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Abstract: Nuclear hormone receptors are a family of transcription factors regulated by small molecules
derived from the endogenous metabolism or diet. There are forty-eight nuclear hormone receptors
in the human genome, twenty of which are still orphans. In this review, we make a brief historical
journey from the first observations by Berthold in 1849 to the era of orphan receptors that began with
the sequencing of the Caenorhabditis elegans genome in 1998. We discuss the evolution of nuclear
hormone receptors and the putative ancestral ligands as well as how the ligand universe has expanded
over time. This leads us to define four classes of metabolites—fatty acids, terpenoids, porphyrins and
amino acid derivatives—that generate all known ligands for nuclear hormone receptors. We conclude
by discussing the ongoing efforts to identify new classes of ligands for orphan receptors.

Keywords: nuclear hormone receptors; ligands; terpenoid; fatty acid; thyroxine; porphyrins;
history; evolution

1. Introduction

As a family, nuclear hormone receptors (NHRs) represent some of the most biologically important
transcription factors that integrate cellular metabolism and function. NHR activities are controlled by
binding to small molecules or ligands derived from endogenous metabolism, hormones or vitamins
obtained from the diet [1]. A typical NHR contains a DNA binding domain, which recognizes a
specific DNA motif, and a ligand binding domain, which regulates the NHR activity. In the absence of
the ligand, the ligand binding domain may adopt either an inactive or repressive conformation [2].
Upon ligand binding, the resulting conformational changes allow recruitment of co-activators and
induction of target gene expression on promoters containing a positive hormone receptor element or
target gene repression on promoters containing a negative hormone receptor element [3]. The ability
to be regulated by small molecules makes these receptors ideal targets for drug discovery: 16% of all
drugs target NHRs [4].

Metabolites are widely used for intercellular communication in both prokaryotes and eukaryotes [5].
For example, fatty acids are dedicated to “quorum sensing” in bacteria, whereas peptides, cyclic AMP,
and lysophosphatidic acid mediate a variety of responses in eukaryotes [5]. Two common metabolite
signaling systems, G-protein coupled receptors (GPCRs) and cAMP receptors, are abundant throughout
the animal and plant kingdoms [5]. In contrast, NHRs are observed exclusively in animals and were
first detected in sponges [6].

Identification of ligands for NHRs is fundamental for understanding how these transcription
factors function. In this review, we focus on metabolic pathways that produce ligands for NHRs and
the mechanisms by which NHR ligands mediate intercellular communication.
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2. A Brief History of NHRs and Their Ligands

2.1. Phenomenology (1849–1914)

It has been known since antiquity that eunuchs are passive, non-aggressive and sexually
uninterested in females. The mechanisms underlying this phenotype were not well understood
until 1849, when Berthold conducted an experiment that marked the beginning of endocrinology.
He removed the testicles of roosters and observed that these animals, like eunuchs, became passive
and non-aggressive. The roosters also had underdeveloped vocalization, combs and neck lobes [7].
Most importantly, when Berthold transplanted testicles back to the castrated animals, secondary sexual
characteristics were restored, even though the transplanted testicles were in ectopic sites and had their
normal innervation removed [7]. Forty years later, Brown-Sequard demonstrated that injection of
testicular extract could increase aggression and stamina in male animals, including man [8]. It was at
that time proposed that testicular extract could be used as rejuvenation therapy [8]. Brown-Sequard’s
experiments clearly suggested that it was a substance in the testicles that could promote this effect,
and there was no need for the organ or cells themselves. Less dramatic, but equally significant,
were related observations on the thyroid gland. Physicians had observed that surgical removal of
the thyroid gland resulted in myxedema and that injection of thyroid extract was sufficient to restore
thyroid function of myxedema patients [9]. In 1896, Bauman demonstrated that a peptidic compound
rich in iodine, “thyroiodin”, could be isolated from the thyroid extract and used to treat myxedema in
animals [10]. Thus, whole organs could be replaced by extracts, suggesting that a messenger substance
mediates the function of these glands.

To unify these observations, Starling created the concept of “hormones” that are released by
one organ but affect other distant organs. The term “hormone” was derived from the Greek for
“I excite” or “arouse” [11]. Starling extended the list of endocrine organs suspected of producing
hormonal substances to include the adrenal glands, pancreas and ovary, in addition to the thyroid
and the testes [11,12]. The best examples included the role of the supra-renal gland in the control of
blood pressure [11], the relationship of the pancreas and diabetes [11], the role of the thyroid in the
development of the nervous system and metabolism [12], the control of secondary sexual characteristics
by the testes and ovaries [12] and the influence of ovaries on pregnancy [12]. Thus, the concept of
hormones brought multiple phenomenological observations into the sphere of one concept that could
be tested experimentally.

2.2. Hunting for Hormones (1915–1984)

Immediately, the hunt for hormones began. Starling had reinforced previous observations that
the factor present in the thyroid was stable, since the function of the thyroid could be replenished
by providing thyroid extract in the diet [12]. Taking this lead, Kendal isolated the active component
of the thyroid gland, thyroxine [13]. Bioactive thyroxine that could replace “natural thyroid extract”
was synthesized in 1927 by Harington and Barger [14]. Kendal’s discovery of thyroxine in 1915
marks the second phase in the history of NHRs: the era of orphan ligands. After this discovery,
a quest for the identification, characterization and synthesis of hormones resulted in the discovery
and synthesis of many hormones including estrogens [15,16], androgens [17–19], progesterone [20]
and corticoids [21–23]. The isolation and purification of hormones was a heroic phase in biochemical
research. For example, the isolation of the first androgen required the purification of 15 mg of pure
steroid from an estimated 25,000 L of human male urine [24].
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2.3. Ligands Meet Receptors (1985–1997)

NHR ligands remained orphans until the advent of recombinant DNA technology. The first NHR
to be identified was the glucocorticoid receptor (GCR). Here, the ligand, glucocorticoid, was used to
purify the receptor [25,26] which was then used to generate GCR-specific monoclonal antibodies to
screen bacterial protein expression libraries to identify a GCR cDNA [27]. Identification and sequencing
of GCR enabled the discovery of the retinoic acid receptor (RAR) and other members of the NHR
family via homology-based cDNA library screening [28,29]. Thus, many orphan ligands were quickly
“adopted” by their receptors [1]. The history of NHRs is summarized in Figure 1.
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Figure 1. A brief history of nuclear hormone receptors (NHRs). Shown are the landmark moments in
the history of NHRs.

2.4. Orphan NHRs Meet Their Ligands (1998–Present)

Genome sequencing has provided us with a finite number of NHRs (Figure 2). Humans, for
example, have 48 NHRs, only 12 of which are classic hormone and vitamin receptors [1]. Other organisms,
like C. elegans, have >200 NHRs in their genome [30]. The majority of NHRs are orphan receptors.
Over the years, many orphan NHRs have been deorphanized. Examples include the liver X receptors
(LXRs) LXRα and LXRβ, which bind oxysterols [31]; farnesoid X receptor (FXR), a receptor for bile
acids [32,33]; the retinoic acid-related orphan receptors (RORs) RORα and RORγ that bind cholesterol
biosynthetic intermediates [34]. These success stories also apply to orphan nuclear hormone receptors
from other species such as Daf12 of C. elegans, which binds dafachronic acids [35]. Identification of
ligands for NHRs in nematodes and insects could be of importance for the treatment of diseases caused
by parasitic nematodes in man [36] and pest control in agriculture [37]. However, despite these early
discoveries, almost half of human NHRs and most NHRs from other species are still orphans.
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Figure 2. The 48 human NHRs and their ligands. Nuclear hormone receptors are defined by their
homology to the steroid receptors [38]. This feature distinguishes the NHRs from other nuclear receptors
regulated by small molecules such as the Per-Arnt-Sim (PAS) superfamily of transcription factors [39].
A dendrogram of the human nuclear hormone receptor family was generated using phylogeny.fr [40].
Color-coded balloons are used to label the ligand class for each individual NHR.

3. Metabolome as a Source of NHR Ligands

The mammalian metabolome is composed of endogenous and exogenous metabolites. The endogenous
metabolome contains all metabolic products produced by the organism itself. For example, cholesterol
is an endogenous metabolite synthesized by mammalian cells from the two-carbon acetate group of
acetyl-CoA [41]. The endogenous metabolome in mammals is estimated to contain approximately 1500
backbones/compounds, which are further modified to generate an enormous diversity of isomers [42].
The exogenous metabolome contains diet-derived as well as synthetic compounds that are modified by
the enzymes of the organism. All degraded drugs are part of the exogenous metabolome, which is
estimated to be at least ten to one hundred times larger than its endogenous counterpart [42].

NHRs are found in the most primitive animals, such as the demosponge Amphimedon queenslandica [43].
Sponges have two NHR-like proteins: AqNR1 and AqNR2. AqNR2 is the ortholog of the mammalian
HNF4a/NR2A family [6], while AqNR1 is the ancestral receptor for all other NHRs. HNF4a/NR2A1 binds
fatty acyl-CoA [44], and indeed fatty acids induce AqNR1 and AqNR2 transactivation [6], suggesting
that one of the first ligands of ancestral NHRs was a fatty acid derivative. After the sponges, there
was an expansion of the NHR superfamily, and the common ancestor that gave origin to vertebrates
had receptors representative of the NHR families NR2C, NR5A1 (SF-1), NR6A1(GCNF), RXRs, ERRs
and steroid receptors [6]. Here, we already see a branching of potential ligands: NR5A1 (SF-1) binds
phosphatidylinositol [45], a fatty acid conjugated to inositol; RXRs bind 9-cis-retinoic acid [46,47],
a retinoid; the steroid hormone receptors and estrogen-related receptors (ERRs) bind steroid hormones
(reviewed in [1]). The ligands now include modified fatty acids and terpenes (Figures 2 and 3). A second
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expansion of ligands recognized by NHRs occurred in the common ancestor of the bilaterians, before
the branching of the protostomes and deuterostomes [6]. We now see the inclusion of additional ligand
families represented by the thyroid hormone receptor that binds thyroxine [48,49], and REV-ERBα
(NR1D1) and REV-ERBβ (NR1D2), which bind heme, a porphyrin [50]. All these ligands are derived
from four main classes of metabolites: fatty acids, terpenoids, porphyrins and modified amino acids
(Figures 2 and 3).Cells 2020, 9, x FOR PEER REVIEW 6 of 13 
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Figure 3. The biosynthetic routes for the known sources of human NHR ligands. Fatty acids
(orange) and terpenoids (blue) are generated from acetyl-CoA. Fatty acids can be further modified into
phospholipids, glycerolypids, sphingolipids, ether lipids and fatty acid oxidation products. Acetyl-CoA
is used to generate the isoprene units for terpenoid biosynthesis. Mammals will generate farnesyl and
geranylgeranyl pyrophosphate, dolichol (not shown), ubiquinone and cholesterol. Bacteria and plants
utilize geranylgeranyl pyrophosphate to generate carotenoids that can be used by animals to generate
retinoic acid. Porphyrins are synthesized from glycine and thyroid hormones from tyrosine.

A common thread between these ligands is the presence of a hydrophobic backbone with a head
group that is either charged or capable of forming van der Walls or hydrogen bonds with the receptor.
After the bilaterians, the expansion of the NHR superfamily was not followed by an expansion of
recognized ligand classes. Rather, receptors recognize other derivatives of the four main classes
of metabolites described above. For example, PPARγ binds to modified fatty acids, hydroxylated
polyunsaturated fatty acids and prostaglandins [51–53], whereas FXR binds bile acids [32,33], which are
modified terpenes.

3.1. Fatty Acid Family Ligands

Fatty acids are the ancestral family of ligands for NHRs, and they include components derived from
the endogenous metabolism as well as diet-derived essential fatty acids such as linoleic, linolenic and
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arachidonic acids. Fatty acids are a class of diverse ligands. According to the lipidmaps database [54],
there are currently 9985 fatty acids. Fatty acids can be modified at the hydrophobic tail (saturation,
desaturation) and/or head group (glycerol, choline, ethanolamine, amino acid or carbohydrates).
This greatly increases the diversity of this class of ligands. So far, there are 22,471 known glycerolipid,
glycerophospholipid and sphingolipid derivatives of fatty acids (https://www.lipidmaps.org/resources/
databases/index.php?tab=lmsd).

3.2. Terpenoid Family Ligands

Most ligands for nuclear hormone receptors come from the terpenoid family (Figure 2). Terpenoids
are a class of natural compounds that includes over 80,000 known molecular species [48] and are easily
modified by monooxygenation reactions catalyzed by CYP450 enzymes that increase diversity even
further [55]. Most terpenoids are derivatives of 5-carbon isoprene units following what is known as
Ruzicka’s rule [56]. In mammalian cells, terpenoids are synthesized from acetate [41] through the
mevalonate [57] pathway. Terpenoids include all sterol lipids [41,56] and retinoids such as vitamin
A and its precursor, β-carotene, which is generated in bacteria, fungi and plants [58]. Of particular
interest are the sterol lipids. During evolution, there was an “explosion” of receptors that recognized
sterol-type structures in the common ancestor of the bilaterians [6]. In humans, 12 NHRs with known
ligands are activated by sterol lipids, including the receptors for estrogen [59,60], progesterone [61,62],
testosterone [63,64], mineralocorticoids [65], glucocorticoids [27], oxysterols (LXRα and β) [31], bile
acids (FXR) [32,33], cholesterol biosynthetic intermediates RORα and RORγ [34] and, for secosteroids,
the vitamin D receptor (VDR) [66]. The diversity of sterol lipids is generated via modification of a
basic backbone with four rings, A, B, C and D (Figure 3), by addition or removal of double bonds,
hydroxyl and keto groups as well as different isomer patterns [67]. This diversity of modifications
generates new compounds, distinct enough to be classified as subclasses of steroids. For example,
in secosteroids, vitamin D and its related compounds are formed by the opening of the B ring in the
sterol backbone [67]. Similarly, estrogens contain three double bonds in ring A [67]. Thus, receptors
that initially recognized one sterol lipid could have been co-opted during evolution to act as a receptor
for the new class of steroids, leading to the observed expansion in sterol lipid NHRs.

3.3. Porphyrins

The next class of compounds that generate ligands for NHRs is the porphyrins. These are
lipophilic metabolites in which the porphyrin backbone is associated with a metal atom, such as Mg
for chlorophyll or iron for heme. NHRs such as E75 in Drosophila melanogaster [68] or REV-ERBα
(NR1D1) and REV-ERBαβ (NR1D2) in vertebrates bind heme [50,69]. In the case of E75, heme is a
structural component of the receptors that is modified to serve as a sensor for diatomic gases like
carbon monoxide and nitric oxide [68]. In contrast, in mammalian cells NR1D1 and NR1D2 function as
direct heme sensors [50,69]. The finding of insect NHRs that sense gas-modified heme increases the
diversity of potential NHR ligands.

3.4. Amino Acid Derivatives

Amino acids were the first metabolites identified as a source of ligands for NHRs. For example,
thyroxine (T4) and the active derivative triiodothyronine (T3) are both derived from tyrosine and
synthesized from a protein precursor, thyroglobulin, making it a protein/peptide-derived ligand
(reviewed in [70]). In these cases, a dedicated organ, the endostyle in protochordates and the thyroid
gland in jawed vertebrates, evolved to produce an iodinated amino acid derivative that has no other
function in the organism but to act as a hormone [71]. Thyroid hormone-like substances are also
found in other invertebrates, but their functions are still poorly understood. Interestingly, thyroid
hormone-like substances are produced by marine algae (Diatoms), suggesting that these substances
originally acted like vitamins for plankton-feeding organisms [71]. In accord with this hypothesis,
the thyroid gland could have evolved exclusively to generate thyroid hormone-like substances in

https://www.lipidmaps.org/resources/databases/index.php?tab=lmsd
https://www.lipidmaps.org/resources/databases/index.php?tab=lmsd
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animals that do not feed on plankton [71]. Thus, a vitamin became a hormone. No other NHRs so far
have been identified that recognize amino acid derivatives.

4. Orphan Receptors, What Ligands?

It has been suggested that some orphan NHRs are ligand-independent or constitutively active.
A good example is NR4A1, an NHR with strong transcriptional activity in most mammalian cells.
The main argument for NR4A1′s ligand-independent function is a crystal structure showing that the
ligand-binding pocket of NR4A1 is too small to accommodate a ligand [72]. However, such evidence
must be taken with a grain of salt. Initially, the crystal structure of REV-ERBβ identified a small
ligand-binding pocket filled with bulky hydrophobic amino acid residues [73]. However, further
studies showed that REV-ERBβ binds heme [50]. Another argument, given the conservation of the
ligand backbones, is that orphan NHRs bind the same classes of ligands as non-orphan receptors.
However, this focus on known ligands could be misleading. It is possible that we have not yet
discovered all the molecules that affect our physiology.

What is the possibility that new vitamins could be found? Mice can be maintained on a chemically
defined low molecular weight diet for several generations [74]. Similarly, Drosophila melanogaster can
be reared in chemically defined conditions [75]. These results seemingly argue against the idea that
there are unknown vitamins “out there”. On the other hand, many of these diets have undefined
components extracted from vegetable sources that could introduce a contaminant into the system.
The dramatic effect that such contaminants may have on development is illustrated by the example of
C. elegans. Many nematodes are cholesterol auxotrophic [76]. and C. elegans can develop normally in
chemically defined agar plates. However, when the sterol content of the agar is removed by extraction
with chloroform and methanol, there is severe impairment of worm development [77]. Addition of
the proper cholesterol enantiomer can completely restore C. elegans development in agar plates where
all lipids are extracted with organic solvent [77]. Later, cholesterol was shown to be a precursor for
dafachronic acid, which is a ligand for Daf12 [35], an NHR that is essential for C. elegans development.

One way to address whether there are exogenous components to NHR function is by testing
NHR transcriptional activity in different cell lines in chemically defined medium [34]. For example,
most cholesterol-sufficient mammalian cells, such as HEK293 or HeLa cells, show strong RORγ
transcriptional activity [34]. In contrast, mammalian cell lines with genetic deletion in the cholesterol
biosynthetic pathway and cells derived from cholesterol auxotroph, such as insect cells S2 and Kc167,
had a reduction or a complete block in RORγ transcriptional activity [34]. Tissue culture medium
is prepared from microbial sources, and there is little contamination with eukaryotic metabolites.
An in-house, chemically defined medium can be developed with basal media such as DMEM, RPMI
or Grace’s medium supplemented with insulin, transferrin and Pluronic F68 as a replacement for
bovine serum albumin, warranting that there are no mammalian- or plant-derived molecules in the
medium [34]. Detection of NHR activity in specific cell lines in a chemically defined medium is a good
indicator that the ligand is endogenously produced or modified by the cells themselves. One can now
identify the ligand by genetic and chemical means to certify whether it is a member of a known ligand
family or an entirely new class of ligand.

What about new hormones produced by tissues or specific cells in the organism? This question can
be addressed in the same manner as we addressed the possibility of new vitamins. Hormones
are “messengers” generated by one cell as a communication component to another cell/organ.
Such communication systems could act within the cell (autocrine fashion), on an adjacent cell (paracrine
fashion) or on a distantly located cell (endocrine fashion). We would expect that hormone-like
molecules should be produced by a restricted number of cell lineages.

New hormone-like molecules could come from many sources. One is intermediates in
biosynthetic pathways. For example, 4α-carboxy-zymosterol and other biosynthetic intermediates
with a double bond at carbon 8 have been shown to be ligands for RORα and RORγ [34].
Desmosterol, another intermediate of cholesterol biosynthesis, can also function as a ligand for
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RORγ [78] and LXR [79]. Another intermediate, 7-dehydrocholesterol, is a precursor for vitamin D
(reviewed in [1]). Interestingly, some cholesterol biosynthetic intermediates accumulate in tissues.
For example, FF-MAS accumulates in ovaries and T-MAS accumulates in the testis, where they promote
meiosis [80]. Similarly, metabolic products of the conversion of lanosterol into FF-MAS, such as
the 3β-lanost-32-aldehydes, can accumulate in cells [81,82]. The mechanism by which these sterols
act is still unclear. However, it is tempting to speculate that these metabolites may act through
NHRs via autocrine or paracrine mechanisms. Indeed, FF-MAS has been shown to activate LXR and
RORγ in reporter assays [31,34], and lanosterol aldehydes have been suggested as candidate RORγ
ligands [34]. It remains to be seen whether such intermediates or their derivatives could also have
endocrine functions.

Sterol lipids are not the only pathways producing metabolites that could be used as
hormone-like substances. Sphingolipids generally have a head group derived from serine. However,
the preference for serine is dictated in cells by the availability of serine and alanine; at low
serine, high alanine concentrations there is production of sphingolipids with alanine head-groups
(1-deoxysphingosines) [83]. 1-deoxysphingosines lack the C1 hydroxyl group of serine-based
sphingolipids, and they cannot serve as precursors for the synthesis of phospho- or glycosphingolipids
or be degraded by the known sphingolipid catabolic pathways [84]. These are only a few examples of
possible hormone-like compounds. Lipidomics studies have identified a large number of new lipids
with unknown function [54], and some of these could possess hormone-like activities.

5. Common Properties of NHR Ligand Biosynthetic Pathways

The common feature of NHR ligands is a hydrophobic backbone associated with chemical groups
that allow for the formation of hydrogen bonds or van der Waals interactions, for example the carboxy
group of fatty acids and bile acids. There has been no report of a totally hydrophobic compound as
an NHR ligand. The main sources of endogenous metabolites with hydrophobic backbones attached
to chemical groups that allow for hydrogen bonding are the fatty acid and the terpenoid pathways.
It is possible that the preference for these pathways may be an evolutionary accident since fatty acid
derivatives and sterol lipids were the first ligands for the ancestral receptors [6]. Alternatively, these
backbones could have been selected by chance, since the fatty acid and terpenoid pathways are also the
most diverse groups of metabolites. Generally, the compounds that serve as the sources of ligands for
NHRs are targeted by many processing enzymes. This includes enzymes that process polyunsaturated
fatty acids into prostaglandins, resolvins and maresins [85,86], as well as the monooxygenases and
dehydrogenases that process sterol lipids into steroid hormones, vitamin D and bile acids.

The majority of known NHR ligands are soluble metabolites that would allow for autocrine,
paracrine or endocrine functions. There are a few notable exceptions: the ligand for PPARα
is a phosphatidylcholine, a structural component of the membrane [87]. However, the jury
is still out on PPARα, as other potential ligands have been suggested such as Coenzyme
Q10 [88], oleylethanolamine [89] or 7-hydroxydocosahexaenoic acid [90]. Oleylethanolamine and
7-hydroxydocosahexaenoic acid are the most exciting findings, since they may play hormone-like or
vitamin-like roles that fit with the standard properties we suggest for NHR ligands.
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