PDCs) [104]. The randomized phase
II SHINE study (NCT01457846) investigated whether AZD4547 improved clinical outcome versus
paclitaxel as a second-line treatment in patients with advanced gastric adenocarcinoma displaying
FGFR2 polysomy or gene amplification detected by fluorescence in situ hybridization (FISH). However,
the final results indicated AZD4547 failed to significantly improve progression-free survival compared
with paclitaxel in GC patients with FGFR2 amplification or polysomy [78]. The related molecular
mechanism needs to be further addressed. LY2874455, a potent oral selective pan-FGFR inhibitor, was
investigated for its efficacy in a phase I clinical trial. LY2874455 was gradually absorbed and generally
showed linear pharmacokinetics. The effective half-life span was approximately 12 h. In 15 GC
patients, one patient had a partial response, while 12 patients had stable disease. Thus, LY2874455
has a recommended phase II dosing of 16 mg BID in solid-organ cancer patients [105]. However,
in FGFR2-amplified GC patients, some will eventually develop an acquired LY2874455 resistance
due to a novel FGFR2-ACSL5 fusion protein that is formed [106]. Based on the structure, medicinal
chemistry optimization, and unique ADME assays of a covalent drug discovery program, a novel
compound, namely PRN1371, was discovered to serve as a highly selective and potent FGFR1-4
inhibitor [107]. In combination with the de novo synthesis program ‘SYNOPSIS’ to generate high
scoring and synthetically accessible compounds, alofanib (RPT835) was found to be an effective inhibitor
of the FGF/FGFR2 pathway. RPT835 potently inhibited growth of KATOIII GC cells with a GI50 value
of 10 nmol/L [108]. ARQ 087 is a novel, ATP competitive, small molecule, multi-kinase inhibitor with
potent in vitro and in vivo activity against FGFR-addicted cell lines and tumors. It exhibited IC50
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values of 1.8 nM for FGFR2, and 4.5 nM for FGFR1 and 3. ARQ 087 has anti-proliferative activity
in cell lines driven by FGFR dysregulation, including amplifications, fusions, and mutations, such
as the SNU16 cell line. It is currently being investigated in a phase I/II clinical trial [109]. BGJ398,
a pan-FGFR inhibitor, was also investigated in a GC model. In vitro, FGFR inhibition was most
effective in KKLS cells (high FGFR1, FGFR2IIIc, no FGFR2IIIb expression) with inhibition of growth
and motility. BGJ398 also showed partial activity in MKN45 cells (intermediate FGFR1, high FGFR2IIIb,
low FGFR2IIIc expression), while TMK-1 cells (low FGFR1, no FGFR2IIIb and FGFR2IIIc expression)
showed a negative response to this drug [110]. Some of the non-selective and selective FGFR inhibitors
that have been investigated in gastric adenocarcinoma are listed in Table 2.

Table 2. The list of non-selective and selective FGFR tyrosine kinase inhibitors reported in GC.

Non-Selective FGFR Inhibitors Main Targets References

SOMCL-085 FGFR, VEGFR, and PDGFR [99]
Nintedanib FGFR, VEGFR, and PDGFR [100]
Regorafenib FGFR2, VEGFR1-3, PDGFR, c-Kit, and RET [101]

S49076 MET, AXL/MER, and FGFR1-3 [102]
Ponatinib BCR-ABL, VEGFR2-3, and FGFR1-4 [103]

Selective FGFR inhibitors

AZD4547 FGFR1, FGFR2 and FGFR3 [17,78]
LY2874455 FGFR1, FGFR2, FGFR3 and FGFR4 [105]
PRN1371 FGFR1, FGFR2, FGFR3 and FGFR4 [107]
RPT835 FGFR2 [108]

ARQ 087 FGFR1, FGFR2 and FGFR3 [109]
BGJ398 FGFR1, FGFR2 and FGFR3 [110]

5. Conclusions and Future Directions

Although we have made great progress in understanding the molecular mechanisms and crosstalk
of FGF-FGFR in gastric carcinogenesis, and are even trying to employ small molecules or specific
antibodies to block the oncogenic-driven role of FGF-FGFR signaling, several important issues need
to be addressed urgently in future studies. First of all, GC can be subgrouped into intestinal and
diffuse type from the histological classification, and it can also be stratified as four molecular subtypes
according to TCGA molecular classification, Epstein-Barr virus (EBV)-positive tumors, microsatellite
instable (MSI) tumors, genomically stable (GS) tumors, and tumors with chromosomal instability
(CIN) [13]. Each subtype has its distinct molecular features and the etiology together with pathological
processes are quite different among the subtypes. Thus, we need to re-evaluate the genetic and
epigenetic changes and clinical correlations in a large cohort of FGF-FGFR for each subgroup to
confirm the impact of different genetic backgrounds on FGF-FGFR activation. For example, in a
small size cohort study, high FGFR4 expression correlated with tumor progression and survival
in both diffuse and intestinal GC, whereas high expression of FGFR1 and 2 correlated with tumor
progression and survival only in diffuse type GC [111]. Secondly, as FGF-FGFR crosstalks with
multiple signaling pathways, such as the RAS-MAPK pathway, PI3K-Akt-mTOR pathway [112],
and PKC-GSK3β pathway, we need to stratify our primary samples again according to different
crosstalks by the immunohistochemistry method combined with FISH analysis. We will re-evaluate the
clinical significance and perform co-administration of multiple anti-cancer drugs to achieve synergistic
effects. The successful development of highly specific anti-FGFR personalized strategies will rely
on our deeper knowledge of the key alterations that drive oncogenesis in GC [113]. Based on the
identification of novel key downstream effectors of the FGF-FGFR cascade in gastric carcinogenesis,
we aim to effectively and accurately target FGFR-related signaling in this precision medicine era.
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