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Abstract: Colorectal cancer (CRC) is the third most common cancer worldwide. The standard
treatment in locally advanced rectal cancer is preoperative radiation alone or in combination with
chemotherapy, followed by adjuvant chemotherapy. Rectal cancer is highly lethal, with only 20% of
patients showing a complete remission (by RECIST) after standard treatment, although they commonly
show local or systemic relapse likely due to its late detection and high chemotherapy resistance,
among other reasons. Here, we explored the role of PAI1 (Serpin E1) in rectal cancer through the
analyses of public patient databases, our own cohort of locally advanced rectal cancer patients and a
panel of CRC cell lines. We showed that PAI1 expression is upregulated in rectal tumors, which is
associated with decreased overall survival and increased metastasis and invasion in advanced rectal
tumors. Accordingly, PAI1 expression is correlated with the expression of (Epithelial-to-Mesenchymal
Transition) EMT-associated genes and genes encoding drug targets, including the tyrosine kinases
PDGFRb, PDGFRa and FYN, the serine/threonine kinase PIM1 and BRAF. In addition, we demonstrate
that cells expressing PAI1 protein are more sensitive to the PIM inhibitor AZD1208, suggesting
that PAI1 could be used to predict response to treatment with PIM inhibitors and to complement
radiotherapy in rectal tumors.

Keywords: PAI-1/Serpin E-1; rectal cancer; chemoresistance; therapy; Pim kinases

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide (10.2%), and the second
in Europe (12%). Specifically, cancers of the rectum and rectosigmoid junction represent the 30%
of all diagnosed CRC cases. In 2018, there were approximately 200,000 new cases of diagnosed
rectal cancer in Europe [1]. Rectal cancers comprise tumors arising within 15 cm of the anal verge.
Although these tumors are histologically similar to global CRC tumors, their anatomical situation,
invasive growth pattern, surgical approach and treatment outcomes make them a different entity [2].
The standard treatment for patients with locally advanced rectal cancer is preoperative radiotherapy
alone or in combination with chemotherapy. The common chemotherapy agents include 5-Fluorouracil
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(5-FU) and Oxaliplatin, whose function limits the tumor growth [3,4]. Compared to radiotherapy
alone, chemoradiation has shown a greater rate of pathological response with no overall survival
advantage [5–8]. Only 20% of patients with rectal cancer show a pathologic complete response in
surgery after preoperative chemotherapy and even responding patients inevitably develop refractory
disease [9,10]. Five-year survival in CRC is only 11% in the advanced or metastatic stages [1].
Development of chemotherapy resistance is responsible for most of the relapses after surgery and,
therefore, patient overall survival. Therefore, it is imperative to explore new targets or biomarkers
to stratify patients with advanced or metastatic rectal cancer and predict their response in order to
overcome chemotherapy resistance.

Plasminogen Activator Inhibitor 1 (PAI1, also known as SERPINE1), belongs to the serpin
super-family and is an inhibitor of tissue plasminogen activator (tPA) and urokinase plasminogen
activator (uPA). Therefore, PAI1 is essential for fibrinolysis control and its high levels have been
related to the formation of blood thrombotic events due to its anti-fibronolytic activity [11]. Moreover,
deregulation of PAI1 expression has been involved in cardiovascular diseases, obesity, metabolic
syndrome and various types of cancer [12]. PAI1 expression levels depend on the type of cancer.
Although bladder urothelial carcinoma and testicular germ cell tumors do not show differences in
PAI1 expression between normal and tumoral tissues, it is significantly increased in other cancers
including stomach adenocarcinoma, head and neck squamous cell carcinoma, esophageal carcinoma
or thymoma (The Cancer Genome Atlas (TCGA); [13]). Patients with acute leukemia, breast cancer
or hepatocarcinoma show an increase in the plasma levels of PAI1 [14–16], which are also associated
with histological grade of endometrial cancer. [17]. Moreover, PAI1 expression is also correlated with
poor outcome in several other cancer subtypes, such as node-negative breast cancer and ovarian
serous carcinoma [18,19]. The effect of PAI1 in invasion and metastasis is not clearly defined;
while PAI1 overexpression was significantly associated to those events in osteosarcoma, lung, breast
and head-and-neck cancer [20–22], it inhibits cell migration and invasion in pancreatic cancer, glioma
and melanoma [23,24]. In contrast to the pro-angiogenic role of PAI1 in physiological conditions,
its overexpression in tumoral tissues has an anti-angiogenic function [25]. The effect on proliferation is
variable, since PAI1 inhibits proliferation in prostate cancer [26] but increases the tumor size of Hela
xenografts, fibromatosis or pheochromocytoma [27–29]. Besides, several studies have reported the role
of PAI1 as anti-apoptotic in Head-and-Neck Cancer Cells (HNCC), ovarian or breast cancer [19,30].
Finally, it has been recently described that PAI1 could have a role promoting inflammation in
Non-Small-Cell Lung Carcinoma (NSCLC) [31]. Therefore, it is generally accepted that PAI1 has a role
in cancer development, especially in breast cancer where it has been validated clinically [32], but the
specific functions and roles of PAI1 depend on the type of cancer.

In this work, we explored the potential of PAI1 as a marker in rectal cancer through the analyses
of several public patient databases, as well as our own cohort of locally advanced rectal cancer patients
after preoperative radiotherapy. Our data showed that PAI1 expression is upregulated in rectal tumors,
which is associated with decreased survival and increased metastasis in advanced rectal tumors.
Accordingly, we observed that PAI1 expression is correlated with the expression of EMT-associated
genes and genes encoding drug targets of tyrosine kinases, PIM1 kinase and BRAF. Using a panel of
CRC cell lines, we demonstrated that cells expressing PAI1 are sensitive to Pim inhibitor AZD1208,
suggesting that PAI1 expression could be used as a potential marker effectiveness to treatment with
Pim inhibitors after radiotherapy.

2. Materials and Methods

2.1. Ethics Approval and Consent to Participate

All methods were performed in accordance with the relevant guidelines and regulations of
the Institute for Biomedical Research of Seville (IBIS) and University Hospital Virgen del Rocio
(HUVR). The entire procedure of patient cohort were performed according to the experimental protocol
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approved by HUVR Animals Ethics (CEI 0309-N-15). All patients involved in our study provided
written informed consent for publication. All tissue samples and patients information were treated
according to the Declaration of Helsinki.

2.2. Patient Cohort

The entire procedure was approved by the local ethical committee of the HUVR (CEEA O309-N-15).
The patient cohort used in this study was previously described [33]. Briefly, tissue samples from 135
patients with locally advanced rectal cancer who received preoperative chemoradiotherapy in the
same institution from 2005 to 2014 (Table S1) was obtained from the biobank of HUVR-IBIS (Sevilla,
Spain). Eligible patients were those with locally advanced rectal cancer T3-4 N+ M0 (stages II–III)
that had completed the neoadjuvant chemoradiotherapy plan before resection with curative intention.
Patients with synchronous metastases at diagnosis or with metastatic disease before treatment were
excluded. All patients received the same neoadjuvant chemoradiotherapy [33].

2.3. Immunohistochemistry Assays

Tumor samples from HUVR were obtained from surgical resection of rectal cancer performed,
stored in TMA blocks. Briefly, four-micrometer-thick tissue sections from paraffin blocks were dewaxed
in xylene and rehydrated in a series of graded alcohols. Sections were immersed in 3% H2O2 aqueous
solution for 15 min. to exhaust endogenous peroxidase activity and then covered with 1%-blocking
reagent (Roche) in PBS to block nonspecific binding sites. Antigen retrieval was performed with
a PT Link instrument (Agilent), using citrate/EDTA buffer. Sections were incubated with primary
antibody overnight at 4 ◦C in a humid chamber. Peroxidase-labeled secondary antibodies (visualization
reagent-HRP, Dako) and 3,3-diaminobenzidine were applied to develop immunoreactivity, according
to the manufacturer’s protocol. Slides were then counterstained with hematoxylin and mounted in
DPX (BDH Laboratories, Poole, UK). Sections in which primary antibody was omitted were used as
negative controls. Immunostaining was evaluated independently by two observers. The percentage of
immunostained tumour cells was scored as follows: 0, negative; 1, < 10%; 2, 10–49% and 3, > 50%.

2.4. Cell Culture

Cells were obtained from The European Collection of Authenticated Cell Cultures (ECACC) and
cultured according to the manufacturer’s instructions. Briefly, SW48, SW480, T84, LS180, LOVO,
HT29 HCT116 and COLO205 were cultured in the corresponding medium and incubated at 37 ◦C in
5% CO2 in a humidified atmosphere. The features of the cell lines used in this study are shown in
Supplementary Table S2. All cell lines were authenticated and regularly tested for mycoplasma.

2.5. Cytotoxic MTT Assay.

A total of 2 × 104 cells were seeded in 96-well plates and treated with Desatinib, Vemurafenib,
or AZD1208 after 24 h. 96 h later, cell viability was measured by the MTT assay and confirmed by
crystal violet staining using a iMark Microplate reader (BioRad). The IC50 was calculated using
GraphPad Prism 7 software (San Diego, CA, USA).

2.6. Western Blot Analyses

Western blotting was performed as previously described [33]. Briefly, cells were grown in
serum-free medium for 48 h and then both total cell extracts and medium were used to determine the
intracellular and extracellular protein levels of PAI1, respectively. For intracellular determination, cells
were washed twice with PBS and lysed by sonication in lysis buffer (50 mM Tris-HCl, pH 7.5; 1% NP-40;
1 mM Na3VO4; 150 mM NaCl; 20 mM Na4P2O7; 100 mM NaF; 1% Na- deoxycholate; 0.1% SDS; 1 mM
EDTA; complete phosphatase inhibitor cocktail (Sigma, San Luis, MO, USA) and complete protease
inhibitor cocktail (Sigma)). For extracellular determination, medium was filtered using a 10-kDa
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ultrafiltration tube (Millipore, Burlington, MA, USA) and centrifuged at 3500× g at 4 ◦C for 30 min.
Samples were then run on 6–15% SDS-PAGE gels, transferred to Nitrocellulose membranes (Protran
BA83, Whatman, GE Healthcare, Chicago, IL, USA) and immunostained. Primary antibodies used
were anti-PAI-1 (1:1000; ab66705) and MAb anti-α-tubulin (1:5000; Sigma 9026); secondary antibody
was horseradish peroxidase-labeled rabbit anti-mouse (1:5000; Amersham, GE Healthcare, Chicago, IL,
USA). Protein visualization was performed using the ECL detection system (Amersham, GE Healthcare,
Chicago, IL, USA). Relative PAI1 protein quantification was performed relative to α-tubulin or total
protein (Ponceau staining) for intracellular or extracellular protein, respectively.

2.7. Quantification and Statistical Analysis.

All statistical analyses were performed using the SPSS statistical software, Chicago, IL, USA
(v19), as previously described [34]. Statistically significant differences between study groups was
assessed using parametric Student’s t-test or non-parametric Mann–Whitney’s t-test, as appropriate,
for pairwise comparisons, or parametric ANOVA for multiple comparisons, setting a P-value of 0.05 as
the cut-off for statistical significance. Experiments were performed a minimum of three times. Survival
data from patient databases were analyzed by the Log-rank Mantel–Cox statistical test.

2.8. Analyses of Cancer Patient Databases.

Meta-analyses of the PAI1 expression levels in tumor and no tumor colorectal samples were
performed using the PrognoScan public patient datasets [35], as previously described [34]. Patient
survival was analyzed using the R2 Genomics analysis and visualization platform [36], as previously
described [37]. Expression data were downloaded and plotted using GraphPad Prism 6.01. Databases
with available survival data were used to generate the Kaplan–Meier plots showing patient survival
with the scan method, which searches for the optimum survival cut-off based on statistical analyses
(log-rank Mantel–Cox test).

3. Results

3.1. PAI1 is Upregulated in Rectal Tumors and Associated with Reduced Overall Survival

To study the potential of PAI1 as a marker in rectal cancer, we first analyzed PAI1 expression
levels in four public rectal cancer databases: GSE35452, GSE8671 and GSE2109 (Table S3) [38,39]. Since
GSE8671 was the only database containing values of non-tumor tissue and the three databases used
the same platform and normalization methods, we used them as a control. We found that the PAI1
mRNA levels were significantly higher in tumor samples than in normal rectal tissue (Figure 1A).
We extended this analysis to colorectal cancer patients in GSE8671 and four additional databases with
paired non-tumor and tumor samples (GSE21510, GSE4183, GSE201916 and GSE33114). For all of them,
we observed a statistically significant increase of PAI1 expression in tumor samples (Figure 1B; Table S3).
Moreover, this result was corroborated using 135 samples from our previously published cohort of
locally advanced rectal cancer patients (HUVR-IBIS) (Figure 1C), who had received preoperative
chemoradiotherapy and showed a 5-year overall survival (OS) of 75% (Figure 1D; Table S1) [33], similar
to other published datasets [38–40]. In this cohort, we also analyzed the levels of PAI1 protein by
immunohistochemistry (Figure 1E), defining a high PAI1 protein level in the tumor samples when the
score of the stained tumor was higher than 1 on a scale of 0–3 (see Material and Methods) compared
with non-tumor samples, and low PAI1 protein level when the score was lower than or equal to 1 [41,42].
Under these conditions, 35 (29.6%) tumor samples showed low expression, and 100 (70.4%) tumor
samples showed high expression of PAI1 (Figure 1F).
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Figure 1. PAI1 expression is upregulated and reduces overall survival in rectal cancer patients. (A)
PAI1 expression in the rectal cancer patient databases GSE35452, GSE8671 and GSE2109. (B) PAI1
expression in colorectal cancer patients from databases GSE21510, GSE8671, GSE4183, GSE20916 and
GSE33114. (C) PAI1 expression in rectal patients from the HUVR-IBIS database. For (A–C), box
plots show PAI1 expression levels in rectal tumor tissue (orange) or non-tumor tissue (white) patients.
In (A), data were compared using the ANOVA test, except for the GSE35452, whose data were not
normally distributed and thus a non-parametric Mann–Whitney’s t-test was used. In (B,C), tumoral and
non-tumoral data were compared using Student’s t-tests. *p < 0.05; **p < 0.01; ***p < 0.001. (D) Overall
survival analysis of the HUVR-IBIS rectal tumor cohort (Table S1). (E) Representative images of PAI1
immunostaining in rectal cancer tissues. Scale bars, 50 µm. The zoomed region has a magnification
factor of 2. (F) Percentage of tumors with low or high PAI1 expression in our HUVR-IBIS cohort of
rectal tumor samples (n = 135). (G) Kaplan–Meier plot showing disease-free survival of patients with
high (red) or low (blue) PAI1 expression levels in our own cohort from HUVR-IBIS. Data were analyzed
with the log-rank test, and the associated P-values are shown in the graph. (H) Kaplan–Meier plot
showing overall survival of patients with high (red) or low (blue) PAI1 expression levels in the TCGA
rectal cancer patient database. P-values associated with the log-rank test are shown. (I) PAI1 expression
levels by risk group in the TCGA rectal cancer patient database (left) and in the HUVR-IBIS cohort
(right). (J) PAI1 expression levels in responder (R, pink) and non-responder (NR, green) to treatment
patients in the GSE35452 database (left) and in the HUVR-IBIS cohort (right). For (I,J), data were
compared using Student’s t-tests. *p < 0.05; **p < 0.01; ***p < 0.001. For (A–C,I,J), box plots represent:
center line, median; box limits, 25th and 75th percentiles; whiskers, minimum and maximum values.
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Then, we tested the relevance of PAI1 expression levels in the survival of patients. We found
that patients in our cohort with higher PAI1 expression showed a decrease in disease-free survival
(DFS) compared to that in patients with lower PAI1 expression, although it did not reach statistical
significance (Figure 1G; p = 0.076). This was not observed when we analyzed the overall survival
data in rectal adenocarcinoma samples from the TCGA database (Figure 1H). However, in patients
from this database we observed that individuals with higher levels of PAI1 were at a higher risk of
colorectal cancer than those with lower levels of PAI1 (p < 0.001), a result that was also observed in the
HUVR-IBIS database (p < 0.01) (Figure 1I). Accordingly, the analysis of the patient response in the
HUVR-IBIS cohort showed that non-responder patients had higher levels of PAI1 (p < 0.05), while a
non-statistically significant trend was observed in database GSE35452 (p = 0.3) (Figure 1J). Altogether,
these results suggest that PAI1 is upregulated in rectal tumors and may be associated with reduced DFS,
and that PAI1 could determine the response to treatment in rectal cancer, at least for the HUVR cohort.

3.2. PAI1 Expression Correlates with EMT-Associated Genes in Rectal Tumors

According to previous results in other types of cancer, including breast, head and neck carcinoma
and esophageal carcinoma, PAI1 is involved in invasion and metastasis, angiogenesis and proliferation,
and it confers a bad prognosis in cancer [43]. To study its role in rectal cancer, we first searched
for genes whose expression was correlated with PAI1 expression in rectal tumor samples from the
TCGA database. We found that the expression of 2024 genes correlated with that of PAI1 (R < −0.35
or R > 0.35). Gene Ontology term enrichment analyses of these genes showed biological processes
associated with cell adhesion, angiogenesis, inflammatory/immune response, cell migration and
differentiation (Figure 2A and Supplementary Dataset), which was in agreement with the well-known
function of PAI1 as a regulator of these processes.

The epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells lose their
polarity and cell-cell adhesion, and increase migratory and invasive properties to become mesenchymal
stem cells. Therefore, we wondered whether PAI1 expression could correlate with the expression levels
of EMT-associated genes in rectal tumors. To explore this possibility, we visualized in a heatmap the
expression levels of EMT-associated genes that significantly correlated with PAI1 expression in two
representative patient databases with available microarray expression data: GSE35452 and TCGA
(Figure 2B) (Note that microarray data are not available for the HUVR-IBIS cohort). We observed a
clear correlation between PAI1 expression and EMT-associated genes in both rectal tumor databases
(Figure 2B), suggesting a relation between PAI1 expression and the EMT.

Accordingly, the expression levels of VIM1, TWIST1, FOXC2 and SNAI1, the most representative
EMT-associated genes, were significantly correlated with PAI1 expression (Figure 2C). Therefore,
these data suggest that the upregulation of PAI1 in rectal tumors is correlated with the upregulation
of EMT-associated genes, which could explain the higher metastasis and tumorigenesis of tumors
expressing high levels of PAI1.
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Figure 2. PAI1 expression correlates with EMT-associated genes in rectal cancer patients. (A) Gene
Ontology term enrichment analyses of the genes whose expression levels were correlated with those of
PAI1 in the TCGA rectal cancer patient database. (B) Heatmaps showing the expression z-scores of
EMT-associated genes that correlated with PAI1 in GSE35452 and TCGA rectal cancer patient databases.
(C) Correlation of the expression levels of the EMT- associated genes VIM1, TWIST, SNAI-1 and FOXC2
with the expression levels of PAI1 in the GSE35452 and TCGA rectal cancer patient databases (46 and
94 observations, respectively). Data were analyzed using Pearson’s R correlation.
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3.3. Upregulation of PAI1 is Associated with Metastasis and Invasion in Rectal Tumors

Next, we wondered whether PAI1 expression levels were associated with metastasis in rectal
tumors. For this, we first analyzed PAI1 expression levels in rectal adenocarcinoma patients from
our cohort with and without metastasis, finding that it was significantly higher in patients with
metastasis (Figure 3A). This tendency was not statistically significant for the TCGA database. However,
rectal tumor samples from TCGA showing perineural, lymphovascular or vascular invasion showed
significantly higher levels of PAI1 expression (Figure 3B), suggesting that PAI1 may play a role in
metastasis and invasion in rectal cancer.

Invasion and metastasis-dependence on PAI1 may be responsible for the bad prognosis of the
rectal tumors. Therefore, it will be interesting to suggest possible therapeutic targets to eliminate these
malignant phenotypes.
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Figure 3. PAI-1 expression, invasion and metastasis in rectal cancer patients. (A) PAI1 expression levels
in samples of patients with (YES) or without (NO) metastasis in our own cohort from HUVR-IBIS and
the TCGA rectal cancer patient database. (B) PAI1 expression levels in samples of patients with (YES)
or without (NO) perineural, lymphovascular or vascular invasion from the TCGA rectal cancer patient
database. Student’s t-test. *p < 0.05.

3.4. PAI1 Expression Correlates with Drug Target Genes in Rectal Tumors

We have shown so far that patients of the HUVR-IBIS cohort with tumors showing upregulated
PAI1 expression have a worse prognosis and more resistance to treatment in rectal cancer (Figure 1G,I–J).
An important part of chemotherapy is based on the use of drugs or molecules that inhibit or activate
specific targets in tumor cells. Most drug targets are members of phylogenetically conserved protein
families and includes G protein-coupled receptors, protein kinases, nuclear hormone receptors, serine
proteases and ion channels. Therefore, we analyzed drug target genes whose expression correlated
with PAI1 expression in rectal adenocarcinoma patients from the TCGA database, since microarray
data were not available for the HUVR-IBIS cohort (Figure 4A). Among the found drug target genes,
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we observed highly significant positive correlations for some of the most representative drug target
genes used in the treatment of rectal cancer (Figure 4B).

These included platelet-derived growth factor receptors (PDGFRs): PDGFRB (R = 0.71, p < 0.0001;
Figure 4C) and PDGFRA (R = 0.43, p < 0.0001; Figure 4C). PDGFRs are cell surface type III receptor
tyrosine kinases that have been shown to increase proliferation and migration in several tumors [44–48].
PDGFR-α and PDGFR-β are expressed in CRC tissues and these factors were revealed to stimulate
invasion and liver-metastasis formation in mice, having been related with recurrence in this type of
cancer [49,50]. FGFR1 (R = 0.61, p < 0.0001; Figure 4C) is a member of the Fibroblast Growth Factor
family whose alterations have been recently identified as likely mechanisms of primary and secondary
resistance to therapy using anti-EGFR antibody in CRC [51].
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Figure 4. PAI1 expression correlates with drug target genes in rectal cancer patients. (A) Heatmap
showing the expression z-scores of drug target genes that correlate with PAI1 in the TCGA rectal cancer
patient database. (B) Heatmap showing the z-scores of the most significant drug target genes that
correlated with PAI1 in the TCGA rectal cancer patient database. (C) Correlation of the expression levels
of the drug targets genes PDGFRa, PDGFRb, FGFR1, PIM1, FYN and BRAF with the expression levels
of PAI1 in the TCGA rectal cancer patient databases. Data were analyzed using Pearson´s R correlation.

The proto-oncogene serine/threonine-protein kinase PIM1 (R = 0.34, p < 0.0001; Figure 4C)
is overexpressed in many types of cancers, including CRC, leading to tumor development and
progression [52–55]. The FYN gene (R = 0.49, p < 0.0001; Figure 4C) encodes a membrane-associated
tyrosine kinase that has been involved in the control of cell growth and in the regulation of EMT
and metastasis in CRC [56]. Finally, the BRAF gene (R = 0.38, p < 0.0001; Figure 4C) encodes a
serine/threonine kinase and BRAF mutations have been associated with poor prognosis and less
response to treatment in metastatic CRC [57]. Altogether, these results suggest that the worse prognosis
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and increased resistance to treatment in rectal cancer patients with upregulated PAI1 may be linked to
the overexpression of several drug targetable genes.

3.5. Resistance to AZD1208 is Associated with PAI1 Expression Levels in Rectal Tumors.

To explore this point, we searched for inhibitors specific for the main lines of targetable proteins
correlating with PAI1 expression. We selected Dasatinib, vemurafenib and AZD1208, inhibitors
of broad-spectrum tyrosine kinases, BRAF and Pim Ser/Thr kinases, respectively. Dasatinib is
a multitargeted kinase inhibitor proven to be effective for the treatment of several malignancies,
including several types of cancers such as CRC [58]. Dasatinib inhibits a broad spectrum of kinases,
including Kit, PDGFR, FGFR1 and many others, although it is relatively specific for the Src and Abl
family kinases such as Fyn, Yes, Src, and Lyk [59]. As shown by several preclinical studies, Src inhibitors
like dasatinib are able to overcome chemoresistance and resistance to targeted agents, such as the EGFR
monoclonal antibody cetuximab [60–63]. Vemurafenib is the first BRAF serine-threonine kinase protein
inhibitor authorized for the treatment of adult patients with unresectable or metastatic melanoma with
a BRAF V600E positive mutation. Mutations in the BRAF gene substitute the amino acid valine for
glutamic acid at position 600 and lead to the oncogenic activation of BRAF proteins. AZD1208 is a
potent and selective inhibitor that affects all three isoforms of serine-threonine Pim kinases.

We wondered whether PAI1 expression levels could determine the resistance to dasatinib,
vemurafenib or AZD1208. To test this, we first analyzed the expression levels of PAI1 in a panel of
eight CRC cell lines by Western blot, both intra and extracellular, showing a high variability among
them (Figure 5A–B). Next, these cells were treated with different doses of dasatinib, vemurafenib
and AZD1208 to calculate the IC50 using the MTT assay as a readout of their sensitivity. We detected
similar sensitivity/resistance behavior to the B-Raf inhibitor vemurafenib in all cell lines independently
of PAI levels (Figure 5C; Table S4). For dasatinib, we found more heterogeneous results, although
sensitivity was not correlated with PAI1 protein levels either (Figure 5C; Table S4). Interestingly,
the analysis with the Pim inhibitor AZD1208 showed that, although the IC50 was negatively correlated
with PAI1 protein levels, most of the cell lines expressing PAI1 were similarly affected by AZD1208
treatment, in contrast to cell lines expressing undetectable levels (Figure 5C; Table S4), indicating that
PAI1 expression determines sensitivity to AZD1208-mediated PIM inhibition. The mutation status of
KRAS, BRAF and PI3KCA did not seem to be related to the degree of sensitivity of these cell lines to
AZD1208. Therefore, our data may suggest that PIM inhibition may be a suitable treatment for the
patients with a worse prognosis due to high levels of PAI1 in rectal tumors.
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Figure 5. PAI1 expression correlates with sensitivity to the PIM inhibitor AZD1208 but not with Tyr
Kinases inhibitor Dasatinib nor B-Raf inhibitor vemurafenib. (A) Intracellular and extracellular protein
levels of PAI1 in CRC cell lines by Western blot. α-tubulin (α-tub) is used as the intracellular loading
control, and total protein as the extracellular control. (B) Quantification of PAI1 protein levels from
(A) relative to α-tub for intracellular quantification or to total protein for extracellular quantification
(total protein measured with Ponceau staining). (C) Scatter plots showing the IC50 value (concentration
that induces a 50% of cell death) to Vemurafenib, Dasatinib or the PIM inhibitor AZD1208 for the cell
lines in (A), versus the PAI1 protein levels from (B). The Pearson’s R correlation coefficient is shown
with the associated P-value. IC50 values plotted in C are the average of three independent experiments.
The range of concentration for the drugs is 0–300 µM.

4. Discussion

In Europe, 200,000 new cases of rectal cancer were diagnosed in 2018. Rectal cancer is a highly lethal
cancer, with only 20% of patients showing a complete response after surgery and even responding
patients inevitably developing refractory disease [1]. This is due to its late detection and to the
development of chemotherapy resistance to common treatments. Thus, it is essential to find new
biomarkers to stratify patients with advanced or metastatic rectal cancer and predict their response in
order to overcome chemotherapy resistance. Here, we found that PAI1 gene expression is upregulated
in rectal cancer and that this upregulation may reduce the DFS and the response to treatment of patients,
at least those of our cohort (HUVR-IBIS), and could be used as a bad prognosis marker (Figure 1).
Moreover, high expression levels of PAI1 are associated with increased metastasis and invasion of
rectal tumors in this cohort and TCGA database, respectively (Figure 3), which is correlated with
EMT-associated and drug target genes expression, including PDGFRa, PDGFRb, FYN, PIM1 and BRAF
(Figures 2 and 4). Strikingly, cells expressing PAI1 protein are more sensitive to PIM inhibitor AZD1208
(Figure 5), suggesting that PAI1 could be used to predict increased efficacy of this PIM inhibitor and
may complement radiotherapy in rectal tumors.
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PAI1 belongs to the family of serine protease inhibitors, also known as serpins, and is the main
regulator of the plasminogen activation system, acting by inhibition of tPA and uPA. PAI1 deregulation
has been associated with cardiovascular diseases, obesity, metabolic syndrome and various types of
cancer [12]. We found that PAI1 gene expression is upregulated in several CRC public datasets and
validated this with our own cohort of patients with advanced rectal cancer (HUVR-IBIS). Patients
with higher PAI1 expression show a decrease in the survival probability in our patient database,
as compared to patients with lower PAI1 expression. This suggests that PAI1 expression could be a
potential independent biomarker for survival. Accordingly, we found that patients with higher PAI1
expression showed a tendency to respond worse to treatment in the HUVR-IBIS cohort. Moreover,
PAI1 expression is also correlated with poor outcome in several other cancer subtypes, particularly in
ovarian serous carcinoma and node-negative breast cancer [18,19]. In fact, PAI1 has been validated
clinically in breast cancer as a biomarker [32]. Furthermore, PAI1 expression is significantly enhanced
in some other cancers, including stomach adenocarcinoma, head and neck squamous cell carcinoma,
esophageal carcinoma or thymoma [13]. Additionally, an increase in the plasma levels of PAI1 has been
shown in acute leukemia, breast cancer, hepatocarcinoma and colon cancer [14–16]. However, bladder
urothelial carcinoma and testicular germ cell tumors do not show differences in PAI1 expression
between normal and tumoral tissue [13], indicating that PAI1 is a common but not universal biomarker
of cancer progression.

We have observed that high expression levels of PAI1 are associated with increased metastasis
and invasion in rectal tumors of the HUVR-IBIS and TCGA cohorts, respectively, and that, accordingly,
it is highly significantly correlated with EMT-associated gene expression in the latter database and
in the GSE35452 (Figures 2 and 3). In agreement with our results, overexpression of PAI1 was
significantly associated with metastasis and invasion in lung, head and neck and breast cancers,
as well as osteosarcoma [20–22]. In contrast, PAI1 has been shown to have an inhibitory effect over
cell migration and invasion in other types of cancer, as it is the case in pancreatic cancer, glioma or
melanoma [23,24]. Therefore, it seems that the outcomes of PAI1 overexpression depends on the
cellular context. In line with the pro-metastatic role of PAI1, it has been shown to facilitate invasion and
lung metastasis in osteosarcoma cells by promoting MMP13 expression and secretion [20]. Moreover,
it has been described that PAI1 and CCL5 signaling in endothelial cells leads to increased metastasis in
EMT-induced triple-negative breast cancer cells [22]. Finally, clinical data showed a significant increase
in PAI1 levels in plasma of CRC patients with liver metastasis and infiltration [14].

Our analyses using rectal cancer patient public databases showed that non-responder rectal cancer
patients had higher expression levels of PAI1 in the HUVR-IBIS cohort (Figure 1H; GSE35452; [39]).
Moreover, we showed that PAI1 expression positively correlates with the expression of several drug
targets genes, including PDGFRa, PDGFRb, FYN, PIM1 and BRAF in the TCGA database (Figure 4).
A high number of preclinical studies have demonstrated the ability of Src inhibitors like dasatinib to
inhibit most of these drug target genes, as PDGFRa, PDGFRb or FYN, and to overcome chemoresistance
in CRC [60–67]. However, clinical trials with dasatinib combined either with conventional chemotherapy
or with suppression of EGFR by cetuximab and with FOLFOX, failed to show any meaningful clinical
response [68,69]. A recent study showed that this failure in clinical trials is possibly due to the fact that
Desatinib reduces apoptosis triggered by 5-FU in colon carcinoma [70]. However, data from our own
laboratory suggest that dasatinib may be active in combination with oxaliplatin (but not with 5-FU)
only in patients whose tumors show high p-Src levels [66].

Our data suggest that treatment with PIM inhibitors may be beneficial in combination with
radiotherapy in patients with tumors showing PAI1 expression. Therefore, PAI1 can be used to select
patients for whom this combination therapy could be beneficial. Overexpression of PIM kinases
is common in many types of tumors, including CRCs [71,72]. Indeed, both in vitro and in vivo
studies have shown that individual PIM kinases are weak oncogenes that can become stronger ones
in cooperation with c-MYC in some tumors. These precedents suggest that PIM kinases may be
good targets for drug development [73,74]. The pan-PIM kinase inhibitor AZD1208 acts over the
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serine/threonine kinases PIM1, 2 and 3, which may result in cell cycle arrest and apoptosis when those
kinases are overexpressed. We used it as a tool compound to prove that one of the drug target paths
correlating with PAI1 expression may be suitable to compensate tumor survival after radiotherapy and
poor prognosis. We demonstrated that PAI1 expression leads to sensitivity to AZD1208 PIM inhibitor,
suggesting that PAI1 expression could be used as a prognosis marker to stratify patients with bad
prognosis of the rectal tumors and predict increased efficacy of this PIM inhibitor.

5. Conclusions

Our study shows that PAI1 expression is upregulated and correlates with decreasing survival
and increasing metastasis and invasion. Moreover, we propose PAI1 as a new predictive marker to
stratify patients according to their response to standard treatment in rectal cancer. We demonstrate
using a panel of CRC cell lines the sensitivity to AZD1208 Pim inhibitors of cells with PAI1 expression,
suggesting that PAI1 could be used as a prognosis marker to stratify rectal cancer patients and predict
increased efficacy of this Pim kinase inhibitor in those with a bad prognosis.
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