

1. Supplementary figures

Figure S1. Neuroblasts from the striatum mature into NeuN+ neurons following stroke. (**A**) NeuN⁺ cells were quantified and compared between the injured hemisphere of $Rbpj^{-/-}$ mice (12±7 cells/section; mean±SD), the uninjured hemisphere of the same animals (5±2 cells/section; mean±SD; p=0.125), and the injured hemisphere of $Rbpj^{+/+}$ mice (6±9 cells/section; mean±SD; p=0.145). (**B**) Close-up of a NeuN⁺/Tomato⁺ cell found in the penumbra of the stroke area (scalebar = 10 μ m).

Cells 2020, 9, x

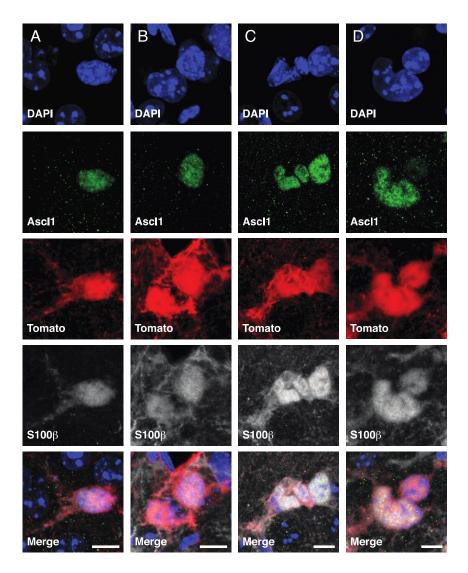
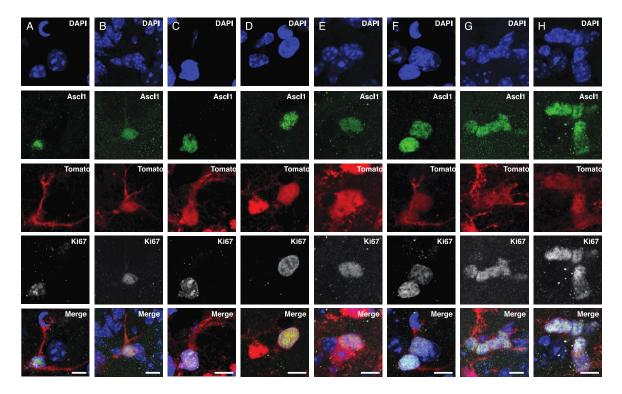



Figure S2. Ascl1+/Tomato+ cells in the penumbra of stroke maintain the expression of the astrocytic marker S100β: (A–B) Astrocytes during the first stages of differentiation maintain their typical morphology and expression of the marker S100β while starting to express the proneural transcription factor Ascl1; (C–D) Ascl1+ clusters, which maintain the expression of the astrocyte marker S100β, lose the astrocytic processes and assume a round morphology more reminiscent of transient amplifying progenitor cells (all scalebars = $10\mu m$).

Cells 2020, 9, x 3 of 3

Figure S3. Ascl1 $^{+}$ /Tomato $^{+}$ cells in the penumbra of stroke express the proliferation marker Ki67 and proliferate to form clusters: (**A–E**) Single Ascl1 $^{+}$ /Tomato $^{+}$ cells express the cell proliferation marker Ki67 during the first stages of the cluster formation, while they maintain the typical morphology of astrocytes; (**F–H**) Clusters of Ascl1 $^{+}$ /Tomato $^{+}$ cells lose the astrocyte processes and assume a round shape after the first divisions while continuing proliferation (all scalebars = $10\mu m$).