

1 Article

Ca²⁺-Calmodulin Dependent Wound Repair in *Dictyostelium* Cell Membrane

Md. Shahabe Uddin Talukder ^{1,2}, Mst. Shaela Pervin ^{1,3}, Md. Istiaq Obaidi Tanvir ¹, Koushiro Fujimoto ¹, Masahito Tanaka ¹, Go Itoh⁴, and Shigehiko Yumura ^{1*}

- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511,
 Japan; shahabeuddin@yahoo.com (M.S.U.T.); sprvn@yahoo.com (M.S.P.); tanviristiaq@gmail.com
 (M.I.O.T.); i501wz@yamaguchi-u.ac.jp (K.F.); g003wf@yamaguchi-u.ac.jp (M.T.); yumura@yamaguchi-u.ac.jp (S.Y.)
- 10 ² Institute of Food and Radiation Biology, AERE, Bangladesh Atomic Energy Commission, Bangladesh.
- 11 ³ Rajshahi Diabetic Association General Hospital, Luxmipur, Jhautala, Rajshahi-6000, Bangladesh.
 - ⁴ Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan; goitoh@med.akita-u.ac.jp (G.I.)
 - * Correspondence: yumura@yamaguchi-u.ac.jp (S.Y.); Tel.: +81-83-933-5717; Fax: +81-83-933-5717

14 15

12

13

16 Supplemental Data

A				
Golvesin-GFP	GFP-ImpA	GFP-calreticulin	FM143	В
-2.0 sec	-2.0 sec	-2.0 sec	-2.0 sec	Golvesin-GFP
0.0 •	0.0	0.0	0.0 •	C 3 3 3 3 3 3 3 3 3 3 3 3 3
2.0	2.0	2.0	2.0 ∘	$D \qquad \qquad$
10.0 °	10.0 •	10.0 •	10.0 •	GFP-calreticulin GFP-calreticulin 2- 1- 1- 1-
20.0 •	20.0	20.0 °	20.0 °	$E = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$
35.0 °	35.0 °	35.0 °	35.0 •	9 1 -5 0 5 10 15 20 25 30 35 Time (sec)

18Supplemental Figure S1. Golgi-derived vesicles, lysosome, endoplasmic reticulum, and recycling19endosomes did not accumulate at the wound site. (A) Typical fluorescence images under TIRF20microscopy when cells expressing golvesin-GFP, GFP-ImpA, or GFP-calreticulin, and FM dye-stained21cells were wounded by laserporation (yellow circles). To visualize the recycling endosomes, 30 min22after the cells were incubated with FM1-43, they were washed by media exchange. Bars, 10 μm. (B-E)23Time courses of fluorescence intensity of each probe at wound site (n = 25, each). Note that golvesin-24GFP transiently disappeared from the wound site after wounding.

25

26