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Abstract: Accurate patient-derived models of cancer are needed for profiling the disease and for
testing therapeutics. These models must not only be accurate, but also suitable for high-throughput
screening and analysis. Here we compare two derivative cancer models, microtumors and spheroids,
to the gold standard model of patient-derived orthotopic xenografts (PDX) in glioblastoma multiforme
(GBM). To compare these models, we constructed a custom NanoString panel of 350 genes relevant to
GBM biology. This custom assay includes 16 GBM-specific gene signatures including a novel GBM
subtyping signature. We profiled 11 GBM-PDX with matched orthotopic cells, derived microtumors,
and derived spheroids using the custom NanoString assay. In parallel, these derivative models
underwent drug sensitivity screening. We found that expression of certain genes were dependent
on the cancer model while others were model-independent. These model-independent genes can
be used in profiling tumor-specific biology and in gauging therapeutic response. It remains to be
seen whether or not cancer model-specific genes may be directly or indirectly, through changes to
tumor microenvironment, manipulated to improve the concordance of in vitro derivative models
with in vivo models yielding better prediction of therapeutic response.

Keywords: Glioblastoma multiforme (GBM); patient-derived xenografts (PDX); NanoString;
microtumors; spheroids; heterogeneity; drug screening

1. Introduction

Glioblastoma multiforme (GBM) is the most common form of primary brain cancer with a dismal
median survival of approximately 18 months [1]. The current standard of care for GBM is maximal
safe surgical resection followed by a 6 week course of radiotherapy (typical dose is around 60 Gy)
with concomitant systemic therapy using alkylating agent temozolomide (TMZ) (75 mg/m2 daily),
followed by 6–12 months of adjuvant TMZ (150–200 mg/m2 for 5 days every 28 days) [2]. Over the past
decades, there have been few advancements in the treatment of GBM since the findings of Stupp et
al. [2]. This may be due largely to the dearth of reliable preclinical models which accurately recapitulate
the disease characteristics of GBM in patients. Currently, the best preclinical models of GBM are
patient-derived xenografts (PDX). However, these models are expensive, time consuming, and not
scalable for high-throughput screening of therapeutic compounds [3,4].

Traditionally, in vitro monolayer culture or GBM spheroids including immortalized glioma cells
such as U87, have been used for drug candidate screening [5,6]. More recently, it has been shown that
3D cultures of GBM microtumors grown in a human extra-cellular matrix provide more reliable and
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relevant preclinical models for drug screening [7–9]. Three-dimensional (3D) microtumors are scalable
for high-throughput assays while being a more reliable preclinical model than traditional spheroid
culture by better recapitulating the characteristics of GBM seen in the patient. Microtumors can then
be seen as an intermediate between the high complexity of a GBM-PDX model and a less complex
spheroid model. Manipulations of microtumors to better recapitulate the complexity of the tumor
microenvironment can increase their accuracy as a valid preclinical model [8].

Next-generation sequencing approaches can be used to profile GBM expression. However,
these technologies are resource intensive and can be cost prohibitive. New, high-throughput technologies
are needed for profiling GBM and gauging therapeutic response. Targeted gene expression analysis
using the NanoString nCounter Analysis System from Nanostring Technologies (Seattle, WA, USA)
enables the profiling of hundreds of mRNAs simultaneously with high sensitivity and precision while
providing highly reproducible data over 5 logs of dynamic range [10]. Here we describe the creation of
a custom NanoString assay which characterizes several canonical phenotypes of GBM including a novel
molecular subtyping gene signature. We use this custom assay to profile multiple GBM-PDX lines grown
as spheroids, microtumors, and PDX to evaluate the differences in gene expression among models.
We also use this assay to correlate with the therapeutic response of various agents. We demonstrate
that using this custom 350 gene NanoString assay, we can rapidly profile GBM samples from various
models and use it in conjunction with preclinical screening of novel therapeutics.

2. Materials and Methods

2.1. Patient-Derived Xenografts

De-identified patient samples of primary GBM tissue were collected by the UAB Brain
Tumor Animal Model (BTAM) Core following IRB protocol X050415007. All animal studies
were approved by The University of Alabama at Birmingham Institutional Animal Care and Use
Committee (IACUC−10024). Fresh tumor tissue was disaggregated and implanted in the flank
of immunocompromised athymic nude (nu/nu) mice without intervening culture as previously
described [11]. Tumors that arise are passaged from mouse to mouse without intervening passage
in tissue culture. Tissues are cryopreserved from each passage to permit re-establishment of lower
passage tumors.

2.2. Microtumor and Spheroid Culture

Microtumors were generated by embedding PDX cells into a 3D human biogel (HuBiogel, LifeNet
Health, Virginia Beach, VA, USA) matrix, absent serum, as previously described [11]. Fresh PDX
samples (Glioma PDX models) were procured from the UAB BTAM and tumor fragments (0.6–0.8 cm3)
were subjected to a controlled enzyme digestion protocol (Miltenyi kits, Miltenyi Biotec Inc., Auburn,
CA, USA) to produce a cell suspension. Dissociated tumor cells or spheres were maintained in defined
neuro-basal media (60%–70% viability). In brief, cells (10–20 K/bead) were mixed in cold HuBiogel
(3 mg/mL) and tumor beads (150–200/model) were produced via brief gelation step and cultured at
37 ◦C in multi-well plates.

Spheroid cultures were maintained in NeuroBasal serum-free media made using the following
recipe: 500 mL NeuroBasal medium, 10 mL B-27 supplement without vitamin A, 5 mL Amphotericin
(Fisher cat# MT30-003-CI, Thermo Fisher Scientific, Waltham, MA, USA), 0.5 mL Gentamycin (Fisher
cat# MT-30-005-CR, Thermo Fisher Scientific), 5 mL L-glut (260 mM), 100 µL EGF (10 ng/mL), FGF-β
(10 ng/mL), and 5 mL N2 supplement (Life Tech cat# 1752048, Thermo Fisher Scientific).

2.3. NanoString Custom Assay

PDX cells, microtumors, and spheroids were prepared by the UAB Nanostring Laboratory
following standard protocols for the NanoString assay. RNA was isolated from the samples using the
PureLink RNA Mini Kit (Thermo Fisher, Cat# 12183018A, Thermo Fisher Scientific) then quantified
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using NanoDrop. If concentration was below 20 ng/µL, RNA was concentrated using RNA Clean
& Concentrator-5 (Zymo Research, Cat# R1015, Zymo Research, Irvine, CA, USA). RNA was then
hybridized with the codesets and run on the NanoString Prep station before being run on the NanoString
Analysis station.

The Nanostring system is attractive for preclinical and translational work due to the ease, sensitivity,
reproducibility, and most importantly, customization of the chip. Various molecular signatures of
phenotypic traits including, but not limited to: (a) molecular subtyping; (b) tumor microenvironment;
(c) radiation resistance; and (d) stemness were curated from the literature and from sources in-house
to include in our custom assay. Table 1 lists the 16 signatures included on the pan-GBM custom
NanoString chip and their sources. Table S1 shows a complete listing of the genes for each of these
signatures and the final build for the custom chip. The chip includes 3 gene expression molecular
subtype signatures, 1 novel signature generated by methods described in this publication and 2 taken
from externally published sources [12–14].

To test the gene signatures, GBM PDX samples were analyzed using an Affymetrix Human Exon 1.0
ST Array. The data were normalized using Robust Multichip Average (RMA) normalization performed
using the Bioconductor “affy” package, log2 transformed, and scaled/centered using z-scores [15].
Probes were annotated by gene for the expression data. Duplicate genes mapping to more than one
probe were collapsed into one feature and normalized for each sample by geometric mean. These data
were then combined with array data from The Cancer Genome Atlas (TCGA). A novel protocol to
reduce the dimensionality of the individual signatures while maintaining the predictive power of the
signatures was applied in order to fit all 16 signatures onto a 350 gene chip.

The first step in the reduction was to filter genes with less predictive power from each signature
by applying finite Gaussian mixture modeling to each gene. Each gene was fit to an optimal model
for all samples using the “pdfCluster” function in R [16]. Genes that predicted a single cluster across
all samples were deemed to lack predictive power and removed from the original signature gene
list. A second reduction was then applied to the reduced signature gene list to remove genes which
possessed high homology across all samples. The “caret” R package was used to generate a correlation
matrix and then find all genes with Spearman correlation coefficients above 0.75 [17]. Genes which are
highly correlated are deemed not to contribute significantly to the predictive power of the signature
because they provide redundant information. These genes were removed from the gene filtered
signature list to generate the final gene signature. Before and after reduction, Spearman correlation
matrices and heat-maps were compared for each signature to confirm that the predictive power of the
original signature was preserved in the final gene signature (Figure 1).

Table 1. List of gene signatures and their sources.

Signature Genes in Signature Source(s)

1. Novel Gene Expression Molecular Subtype 100 FastEMC

2. Gene Expression Molecular Subtype 23 Drs. Cameron Brennan and Jason
Huse (Kastenhuber et al., 2014) [12,14]

3. Gene Expression Molecular Subtype 28 Patel et al., 2014 [13]
4. Cell Cycle Progression 4 Patel et al., 2014 [13]
5. Curated Genes of Interest 32 In-house
6. Genes Down-Regulated in Radiation Sensitive vs.
Radiation Resistant 26 Kim, Rha et al., 2012 [18]

7. Genes Up-Regulated in Radiation Sensitive vs.
Radiation Resistant 39 Kim, Rha et al., 2012 [18]

8. Positive Correlation in Radiation Resistance 37 Speers, Zhao et al., 2015 [19]
9. Negative Correlation in Radiation Resistance 37 Speers, Zhao et al., 2015 [19]
10. Radiation Sensitivity EMT Pathway 15 Meng, Fu et al., 2014 [20]
11. Hypoxia 19 Patel et al., 2014 [13]
12. Stemness 21 Patel et al., 2014 [13]
13. IFN/STAT1 Signaling 7 Willey, Gillespie et al. 2012 [21]
14. PanCancer Internal Reference Genes 7 NanoString
15. PTGER2/ptger2 Human/Mouse Reference 2 Alcoser et al., 2011 [22]

16. Other—Curated List 32 Trabelsi et al., 2016; Patel et al., 2014; Olar,
Sulman et al., 2015 [13,23,24]
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2.4. Novel Molecular Subtype Classification: FastEMC

We used a modified Exponential Monte Carlo (EMC) method to perform feature selection for each
canonical molecular subtype (i.e., mesenchymal, neural, proneural, and classical). The standard EMC
algorithm relied on a single objective function, f, that takes as input a set of features and outputs a score
for the features [25]. Monte Carlo importance sampling was performed over features and simulated
annealing was used to produce a feature set that optimizes f. Our modified algorithm called FastEMC
is faster than EMC and offered similar performance (https://code.osu.edu/rowland.208/FastEMC).
FastEMC uses multiple target functions to improve the performance of EMC. The first target function
fast is computationally easy to evaluate but corresponds only roughly with feature performance.
The second target function full is computationally difficult to evaluate but represents the best estimate
of feature performance. FastEMC uses Monte Carlo-simulated annealing with target function f ast to
find important features quickly. The features were periodically checked against target function full to
be added to a list of important features.
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The feature set was initialized to a random selection of 20 of the possible 19,663 probes from the
normalized, scaled GBM PDX data. We used classifier F-score with five-fold cross validation as our
objective function. The classifier was supervised by subtype assignments from the “clanC” R program
on the GBM PDX samples (25). The fast function was trained with 10× fewer training iterations than
full. We relied on early stopping to regularize our classifier. Due to our limited number of samples we
did not reserve an independent validation set to evaluate. With more samples a separate validation
dataset should be used to evaluate full. We compared decision trees, discriminant analysis, logistic
regression, support vector machines, nearest neighbor classifiers, nearest centroid, K-nearest neighbor,
k-medoids, ensemble classifiers, and neural nets. Nearest centroid, logistic regression, and support
vector machines (in that order) tended to perform best, measured by F-score of the final reduced feature
set. We reserved a validation set to test final performance. We used 10,000 outer iterations and 20 inner
iterations. The number of feature sets in the best set list is 40. The mutation during each inner step
included randomly swapping between 1 and 20 (all) of the features. We found γ = 0.03 to be optimal.

The overall classifier F-score can be tested by performing unsupervised prediction of the class
membership of samples for which the actual class is already known. The actual class comes from the
Verhaak et al., 2010 classification method [26]. The classifier’s power in discriminating between the 4
classes can be visualized with a confusion matrix (Figure S1) or by plotting the distance (y) of each
sample (x) from the centroid of each class (Figure S2). Accurate class assignments in the confusion
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matrix are found on the diagonal in Figure S1. In Figure S2, a smaller distance (y-axis) indicates that
the sample likely belongs to that class. The confusion matrix shows that 9 samples were misclassified
out of 118 total samples (92.4% combined accuracy). Figure S2 is representative of one instance of the
iterative classifier construction using our 100 features selected from FastEMC. The individual classifier
accuracies were all in the 80%−90%+ range. Overall, the predictive accuracy combining the classifiers
was ≈ 92.3%. Figure S3 shows a bi-clustered heatmap of 118 GBM PDX samples using hierarchical
clustering of the 100 gene features from FastEMC. Samples of the pre-determined subtypes cluster
together with few exceptions and distinct patterns of gene expression can be seen for each subtype.

As an exercise, we also constructed class-specific classifiers using FastEMC supervised by the
Brennan et al., 2013 published class assignments which includes the Verhaak et al., 2010 classes and
an additional G-CIMP class [26,27]. When tested against a cohort of all GBM samples available
from TCGA, unsupervised predictions from our class-specific classifiers had the following accuracies:
“Classical” 85%, “Proneural” 86%, “Mesenchymal” 73%, “G-CIMP” 96%, “Neural” 86%.

2.5. NanoString Normalization

RNA isolated from GBM PDX, derived microtumors, and spheroids were run on the customized
350 gene pan-GBM chip using the nCounter Analysis System (NanoString Technologies, Seattle, WA,
USA) in the UAB NanoString Core. The normalization of the NanoString data was performed using
nSolver Analysis Software version 4.0 (NanoString Technologies, Seattle, WA, USA). Raw RLF files were
first imported and annotations for PDX_ID and model were added. Next, background subtraction was
performed using the geometric mean of 8 negative control probes. Background subtraction subtracts
estimated background from the raw count. Probes less than background were assigned a value of 1.
Next, a positive control normalization factors were generated using the geometric means of 6 positive
control probes. Finally, a CodeSet Content normalization was performed using the geometric mean
of the following reference probes: CC2D1B, GPATCH3, MRPS5, PIK3R4, and SF3A3. These genes
were selected because of their low level of variance across all samples as determined by their percent
coefficient of variance and from their high Spearman correlation coefficient amongst themselves as
determined from previous Affymetrix data. Normalized data was then exported as a tab delimited file
for further analysis.

2.6. Drug Screening

Microtumors (5–6 per group) and spheroids were tested for anti-tumor activity profiles of 6
selected drugs (Table 2) using EC25 or EC50 treatment doses (0–10 µM range) based on literature [28–32].
Cell proliferation activity of microtumors and spheroids were determined with CellTiter-Glo assay
kit during the optimized 1 to 14 day culture period. Figure 1 shows the graphical outline for the
cultivation of PDX, microtumors, and spheroids and parallel drug screening and NanoString assay.
Drug response was measured at day 7 and day 14 following treatment. Results of drug screening are
in Supplementary File 1.

Table 2. Drugs used in screening of spheroids and microtumors.

Drug Target/Mechanism Concentrations

Axitinib VEGFR tyrosine kinase inhibitor 0, 5, 10 µM
Erlotinib EGFR tyrosine kinase inhibitor 0, 5, 10 µM

Temozolomide Alkylating agent 0, 5, 10 µM
Carboplatin Platinum-based antineoplastic 0, 5, 10 µM
Enzastaurin Protein kinase C beta 0, 5, 10 µM
Vandetanib VEGFR2 tyrosine kinase inhibitor 0, 5, 10 µM
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MicrotumorsSpheroids

Drug Screening

HuBiogelA

NanoString

B

C

Spearman Correlation Spearman Correlation

Analysis in R

Figure 1. Study methods and representation of NanoString signature construction: (A) Graphical
representation of workflow. R analysis includes differential expression, correlation, and clustering
analysis; (B) Spearman correlation of genes in hypoxia signature before (left) and after (right) dimensional
reduction; (C) Heatmap of samples clustered using genes from original 40 gene hypoxia signature
(left) and heatmap of samples clustered using genes from dimensionally reduced 19 gene signature.
Boxes highlight groups of samples with high average expression and low average expression.
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3. Results

3.1. Microtumors and Spheroids

Orthotopic PDX cells from 11 separate lines were cultivated as microtumors and spheroids for
drug screening and comparative analysis. Microtumors grown in HuBiogel and spheroids grown
in NeuroBasal media have distinct spheroid shapes. Calcein AM images of select microtumors are
shown in Figure 2A. Comparison of immunohistochemistry (IHC) and Haemotoxylin and Eosin (H&E)
staining between orthotopic PDX and derivative models show that these derivatives closely resemble
the orthotopic tumor. Derivative models contain stem-like cells as evident by CD133 staining and
actively proliferating cells as evident by Ki67 staining seen in Figure 2B. Gilbert et al. (2018) provides
more details describing spheroids and microtumors [9].

4X

10X

Anti-CD133
Day 7 – 20X
Inset 4X

Anti-Ki67
Day 7 – 20X
Inset 4X H&E, 20X Ki67, 20X

X1066

X1016

B

A
JX12 JX10 XD456

Figure 2. Representative images and staining of derivative microtumors: (A) calcein acetoxymethyl ester
(AM) imaging of microtumors; (B) (left) IHC, anti-CD-133 staining of microtumors, (center-left) IHC,
anti-Ki-67 staining of microtumors, (center-right) H&E staining of matched orthotopic patient-derived
orthotopic xenografts (PDX) tumor, (right) IHC, anti-Ki-67 staining of matched orthotopic PDX tumor.

3.2. NanoString Model Specific and Independent Effects

The custom NanoString panel contains 350 genes relevant to GBM biology. To judge the concordant
expression of these genes between models, the directionality of gene expression in derivative models
was tested for each PDX line. Z-scores were calculated for each gene using average expression across
all samples. The directionality of gene expression between models were then compared pair-wise for
each PDX line (i.e., orthotopic cells vs. microtumors, microtumors vs. spheroids, etc.). If the product of
the pairwise comparison was positive, the genes were said to be concordant between models. If the
product was negative, the genes were discordant between models. Figure 3A shows the model overlap
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of genes from the original 350 gene panel. There were 113 core genes found to be concordant between
all three models and 85 genes showed no overlap between any of the models. The remainder of the
genes showed overlap only in specific models with 25 genes appearing to be spheroid specific.

To evaluate which PDX lines had the greatest concordance between models, pairwise Pearson
correlation coefficients were calculated for each PDX line compared to its derivative models. Both the
entire 350 gene panel and the 113 core genes were used. As can be seen in Table 3, the correlation
coefficients are stronger between models when using the 113 core genes compared to the entire panel.
The 350 Gene Panel and 113 Core Genes sections are sorted in order of increasing Pearson correlation
coefficients for PDX cells to microtumors. Note that the relative rankings of PDX line concordance is
changed from the 350 Gene Panel to the 113 Core Genes. This further suggests that the 113 core genes
are more relevant to tumor specific genes independent of derivative model. Variance filtering of the
113 core genes yielded a 17 gene signature (Figure 3B) which clustered the samples by PDX line of
origin, despite the derivative model. This shows that these genes can be used to differentiate between
different tumors and suggests that the 113 core genes are relevant to tumor specificity, independent of
derivative model. The gaps in Table 3 are for PDX which did not have spheroids generated or tested
on the NanoString assay.

All genes from the 350 gene panel were tested using the Kruskal–Wallis test (gene ~ derivative
model) for variance to assess which genes were correlated with derivative model specificity. A signature
of 24 genes (Figure 3C) were found to be correlated with model across all samples (p ≤ 0.01) and this
signature clusters samples mostly by orthotopic cells versus the other two derivative models. The only
two exceptions were X1465 and X1066, which are the two most concordant PDX lines between PDX
cells and derived microtumors as seen in Table 3. These genes fall in the no-overlap category from
Figure 3A, suggesting that these genes are derivative model specific.

Table 3. Pairwise Pearson correlation coefficients between models.

350 Gene Panel 113 Core Genes

PDX_ID Cells a to Mts b Cells to Sph c Mt to Sph PDX_ID Cells to Mts Cells to Sph Mt to Sph

X1516 0.652 0.649 0.642 X1516 0.884 0.884 0.985
X1154 0.772 0.658 0.847 X1154 0.89 0.816 0.924
X1238 0.796 X1238 0.926
X1046 0.840 X1429 0.934
X1429 0.845 X1524 0.941 0.942 0.962
X1524 0.857 0.874 0.943 X1046 0.954
X1016 0.892 X1016 0.955
X1153 0.908 0.910 0.974 X1153 0.959 0.965 0.987

X1441 0.922 0.938 0.961 X1441 0.965 0.984 0.976
X1052 0.925 0.933 0.965 X1052 0.966 0.962 0.98
X1465 0.949 X1066 0.978
X1066 0.958 X1465 0.984

a Cells from disaggregated PDX; b Mts = microtumors generated from PDX cells; c Sph = spheroids derived from
PDX cells.

3.3. Drug Screening

Drug screening in derivative microtumor and spheroid models was conducted in parallel to
NanoString profiling. Axitinib and Erlotinib response were tested in microtumors and spheroids while
TMZ response was additionally tested in orthotopic PDX. TMZ response was also measured in spheroids,
however, none of the spheroids were sensitive to TMZ treatment therefore differential expression analysis
in spheroid TMZ response was unable to be conducted. Differential expression analysis was performed to
determine genes differentially expressed between drug responders and non-responders (p≤ 0.05 and log2

Fold Change ≥ 2). The results of the differential expression analysis are found in Figure 4. HOXB8 was
found to be over-expressed in Axitinib responding microtumors while being under-expressed in both
Erlotinib responding microtumors and spheroids. These results suggest opposing roles for HOXB8 in
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Axitinib and Erlotinib response, and that HOXB8 downregulation is important in Erlotinib response
independent of model. MGMT and AQP4 were downregulated in Axitinib responding microtumors and
spheroids, respectively, but upregulated in Erlotinib responding microtumors. This suggests opposing
roles for MGMT and AQP4 in Axitinib and Erlotinib response. PDGFRA was overexpressed in Axitinib
responding microtumors while being downregulated in Erlotinib responding spheroids and in TMZ
responding orthotopic PDX. These results suggest opposing roles for PDGFRA in Axitinib response
versus TMZ and Erlotinib response. PDGFRB is over-expressed in TMZ response in both microtumors
and orthotopic PDX. These results suggest the PDGFRB overexpression is relevant to TMZ response
regardless of model. In PDX cells, PDGFRA is downregulated in TMZ response while PDGFRB is
upregulated. These results suggest that the expression of PDGFRB favors sensitivity to TMZ while
expression of PDGFRA contributes to TMZ resistance.

Model

PDX ID

97

8516

14

11325

Key
235

152

129

85

Mt and Sph

Cells and Sph

Cells and Mt

No Overlap

Spheroid 
Specific

Common to all 
3 models

No 
Overlap

Nanostring 350 Genes by Model Overlap

Key:
Cells
Microtumors
Spheroids

Model

PDX ID

X1052
X1524
X1441
X1016
X1046
X1238

X1465
X1153
X1516
X1429
X1154
X1066

Key:
Cells
Microtumors
Spheroids

X1052
X1524
X1441
X1016
X1046
X1238

X1465
X1153
X1516
X1429
X1154
X1066

A

B

C

Figure 3. Model specific and independent effects: (A) Overlap of 350 NanoString genes between three
different patient-derived models; (B) Heatmap of 17 genes derived from the core set of 113 genes which
cluster samples by tumor of origin; and (C) Set of 24 genes found to be associated with tumor model
(Kruskal–Wallis p ≤ 0.01) which cluster samples based on tumor model.
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Figure 4. Drug screening differential expression results for Axitinib, Erlotinib, and Temozolomide: (A)
Differential expression of genes related to Axitinib response in microtumors; (B) Differential expression
of genes related to Axitinib response in spheroids (n = 6); (C) Differential expression of genes related to
Erlotinib response in microtumors (n = 12); (D) Differential expression of genes related to Erlotinib
response in spheroids (n = 6); (E) Differential expression of genes related to Temozolomide response
in microtumors (n = 12); (F) Differential expression of genes related to Temozolomide response in
orthotopic PDX cells (n = 10). Significance of red labeled genes determined by: p ≤ 0.05 and −2 ≥ log2

Fold Change ≥ 2.

3.4. Temozolomide Concordance

Drug screening with TMZ was performed in vitro with microtumors and spheroids and in
orthotopic PDX. In some of the PDX lines, derivative model TMZ response was concordant with
in vivo TMZ sensitivity while it was not in others. Of the four most concordant PDX models from
Table 3, X1465 and X1066 derivatives were concordant with TMZ response in vivo while X1441 and
X1052 were not. The Kruskal–Wallis test (gene~TMZ response) for variance was used to assess which
genes were associated with TMZ response in these four lines. A total of 38 genes (Table S2) were
found to be significantly associated with TMZ response (p ≤ 0.05). Differential expression analysis
was performed comparing TMZ response concordant and discordant PDX lines (p ≤ 0.05 and log2

Fold Change ≥ 2) shown in Figure 5. The intersection of genes from Table S2 associated with TMZ
response with the differentially expressed genes between PDX lines was observed. There were no
significantly differentially expressed genes between concordant PDX cells and microtumors suggesting
the closeness of these models (Figure 5A). APOD was overexpressed and CHI3L1 was under-expressed
in concordant PDX lines compared to discordant PDX lines (Figure 5B–E). Generally, APOD expression
is up in TMZ response concordant PDX while CHI3L1 is down (Figure 5G). This suggests that the
expression of these genes may be of particular importance for model concordance with respect to TMZ
response. The intersection of TMZ response associated genes with differential expression between
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concordant and discordant microtumors yields a signature of seven genes shown in Figure 5G which
largely cluster TMZ response concordant PDX lines from discordant lines. We surmise that these seven
genes (LGALS3, CHI3L1, MT1X, EPAS1, APOD, NOL4L, and MEX3B) are important for TMZ response
concordance between models.

X1441 and X1052 Cells vs X1441 and X052 Microtumors

Lo
g 2

FC
Lo

g 2
FC

C X1066 and X1465 Cells vs X1441 and X052 Cells

A X1066 and X1465 Cells vs X1066 and X1465 Microtumors B

D

Lo
g 2

FC

X1066 and X1465 Cells vs X1441 and X052 MicrotumorsE

X1066 and X1465 Microtumors vs X1441 and X052 Cells 

F

Average Log10CPM Average Log10CPM

G

X1066 and X1465 Microtumors vs X1441 and X1052 Microtumors

Figure 5. Differential expression of TMZ response concordant (X1066 and X1465) and discordant (X1441
and X1052) tumors: (A) X1066 and X1465 Cells vs X1066 and X1465 Microtumors; (B) X1066 and X1465
Microtumors vs X1441 and X1052 Microtumors; (C) X1066 and X1465 Cells vs X1441 and X052 Cells;
(D) X1066 and X1465 microtumors vs X1441 and X1052 Cells; (E) X1066 and X1465 Cells vs X1441
and X1052 microtumors; (F) X1441 and X1052 Cells vs X1441 and X052 Microtumors; (G) Seven gene
signature from differential expression of concordant microtumors vs discordant microtumors of genes
associated with TMZ response. Samples clustered by TMZ response concordance (left) and discordance
(right). Significance determined by: p ≤ 0.05 and −2 ≥ log2 Fold Change ≥ 2. Log10CPM = Log base 10
of counts per million.
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4. Discussion

The development of accurate, high-throughput patient-derived models of cancer is essential
for profiling disease and testing novel therapeutics. Orthotopic PDX models are currently the most
accurate for therapeutic testing, but these models are not well suited for high-throughput screening.
Next generation sequencing (NGS) analysis is the most descriptive in profiling disease and drug
response. However, NGS data is highly complex, costly, and requires extensive time and resources to
analyze. Derivative models such as 3D microtumors or spheroids can be employed as a high-throughput
alternative to PDX models. At the macroscopic and cellular levels, these models resemble tumors
grown in vivo. A targeted, pan-GBM NanoString assay can be used to rapidly profile derivative
models requiring less cost, time, and resources than NGS approaches.

The pan-GBM 350 gene NanoString assay allows for the rapid profiling of new tumors based on
16 descriptive gene signatures. Comparison of three patient-derived models reveals a set of 113 core
genes which are independent of model and related directly to tumor biology. These core genes can be
used to evaluate the therapeutic response of tumors. HOXB8, a homeobox DNA-binding transcription
factor associated with developmental processes, is overexpressed in microtumors that are sensitive
to Axitinib. However, this transcription factor is down-regulated in tumors sensitive to Erlotinib
despite both Axitinib and Erlotinib being tyrosine kinase inhibitors. Erlotinib, which specifically
targets EGFR, is according to our data more effective in tumors which show increased EGFR expression.
MGMT expression is down-regulated in Axitinib response while MGMT is upregulated in Erlotinib
response. Increased MGMT expression is already know to be associated with poor response to TMZ.
Our data suggests that tumors with high MGMT expression may be responsive to combination therapy
with Erlotinib. PDGFRA expression is low in Erlotinib and TMZ responders, but high in Axitinib
responders. PDGFRA expression in primary tumors may then be used to predict whether a tumor will
be responsive to conventional TMZ treatment, or if a combinational therapy with Axitinib may be more
effective. Finally, PDGFRB expression is high in TMZ responders while PDGFRA is low. The ratio
of PDGFRA to PDGFRB expression in primary tumors may be predictive of tumor response to TMZ.
If PDGFRA is high in primary tumors, this may again suggest a combination therapy with Axitinib
may be more effective.

Certain patient-derived tumor models may have greater concordance with drug response to
orthotopic models. We have identified seven genes from our 350 gene panel which are good predictors
of TMZ response concordance among models. Expression of two of these genes, APOD and CHI3L1,
is consistent in comparing concordant models to discordant models. The general trend of APOD
expression being up in TMZ response-concordant PDX, while CHI3L1 is down, suggests that the
relative expression of these two genes may be predictive of TMZ response concordance. Future studies
may find that over expression of APOD with concurrent knock-down of CHI3L1 in discordant models
may improve TMZ response concordance.

We hypothesize that genes which are responsible for model concordance or which are
model-dependent could be manipulated to produce more accurate derivative models of GBM. This could
be accomplished through direct modulation of gene expression via over-expression constructs or
selective knock-down of genes. Future studies will examine specific gene manipulation as well as
focus on direct alteration of derivative model tumor microenvironment such as altering pH, glucose
availability, or partial pressure of oxygen to better resemble in vivo conditions.

Utilizing our custom 350 gene NanoString panel and three patient-derived GBM cancer models,
we have demonstrated that we can sort out model-dependent and model-independent effects. We can
use this panel to rapidly profile new patient tumors and to potentially predict drug candidates for
effective combinational therapies. We can also identify gene expression profiles which are predictive of
drug response, model concordance. These findings can be utilized in future efforts to improve the
concordance of patient-derived cancer models with orthotopic models to ultimately yield models more
relevant to primary patient tumors.
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