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Abstract: Nerve injury-induced neuropathic pain is difficult to treat and mechanistically characterized
by strong neuroimmune interactions, involving signaling lipids that act via specific G-protein coupled
receptors. Here, we investigated the role of the signaling lipid receptor G2A (GPR132) in nerve
injury-induced neuropathic pain using the robust spared nerve injury (SNI) mouse model. We found
that the concentrations of the G2A agonist 9-HODE (9-Hydroxyoctadecadienoic acid) are strongly
increased at the site of nerve injury during neuropathic pain. Moreover, G2A-deficient mice show a
strong reduction of mechanical hypersensitivity after nerve injury. This phenotype is accompanied by
a massive reduction of invading macrophages and neutrophils in G2A-deficient mice and a strongly
reduced release of the proalgesic mediators TNFα, IL-6 and VEGF at the site of injury. Using a global
proteome analysis to identify the underlying signaling pathways, we found that G2A activation in
macrophages initiates MyD88-PI3K-AKT signaling and transient MMP9 release to trigger cytoskeleton
remodeling and migration. We conclude that G2A-deficiency reduces inflammatory responses by
decreasing the number of immune cells and the release of proinflammatory cytokines and growth
factors at the site of nerve injury. Inhibiting the G2A receptor after nerve injury may reduce immune
cell-mediated peripheral sensitization and may thus ameliorate neuropathic pain.

Keywords: neuropathic pain; 9-HODE; oxidized linoleic acid metabolites; macrophage migration;
G2A; GPR132

1. Introduction

Neuropathic pain is a form of chronic pain induced by lesions, diseases, chemicals or tumor
invasion of the somatosensory nervous system [1,2]. Neuropathic pain affects millions of people
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worldwide and is difficult to treat due to lack of satisfactory medication and undesirable side
effects [3–5].

Typical symptoms of neuropathic pain are allodynia—pain perception by harmless stimuli,
hyperalgesia—increased pain perception by painful stimuli, or spontaneous pain [6–10]. Thereby,
the normally high thresholds of peripheral nociceptors to mechanical and thermal stimuli are drastically
reduced [9,11–13]. This peripheral sensitization is caused by neuroimmune interactions involving
migration and infiltration of immune cells to the site of injury and the release of proinflammatory factors
in nerve injury-induced neuropathic pain [6,11,14]. This interaction is known to modulate neuronal
ion channels, such as the transient receptor potential vanilloid 1 (TRPV1) channel, thereby altering
pain perception during neuropathic pain [6,12,13]. In nerve injury-induced neuropathic pain during
the process of neuroimmune communication, signaling lipids play an important role and several lipid
receptors have been identified as crucial mediators of onset, maintenance and resolution of different
pathological pain states [15]. The linoleic acid metabolite 9-hydroxyoctadecadienoic acid (9-HODE) is
the ligand of the G-protein coupled receptor G2A (GPR132), which is known to sensitize TRPV1 via Gq

and activation of protein kinase C (PKC) [15–17]. G2A belongs to the group of proton-sensing GPCRs
and is expressed in TRPV1-positive primary sensory neurons, but mainly in immune cells [18,19].
In the group of proton-sensing GPCRs, G2A shows the weakest response to acidic pH and seems to
be a receptor for signaling lipids rather than for acidic conditions [20,21]. It has also been suggested
before that G2A is responsible for the migration of leukocytes, but the underlying signaling pathways
are still unclear [22–24].

The strong expression of this crucial lipid receptor in both sensory neurons and immune cells led
us to the hypothesis that G2A is involved in immune cell migration and peripheral sensitization after
nerve injury.

Here, we used the spared nerve injury, an acute neuropathic pain model with a strong inflammatory
component, to investigate the role of G2A in neuropathic pain. We show that G2A-deficiency results in
reduced mechanical hypersensitivity in vivo and leads to a markedly reduced number of immune cells
and inflammatory mediators at the site of nerve injury, indicating a pivotal role of the G2A receptor in
the initiation and progression of nerve injury-induced neuropathic pain.

2. Materials and Methods

2.1. Ethics Statement

All animals involved in the presented experiments were approved by the local Ethics Committees
for Animal Research (Darmstadt, Germany) under the permit numbers FK/1046 and FK/1113.
The animal experiments were performed according to the recommendations of the Guide of the
Care and Use of Laboratory Animals of the National Institutes of Health (Guide for the Care and Use
of Laboratory Animals, Washington, DC, USA, 2011). All efforts were made to minimize suffering.

2.2. Animals

In all behavioral experiments, wild-type and G2A-deficient mice with C57BL/6NRj background
were matched in sex and age (9–16 weeks). Wild-type mice were purchased from commercial
breeding companies (Janvier, Le Genest-Saint-Isle, France). The G2A-deficient mice were generated
previously in the lab of Owen Witte, University of California (San Francisco) [25] and were bred at
MFD diagnostics (Wendelsheim, Germany). During all behavioral experiments, the experimenter was
blinded. Preclinical pain experiments were in accordance with the suggestions from the Preclinical
Pain Research Consortium for Investigating Safety and Efficacy (PPRECISE) Working Group [26].

2.3. Spared Nerve Injury (SNI)

For behavioral experiments, spared nerve injury was performed. After anesthesia of the mice,
the sciatic nerve was exposed by blunt dissection on the level of the knee joint. Then, the peroneal and
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the tibial branches of the sciatic nerve were ligated with 6/0 non-sterile silk thread and cut distally
from the ligature [27].

2.4. Behavioral Experiments

Determination of mechanical pain thresholds were performed by using a Dynamic Plantar
aesthesiometer (Ugo Basile, Comerio, Italy). For this purpose, mice were sitting on an elevated grid
in test cages for at least 1 h for accommodation before measurement. For baseline measurements,
a steel rod was applied to the plantar side of the hind paw with linear ascending force (0–5 g over 10 s,
in 0.5 g/s intervals). The time of the first contact of the steel rod until paw withdraw was measured in
seconds (paw withdraw latency). Here, a cut-off time of 20 s was set [28]. After baseline measurements,
the SNI surgery was performed followed by further dynamic plantar measurements.

2.5. Tissue Isolation

Mice were sacrificed and the sciatic nerve was dissected from injured (ipsilateral) and uninjured
sites (contralateral) followed by freezing either in liquid nitrogen for RNA isolation or embedding in
tissue tek (Sakura Finetek Europe, Alphen aan den Rijn, Netherlands) for slice preparation. Afterwards,
the spinal cord of L1–L4 was dissected and incubated overnight in 20% sucrose solution at 4 ◦C. Then,
the spinal cord was embedded vertically in tissue tek for following serial sections of 12 µm thickness
by use of a cryostat (Leica, Frankfurt, Germany).

After dissecting the spinal cord, L4 to L6 DRGs were isolated and shock-frozen in fluid nitrogen
for RNA isolation.

2.6. qRT-PCR

RNA was isolated from DRGs with a mirVana miRNA Isolation Kit (Applied Biosystems).
Afterwards, RNA was quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Waltham, MA, USA). 400 ng RNA was used for cDNA synthesis. For reverse transcription,
the First Strand cDNA Synthesis Kit was used according to the manufacturer’s description). For the
following qPCR, a TaqMan® Gene Expression Assay System was used according to the manufacturers
description (Thermo Scientific, Waltham, MA, USA) and as previously reported [29]. Afterwards,
the qPCR program was conducted with the QuantStudio™ Design and Analysis Software v1.4.3
(Thermo Fisher,) and evaluated using the ∆∆C(T) method, as described previously [30].

2.7. Immunohistochemistry

For immunohistochemical staining, spinal cord or nerve tissue was prepared into 12 µm slices.
The slices were fixed with 2% PFA in PBS (pH 7.4) for 20 min. After washing the slices for 5 min with
PBS, they were permeabilized in PBST (PBS + 0.1% triton X) for 10 min. Then, samples were blocked
for 45 min in 3% BSA in PBST. As first antibodies, GFAP (NB300-141, novusbio, Centennial, CO, USA)
in 1:1000 dilution for spinal cord or F4/80 (ab6640, abcam, Cambridge, UK) and CD11b (ab133357,
abcam) in 1:100 dilution for nerve were used. After incubation over night at 4 ◦C, the second antibodies,
anti-rabbit Cy 3 (C2306-1ML, Sigma, Deisenhofen, Germany) and anti-rat AF488 (ab150157, abcam),
were incubated in a dilution of 1:1000 at room temperature for 1 h. Afterwards, the slices were stained
with DAPI 1:1000 (6335.1, Carl Roth, Karlsruhe, Germany). Pictures of the stained slices were taken
with the fluorescence microscope Observer.Z1 (Carl Zeiss, Oberkochen, Germany) [31].

2.8. ELISA and Multiplex Assays

For protein detection, dissected nerve tissues were chopped, spinal cord samples were pottered,
and afterwards, DRG, spinal cord and nerve samples were sonicated (2 × 60%, 10 s) in 100–500 µL
of, respectively, cell lysis buffer, a mixture of phosphosafe (Merck, Darmstadt, Germany) and
protease-inhibitor (Roche Holding AG, Basel, Switzerland) or ice-cold PBS (R&D systems, Minneapolis,
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MN, USA/Ray Biotech, Peachtree Corners, GA, USA). Afterwards, the samples were centrifuged for
10 min at 10,000 rpm. The supernatant was then used for Bradford (Sigma-Aldrich) measurements,
as described previously (Bradford 1976), followed by IL-1β (R&D systems, Minneapolis, Minnesota,
USA), IL-6, TNFα (Ray Biotech), NGF (DLDevelop, Wuxi, Jiangsu, China), ELISA or Luminex Multiplex
measurements (Invitrogen, Carlsbad, CA, USA). In the Luminex Multiplex measurement, the following
cyto- and chemo-kines were measured: FGFβ, GM-CSF, IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6,
IL-10, IL-12 (p40/p70), IL-13, Il-17, IP-10, KC, MCP-1, MIG, MIP-1α, TNF-α and VEGF. The different
ELISAs and the Luminex Multiplex were performed according to the manufacturer’s description.
All samples were measured in duplicates. For calculation of the protein concentrations, Graph Pad
Prism 7 was used.

2.9. Differentiation and Stimulation of Bone Marrow-Derived Macrophages

Mice were sacrificed, and the hind legs were dissected from the body and transferred into
PBS. The bones were cleaned from muscle tissue, cut open and then centrifugated (13,000 rpm,
1 min, RT) to isolate the bone marrow. Afterwards, 12.5 mL medium (RPMI 1640—GlutaMAX™-I,
Invitrogen, Carlsbad, USA, with 10% FCS, 1% penicillin/streptomycin) was mixed with 0.2 µL/mL
M-CSF (100 µg/mL, Preprotech, Hamburg, Germany) and used for resuspension of the bone marrow.
Afterwards, the suspension was transferred to a 6-well plate. Cells were incubated over night at 37 ◦C
and cultivated for seven days, as previously described [22].

Then cells were stimulated with 1 µM 9 HODE for 0, 5, 10 and 15 min, or 24 h. Afterwards,
cells were harvested with a cell scraper in 50:50 Phosphosafe:cOmplete protease-inhibitor cocktail
(100 µL/well). Then, the cells were sonicated twice (60%, 10 s) and total protein amount was determined
by Bradford Protein Assay [16,22,32].

2.10. Proteome Anaylsis

2.10.1. Sample Preparation for LC-MS2

Proteomics were performed as previously described with some adjustments [33]. Lysates were
precipitated using 3 volumes of ice-cold methanol, 1 volume Chloroform and 2.5 volumes ddH2O.
After centrifugation (14,000× g, 45 min, 4 ◦C), the upper aqueous phase was aspirated, and 3 volumes
of ice-cold methanol were added. Samples were mixed and proteins pelleted by centrifugation
(14,000× g, 5 min, 4 ◦C). The pellets were washed with ice-cold methanol. Protein pellets were dried at
RT and then resuspended in 8 M Urea, 10 mM EPPS pH 8.2 and 1 mM CaCl2, followed by protein
concentration determination using a µBCA assay (ThermoFisher Scientific, 23235). Samples were
then diluted to 2 M urea using digestion buffer (10 mM EPPS pH 8.2, 1 mM CaCl2) and incubated
with the endoproteinase LysC (Wako Chemicals, Neuss, Germany) at a 1:50 (w/w) ratio overnight
at 37 ◦C. Then, digestion reactions were diluted to 1 M Urea using digestion buffer and incubated
at a 1:100 (w/w) ratio of trypsin (V5113, Promega, Madison, WI, USA) for 6 h at 37 ◦C. Digests
were acidified to a pH of 2–3 using trifluoroaceticacid (TFA). Peptides were purified with SepPak
tC18 columns (WAT054955, Waters Milford, MA, USA) according to the manufacturer’s instructions.
Eluates were dried and peptides were resuspended in TMT labeling buffer (0.2 M EPPS pH 8.2,
10% Acetonitrile). Peptide concentration was determined by µBCA. Peptides were mixed with TMT
reagents (ThermoFisher Scientific, 90111, A37724, 90061) at 1:2 (w/w) (2 µg TMT reagent per 1µg
peptide). Reactions were incubated (1 h, RT) and subsequently quenched by addition of hydroxylamine
to a final concentration of 0.5% (15 min, RT). Samples were pooled in equimolar ratio (unless stated
otherwise), acidified, and dried.

Before MS-analysis and fractionation, peptide samples were purified using either Empore C18
(Octadecyl) resin material (3M Empore) or tC18 SepPak (50mg, Waters). Material was activated by
incubation with Methanol for 5 min, followed by washing each with 70% acetonitrile/0.1% TFA and 5%
acetonitrile/0.1% TFA. Samples were resuspended in 5% acetonitrile, 0.1% TFA and loaded to resin
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material. Peptides were washed with 5% acetonitrile/0.1% TFA and eluted with 70% acetonitrile (ACN).
Samples were dried for future use.

2.10.2. High-pH Reverse Phase Fractionation

For high-pH reversed phase fractionation on the Dionex HPLC, 500 µg of pooled and purified
TMT-labelled samples were resuspended in 10 mM ammonium-bicarbonate (ABC), 5% ACN,
and separated on a 250 mm long C18 column (Aeris Peptide XB-C18, 4.6 mm ID, 2.6 µm particle size;
Phenomenex, Aschaffenburg, Germany) using a multistep gradient from 100% Solvent A (5% ACN,
10 mM ABC in water) to 60% Solvent B (90% ACN, 10 mM ABC in water) over 70 min. Eluted peptides
were collected every 45 s into a total of 96 fractions, which were cross-concatenated into 12 fractions
and dried.

2.10.3. LC-MS3

Peptides were resuspended in 0.1% FA and separated on an easy nLC 1200 (ThermoFisher
Scientific) and a 22 cm long, 75 µm ID fused-silica column, which has been packed in house with
1.9 µm C18 particles (ReproSil-Pur, Dr. Maisch, Ammerbruch-Entringen, Germany), and kept at 45 ◦C
using an integrated column oven (Sonation). Peptides were eluted by a non-linear gradient from 5–38%
acetonitrile over 120 min and directly sprayed into a Fusion Lumos mass spectrometer equipped with
a nanoFlex ion source (ThermoFisher Scientific) at a spray voltage of 2.6 kV. Full scan MS spectra
(350–1400 m/z) were acquired at a resolution of 120,000 at m/z 200, a maximum injection time of 100 ms
and an AGC target value of 4× 105 charges. MS2 scans were performed for up to the 10 most intense
ions in the IonTrap (Rapid), with an isolation window of 0.7 Th, a maximum injection time of 85 ms,
and CID-fragmented using a collision energy of 35% for 10 ms. SPS-MS3 was performed on the 10 most
intense MS2 fragment ions with an isolation window of 0.7 Th (MS1) and 2 m/z (MS2). Ions were
fragmented using HCD with a normalized collision energy of 65 and analyzed in the Orbitrap with a
resolution setting of 50,000 at m/z 200, scan range of 110–500 m/z, AGC target value of 1 × 105 and a
maximum injection time of 86 ms. Dynamic exclusion was set to 45 s to minimize repeated sequencing
of already acquired precursors. Raw filed data were processed with Proteome Discoverer 2.2 software
and searched against the mouse SwissProt reference database, including isoforms (2018-12-10) and
common contaminants. PSMs were filtered for a co-isolation threshold of 50% and an average reporter
S/N of at least 10. For quantification, only unique peptides were considered, and data was corrected
for impurities according to Lot-number and normalized using the total peptide amount to account for
unequal loading in the TMT multiplex.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository (Proteomics Identifications Database) with the dataset identifier
PXD019836 [34].

2.11. Western Blot

For Western Blot analysis, 20 to 30µg of protein of treated bone marrow-derived macrophages were
separated by SDS-polyacrylamide gel electrophoresis (4% stacking gel, 12% running gel). Blotting of
the proteins was performed using the Trans-Blot®Turbo™ Transfer System (BioRad, Hercules, CA,
USA) and a nictrocellulose membrane (Sigma-Aldrich, St. Louis, Missouri, USA).

Afterwards, the membrane was blocked with 5% milk powder in TN buffer for 2 h following
antibody incubation over night at 4 ◦C: p-ERK 1:1000 (4377S, Cell Signaling, Frankfurt am Main,
Germany), ERK 1:1000 (sc-1647, Santa Cruz Biotechnology, Dallas, TX, USA), p-p38 1:1000 (9211,
Cell Signaling, Frankfurt am Main, Germany), p-38 1:1000 (9212, Cell Signaling), ROCK-1 1:500 (ab45171,
abcam), ROCK-2 1:500 (ab71598, abcam,), Transgelin 1:1000 (NB600-507, novusbio), PTK7 1:500 (AF4499,
R&D Systems), MMP9 1:1000 (AF909, R&D Systems), ITGA2B 1:1000 (orb376331, biorbyt, Cambridge,
UK), CXCR4 1:1000 (BS-1011R, biossantibodies, Woburn, MA, USA), ELMO-1 (ab2239, abcam).
As loading controls, either HSP90 1:1000 (sc-13119, Santa Cruz, Dallas, TX, USA) or GAPDH 1:1000
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(ab8245, abcam) were used. Detection of proteins was performed with HRP-coupled secondary
antibodies in a dilution of 1:5000 (ab97110, abcam; A9169-2ML and A9044-2ML, Sigma-Aldrich)
and an ECL reagent (Thermo Scientific) [35]. Quantification of protein amount was determined by
densitometrical analysis with GelAnalyzer 2010 software [36].

2.12. Fluorescence-Activated Cell Sorting (FACS) Analysis

Single-cell suspension of ipsi- and contra-lateral nerves, spinal cord and L4–L6 DRGs were
generated by chopping the nerves into small pieces, mincing the spinal cord and then incubating
all the tissues in DMEM (Invitrogen) with 3 mg/mL collagenase (Sigma) and 1 µL/mL DNase
(Promega) (30 min, 37 ◦C, 95% O2) with shaking the samples every 10 min. Afterwards, DMEM
with 10% FCS was added to the samples. Samples were then transferred through a 70 µm filter.
The filter was washed with 0.5% BSA (Sigma) in PBS. Afterwards, cells were centrifuged (400× g,
5 min) and washed with 0.5% BSA in PBS. Single-cell suspensions were blocked with FcR blocking
reagent (Miltenyi Biotec, Bergisch Gladbach, Germany) in 0.5% PBS-BSA for 20 min, stained with
fluorochrome-conjugated antibodies and analyzed on a LSR II/Fortessa flow cytometer or sorted using
a FACS Aria III cell sorter (BD Biosciences, Franklin Lakes, NJ, USA). Data were analyzed using FlowJo
V10 (TreeStar). All antibodies and secondary reagents were titrated to determine optimal concentrations.
Comp-Beads (BD) were used for single-color compensation to create multicolor compensation matrices.
For gating, fluorescence minus one controls were used. The instrument calibration was controlled
daily using Cytometer Setup and Tracking beads (BD Biosciences). For characterization of immune
cell subsets in nerve, DRGs or spinal cord, the following antibodies were used: anti-CD3-PE-CF594,
anti-CD4-V500, anti-CD8-BV650, anti-CD11b-BV605, anti-CD11c-AlexaFluor700, anti-CD19-APC-H7,
anti-Ly6C-Per-CP-Cy5.5, anti-NK1.1 PE (BD Biosciences), anti-CD45-Vio-Blu, anti-MHC-II-APC
(Miltenyi Biotec), anti-F4/80-PE-Cy7, anti-GITR-FITC and anti-Ly6G-APC-Cy7 (BioLegend, San Diego,
CA, USA) [37].

2.13. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for the Determination of
Lipid Mediators

The following reference substances as well as their deuterated analogues used as internal
standards were purchased from Cayman Chemical (Ann Arbor, USA): 9(10)- and 12(13)-EpOME,
(epoxyoactadecenoid acid) 9,10- and 12,13—DiHOME dihydroxyoactedecenoic acids), 9- and 13-HODE,
(hydroxyoctadecadecenoic acis), 5,6-, 8,9-, 11,12- and 14,15-EpETrE (EET, epoxyeicosatrienoic acids),
5,6-, 8,9-, 11,12- and 14,15-DiHETrE (DHET, dihydroxyeicosatrienoic acids), 17(18)-EpETrE (EEQ,
epoxyeicosatetraenoic acid) and 19(20)-EpDPA (EDP, epoxydocosapentaenoic acid).

After dissecting the contralateral and ipsilateral sides of sciatic nerve, the L4–L6 dorsal root
ganglia and the spinal cord from euthanized animals, the samples were directly frozen in liquid
nitrogen. The tissue weight was determined, and lipid quantification was performed as described
previously [16,38]. Briefly, tissue samples were homogenized using a swing mill and analytes were
extracted from homogenates using liquid–liquid extraction with ethyl acetate after spiking with
a mixture of the deuterated internal standards. After liquid–liquid extraction, combined organic
phases were removed at a temperature of 45 ◦C under a gentle stream of nitrogen. The residues
were resuspended in 50 µL of methanol/water/BHT (50:50:10−4, v/v/v), then centrifuged for 2 min at
10,000× g and transferred to glass vials (Ziemer GmbH, Langenwehe, Germany).

For calibration, PBS samples were spiked with working solutions of the analytes (prepared in
methanol/BHT (100:0.1 (v/v)) and processed as described for the homogenates.

The LC-MS/MS system consisted of a triple quadrupole tandem mass spectrometer QTRAP 5500
(Sciex, Darmstadt, Germany) equipped with a Turbo-V source operating in negative electrospray
ionization mode, an Agilent 1200 binary HPLC pump and degasser (Agilent, Waldbronn, Germany)
and a HTC Pal autosampler (CTC analytics, Zwingen, Switzerland).
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Chromatographic separation of the lipids was performed using a Gemini NX C18 column and
precolumn (150 × 2 mm inner diameter, 5 µm particle size and 110 Å pore size; Phenomenex) and a
linear gradient using a flow rate of 0.5 mL/min in a total run time of 17.5 min. Thereby, the gradient
changed from 85% mobile phase A (water:ammonia 100:0.05, v/v), to 10% A and 90% mobile phase B
(acetonitrile:ammonia 100: 0.05, v/v). The conditions were held for 1 min until the mobile phase shifted
back to 85% A. These conditions were maintained for 4 min to re-equilibrate the column.

Analyst software version 1.6.3 (Sciex) was used for data acquisition, while further quantification
was performed with Multiquant Software version 3.0.2 (Sciex) using the internal standard method
(isotope-dilution mass spectrometry). Calibration curves were calculated by linear regression with
1/concentration weighting.

2.14. Data Analysis and Statistics

All data are presented as mean ± SEM. Determination of statistically significant differences in
all behavioral experiments was conducted with two-way analysis of variance (ANOVA) followed by
post hoc Bonferroni correction using GraphPad Prism 7. For in vitro experiments comparing only
two groups, Student’s t test was carried out with Welch’s correction, and for comparing more than
two groups, one-way ANOVA was used. The comparison of more groups with different conditions,
including behavioral experiments, was performed with two-way ANOVA followed by post hoc
Bonferroni or Holm-Sidak correction. A p-value of <0.05 was considered statistically significant.
Lipidomic data were tested for normal distribution with the Shapiro–Wilk Test using GraphPad Prism
7 and all datasets passed the test (W > Wα; α = 0.05).

3. Results

3.1. Loss of G2A Alleviates Mechanical Hypersensitivity and Alters Lipid Signaling

We previously showed that activation of G2A in sensory neurons leads to an increased mechanical
pain hypersensitivity during oxaliplatin-induced neuropathic pain due to sensitization of TRPV1 [16].
However, G2A is also strongly expressed in immune cells, such as macrophages, neutrophils and
T-cells [18,39]. We therefore wanted to investigate the role of G2A in a neuropathic pain model
with a strong inflammatory component. Since peripheral nerve injury-induced neuropathic pain
is characterized by a strong immune cell infiltration from day 4, ongoing and lasting for over
21 days [40,41], we chose the robust spared nerve injury (SNI) model [27]. After performing the
SNI surgery, we analyzed the paw withdrawal reflex of the mice for seven days. We found that
G2A-deficiency resulted in a significant decrease of mechanical hypersensitivity from starting at day
2 compared with wild-type mice (Figure 1A).
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$$$$p < 0.0001 (G2A−/− vs. sham). Statistics were performed with two-way Analysis of variance 
(ANOVA) with Bonferroni correction. (B) Schematic depiction of the oxidative linoleic acid pathway. 
(C,D) Concentrations of 9- hydroxyoctadecadienoic acid (HODE) in sciatic nerve (SN), L4–L6-dorsal 
root ganglia (DRG) and spinal cord (SC) in wild-type (C) and G2A-deficient (G2A−/−) (D) mice 7 days 
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(D) mice 7 days after SNI surgery. (E, F) Concentrations of 13-HODE in sciatic nerve (SN), dorsal root
ganglia (DRG) and spinal cord (SC) in wild-type (E) and G2A-deficient (G2A−/−) (F) mice 7 days after
SNI surgery. (G–J) Concentrations of epoxyoctadecenoic acids (EpOMEs) and dihydroxyocatadecenoic
acids (DiHOMEs) in SN (G,H) and DRG (I,J) in wild-type (G,I) and G2A−/− (H,J) mice 7 days after SNI
surgery. Black represents untreated site (contralateral). Grey represents treated site (ipsilateral) in the
respective tissues from n = 5 mice per group, male and female. Data represent mean ± standard error
ofmean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.005; Two-way ANOVA with the Holm-Sidak method.
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At the site of injury, immune cells are recruited and activated, stimulating peripheral sensory
neurons to release endogenous factors, such as lipid mediators [6,10,42]. Since G2A is a lipid receptor,
we investigated whether or not the levels of lipids known to activate G2A as well as their metabolites
were altered during SNI-induced neuropathic pain in nervous tissue. Therefore, we performed
LC-MS/MS-based targeted analysis. We observed that the linoleic acid metabolites 9- and 13-HODE
were increased at the injured nerves in wild-type mice 7 days after the SNI surgery (Figure 1C,E),
both of which are endogenous agonists of G2A (Figure 1B). Moreover, we could detect a strong increase
of the lipid 12,13-epoxyoctadecenoic acid (EpOME) in the injured ipsilateral site of the nerve, which was
recently identified as weak G2A agonist (Figure 1G) [43]. In contrast, G2A-deficient mice did not
show any difference between the treated (ipsilateral) and untreated sites (contralateral) regarding the
different lipid concentrations (Figure 1D,F,H,J). In DRG tissue of wild-type mice, the DiHOMEs showed
an increased level at the ipsilateral site, indicating a strong involvement of soluble epoxide hydroxylase
(sEH) in the DRGs (Figure 1I) [44]. Similar results were observed 24 h after zymosan-induced
inflammatory pain and also 7 days after CFA-induced inflammation in DRGs [45]. This indicates a role
for 12,13-DiHOME in pain processing since it also showed decreased amounts in the sciatic nerve in
G2A-deficient mice (Figure 1H).

3.2. G2A-Dependent Alterations of Immune Cell Recruitment and Cytokine Synthesis in Nociceptive Tissue

Since G2A agonists were upregulated in the different nociceptive tissues, we next analyzed the
number of immune cells along the stations of nociceptive processing. Using multiparameter FACS
analysis, we observed an infiltration of various immune cells in general in wild-type mice at the site
of injury of the sciatic nerve (SN) 7 days after SNI surgery (Figure 2A). The infiltration of immune
cells to the DRGs and the spinal cord after nerve injury has been demonstrated before and usually
peaks around days 5–10 after surgery [46–49]. Based on these observations, we considered 7 days after
surgery an appropriate timepoint to investigate immune cell infiltration into nervous tissue.

Interestingly, G2A-deficient mice showed a 5- to 10-fold reduced number of immune cells
(CD45-positive cells) at the site of injury in SN (Figure 2A–C). However, the strongest differences
were observed in the number of macrophages and neutrophils in sciatic nerve (SN) (Figure 2B). Here,
the number of macrophages was 12-fold lower at the site of injury in G2A-deficient mice than in
wild-type mice, which could be confirmed with immunohistochemistry staining for F4/80 and CD11b
(Figure 2D,E). Likewise, the number of neutrophils was 7-fold lower in G2A-deficient mice (Figure 2B).
Next to this, the number of dendritic cells (DC), CD11b+ NK cells, NK cells and T cells revealed a
decrease in G2A-deficient mice as well, in ipsilateral SN (Figure 2C).

In L4–L6-DRGs, the number of infiltrated immune cells was smaller than in SN (Figure 2A–H).
As the FACS analysis revealed, the number of infiltrated CD45+ immune cells was decreased in
G2A-deficient mice 7 days after SNI surgery (Figure 2F). Next to this, only the macrophages and
neutrophils showed a significantly decreased number in G2A-deficient mice (Figure 2G). However,
the number of macrophages was not as strongly decreased as in the sciatic nerve (Figure 2B,G).
Moreover, the number of neutrophils was also decreased in DRGs, compared to SN in G2A-deficient
mice 7 days after SNI (Figure 2B,G). However, the other immune cell types showed no differences in
DRGs in both genotypes (Figure 2H).

Interestingly, the infiltration of immune cells into the spinal cord was in total 10-fold lower than in
the sciatic nerve and 3.5-fold smaller than in DRGs (Figure 2A,F,I). Nevertheless, the CD45+ immune
cells in spinal cord also showed a decreased number in G2A-deficient mice 7 days after SNI (Figure 2I).
However, only the number of macrophages were significantly decreased in spinal cord in G2A-deficient
mice, compared to wild-type mice (Figure 2J).
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Figure 2. Reduced number of immune cells in G2A-deficient mice 7 days after SNI surgery.
(A) Total immune cell number at the ipsi- and contra-lateral site of sciatic nerve (SN) (CD45+).
(B,C) Number of different types of immune cells in the ipsi- and contra-lateral site of the sciatic nerve.
(D,E) Immunohistochemical staining of macrophages (F4/80, CD11b) at the injured sciatic nerve (SN) in
wild-type (D) and G2A-deficient mice (E) 7 days after SNI. Dashed lines indicate sites of injury. (F) Total
immune cell number in L4-L6-DRGs at the ipsi- and contra-lateral site of sciatic nerve. (G,H) Number
of different types of immune cells in the ipsi- and contra-lateral site of L4–L6-DRGs 7 days after SNI
surgery. (I) Total immune cell number in the dorsal spinal cord receiving input from spinal cord
comparing the ipsi- and contra-lateral site. (J,K) Number of different types of immune cells in the
dorsal spinal cord section receiving input from L4–L6-DRGs comparing the ipsi- and contra-lateral
site 7 days after SNI surgery. Data were obtained from n = 5 animals per group, male and female.
Ipsilateral site of WT mice is shown in black. Ipsilateral site in SN is shown in yellow, in DRG in
purple and in SC in green. Contralateral site of WT mice is depicted in dark grey. Contralateral site
of G2A-/- mice is shown in light grey. Neutrophils (CD45+, Ly6G+, CD11b+), macrophages (CD45+,
Ly6G−, CD11b+, F4-80+, Ly6C−), monocytes (CD45+, Ly6G−, CD11b+, F4-80−, Ly6C+), dendritic cells
(DC; CD45+, Ly6G−, CD11b+, F4-80−, Ly6C−, CD11c+, MHCII+), CD11b+ NK cells (CD45+, Ly6G−,
CD11b+, F4-80−, Ly6C−, NK1.1+), NK cells (CD45+, Ly6G−, CD11b−, F4-80−, Ly6C−, NK1.1+), T cells
(CD45+, Ly6G−, CD11b−, F4-80−, CD3+, MHCII−), CD4 T cells (CD45+, Ly6G−, CD11b−, F4-80−, CD3+,
MHCII−, CD4+), CD8 T cells (CD45+, Ly6G−, CD11b-, F4-80−, CD3+, MHCII−, CD8+), B cells (CD45+,
Ly6G−, CD11b−, F4-80−, CD11c−, CD3−, MHCII+, CD19+). Data represents mean ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.005, **** p < 0.001; Two-way ANOVA with Bonferroni correction.
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There was no difference observed comparing astrocyte activation between the genotypes 7 days
after SNI, which is known to be characteristic in neuropathic pain [50] (Figure 2I–K, Supplementary
Figure S1).

In conclusion, we saw differences in the number of immune cells, especially macrophages,
mainly at the site of injury. The differences in immune cell infiltration between the genotypes were
smaller in DRGs and in the spinal cord (Figure 2).

The reduced number of immune cells, especially at the site of injury, lead us to the hypothesis that
the levels of cytokines, chemokines and growth factors, known for modulating neuropathic pain [9,11],
may also be altered in G2A-deficient mice after SNI surgery. We therefore performed an unbiased
screen of growth factors, chemokines and cytokines, which are known for their role in inflammation,
which was previously shown in a SNI model [41] (Figure 3A). In this screen, we observed decreased
concentrations of tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in ipsilateral sciatic
nerves of G2A-deficient mice compared to wild-type mice (Figure 3B,C). These two signaling molecules
have been connected with persistent pain states before and are known mediators of both peripheral
and central sensitization [51]. The cytokines GM-CSF, IFNγ, IL-4, IL-10, MCP-1 and MIG were not
detectable in any tissue measured (data not shown). Additionally, the concentrations of nerve growth
factor (NGF), which is a very important factor released upon injury and inflammation contributing to
pain initiation [12,14], as well as the anti-inflammatory cytokine TGFβ, did not show any differences
when comparing wild-type and G2A-deficient mice (Figure 3D,E). NGF expression is known to be
increased by pro-inflammatory cytokine IL-1β [11,14], but IL-1β also showed no difference between
both genotypes at the ipsilateral site of injured nerves, nor was a general difference in G2A expression
detectable in DRGs after surgery (Supplementary Figure S2).
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Figure 3. Reduced concentrations of inflammatory cytokines in G2A-deficient mice. (A) Heat map
of cytokines levels in sciatic nerve, DRG and spinal cord at the ipsilateral site of wild-type and
G2A-deficient mice 7 days after SNI. Data shown as ipsi-lateral of WT vs. ipsi-lateral of G2A-defcient
mice measured with LUMINEX. (B–F) Concentrations of tumor necrosis factor α (TNFα) (B), interleukin
6 (IL-6) (C), nerve growth factor (NGF) (D), transforming growth factor β(TGFβ) (E) and IL-1β (F)
in the ipsilateral site of sciatic nerve 7 days after SNI in wild-type (WT, black) and G2A-deficient
mice (G2A−/−, yellow in sciatic nerve), measured with enzyme-linked immunosorbent assay (ELISA).
Data represent mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001 of n = 5 mice per group,
male and female; one-way ANOVA.
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In L4–L6 DRG, we observed a decreased amount of the cytokine IL-12 in G2A-deficient mice
(Figure 3A). However, the expression of either IL-12a (data not shown) or IL-12b remained unaltered
(Supplementary Figure S2), indicating that neuronal G2A is unaffected by SNI surgery. Oxidative
stress is an important contributor to nerve injury-induced neuropathic pain. However, oxidative
stress markers such as inducible NO synthase (iNOS), NADPH oxidase (Nox)-2 and Nox-4 did not
show any alterations in mRNA expression in wild-type and G2A-deficient mice (Supplementary
Figure S3). In contrast, the established neuronal stress marker ATF3 (activating transcription factor 3)
was increased 7 days after SNI (Supplementary Figure S3B).

To investigate whether or not these differences between the genotypes are caused by the surgery
itself, we also measured immune cell number, cytokine, chemokine and growth factor concentrations
between the two genotypes 1 day after SNI surgery. At this time point, no differences were found
between the genotypes in ipsilateral sites, either in the number of immune cells or the amount of
various cyto- and chemo-kines in SN, DRGs or SC (Supplementary Figure S4). These data suggest that
surgery-induced acute recruitment of immune cells is not G2A-dependent and that the differences
between the genotypes require a neuropathic component that develops several days after nerve-injury.

3.3. Migration of Macrophages is Impaired by Loss of G2A Receptor

Since the number of macrophages was dramatically decreased in G2A-deficient mice in all three
investigated tissues (sciatic nerve, DRGs and spinal cord), we hypothesized that G2A-deficiency affects
the immunomodulatory and migratory properties of macrophages [22]. Therefore, we performed
a global proteome analysis using a vanguard mass-spectrometry-based approach [33] using bone
marrow-derived macrophages (BMDM) of wild-type and G2A. The BMDMs were stimulated with
the G2A agonist 9-HODE (1 µM) for 24 h prior to the proteomic analysis. This concentration is in
range of the EC50 of 9-HODE for both the human and the murine G2A, as previously shown [16,21].
The stimulation of BMDMs with 9-HODE induced a minor, but significant increase of G2A mRNA
expression (Figure 4A).
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9-HODE for 24 h. n = 6–10 animals per group, male. (B) Identification of >6.000 regulated proteins 24 h
after stimulation with 1 µM 9-HODE in BMDMs. Fold change (FC) [log2] is plotted against p-values
[Log10]. Significant downregulated proteins are depicted in blue, and red represents upregulated
proteins. (C) Percentage of downregulated proteins 24 h after 1 µM 9-HODE stimulation compared
to untreated BMDMs. (D) Percentage of upregulated proteins 24 h after 1 µM 9-HODE stimulation
compared to untreated BMDMs, clustered in groups. yellow: immune system, blue: lipid metabolic
process, brown: adhesion, green: migration, grey: apoptosis, pink: lysosome, red: inflammation, white:
hematopoiesis, black: other. Data represents mean ± SEM. * p < 0.05. An unpaired one-tailed t-test was
used for statistics.

Global proteome analysis revealed significant changes in protein levels in wild-type mice after
G2A activation through 9-HODE (Figure 4B). Among the strongest upregulated proteins were protein
tyrosine kinase 7 (PTK7), catenin alpha-1 (Ctnna1), alpha actinin 1 (Actn1), myeloid differentiation
primary response protein (Myd88), transgelin (Tagln) and phosphoinositide 3-kinase (PI3K) subunits,
which are known to play central roles in migration (Figures 4B and 5A, Supplementary Table S1C) [52–57].
Proteins like caspase 8, cathepsines and Gadd45 were the proteins with the strongest downregulation
(Figure 3C, Supplementary Table S1E). These proteins are known to play a central role during
apoptosis [58,59]. Interestingly, proteins concerning hematopoiesis were rather downregulated,
including CD38 (Figure 4C, Supplementary Table S1F), which is in line with previous observations
showing that G2A receptor affects hematopoiesis in vivo [43].
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Figure 5. Transient increase of matrix-metalloproteinase 9 (MMP9) secretion and MMP9 downregulation
in BMDMs 24 h after G2A activation. (A) List of the strongest upregulated migratory proteins in WT
24 h after 1 µM 9-HODE stimulation. (B) Comparison of the strongest upregulated migratory proteins
in WT and G2A-deficient (G2A−/−) BMDMs regarding the toll-like receptor 4 (TLR4)-signaling pathway
shown as -log p-value. (C) Scheme of possible G2A–TLR4 interaction and signaling in BMDMs. (D) List
of the 10 strongest downregulated migratory proteins in WT 24 h after 1 µM 9-HODE stimulation.
(E) Representative Western Blots of MMP9 expression and respective analyzed data in untreated and
treated BMDMs with 1 µM 9-HODE. (F) MMP9 expression in BMDM lysates treated with 1 µM 9-HODE
for different time points. (G) MMP9 secretion of BMDMs treated with 1 µM 9-HODE for different
time points. Analyzed with ELISA. n = 6–10 male animals per group. Data represents mean ± SEM.
* p < 0.05, ** p < 0.01. An unpaired one-tailed t-test and a One-way ANOVA were used.
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3.4. Is Macrophage Migration Affected by MMP9 Regulation?

Among the strongest regulated proteins known to mediate migration were proteins connected
to the Toll-like receptor 4 (TLR4) signaling pathway, such as MyD88, PI3K and Dock2 (Figure 5B,C),
as well as matrix-metalloproteinase 9 (MMP9) (Figure 5D,E). This finding was especially surprising,
since MMP9 is a key molecule in macrophage migration in the tissues, due to its ability to destroy
extracellular matrix [60].

However, MMP9 downregulation in BMDMs after 24 h of G2A-activation through 9-HODE was
confirmed by Western blot and with ELISA (Figure 5E,F). Interestingly, in a time-dependent stimulation
study, MMP9 secretion was significantly increased 4, 6 and 10 h after 9-HODE stimulation (Figure 5G).
Whereas, in BMDM lysates, MMP9 expression decreased over time, which is in line with an increased
secretion (Figure 5F). Other pro-migratory proteins, such as MAP-kinases, ROCK, Ras and Rac were not
affected by 9-HODE stimulation nor were there any differences between the genotypes (Supplementary
Figure S5, Supplementary Table S2).

4. Discussion

In this study, we showed that loss of G2A alleviated mechanical hypersensitivity in acute nerve
injury-induced peripheral neuropathic pain. As the results suggest, this is likely due to an altered
neuroimmune response accompanied by a reduced immune cell infiltration to the injured nerve.
Thereby, the concentrations of established inflammatory mediators released by immune cells, such as
IL-6 and TNFα, but also of oxidized lipid mediators like 9- and 13-HODE (Figures 1–3) are markedly
decreased at the injured sciatic nerve of G2A-deficient mice.

For the sensitizing effects of 9-HODE, its receptor G2A seems to be required, which is induced
during cellular stress and DNA damage [16,61]. Since nerve injury is stress for cells and tissues, it is
not surprising that the expression of the known neuronal stress marker ATF3 was increased 7 days
after SNI (Supplementary Figure S3B) [62]. However, stress markers were not differentially expressed
between the genotypes, indicating no effect on cellular stress due to G2A-deficiency.

G2A-deficient mice showed less mechanical hypersensitivity in an oxaliplatin-induced neuropathic
pain model, suggesting an anti-nociceptive effect of G2A-deficiency [16]. Similar results were observed
after peripheral nerve injury-induced neuropathic pain during the first 7 days (Figure 1). After nerve
injury, we did not see a difference in the expression levels of G2A in the DRGs of wild-type mice,
compared with untreated mice (Supplementary Figure S2B). However, we observed an increased
expression of G2A in BMDMs after stimulation with 9-HODE (Figure 4A). This suggests different
actions and pathways involved upon G2A-signaling in various tissues and cell types in pain and
inflammation, indicating that the neuronal G2A population does not contribute to SNI-induced
neuropathic pain.

Nerve injury-induced neuropathic pain is characterized by a strong inflammatory component,
that involves immune cell migration to the injured site of the peripheral nerve [63]. Previous studies
have shown a recruitment of immune cells into the spinal cord, beginning 3 days after SNI, as well as
the upregulation of pro-inflammatory factors, such as IL-6, lasting for over 21 days [41,47,64]. Here,
we demonstrated that G2A-deficient mice showed a strongly reduced infiltration of immune cells
at the site of injury. Consistent with our findings, earlier studies also showed a reduced number
of macrophages at the inflammatory site during peripheral inflammatory pain [22]. Interestingly,
in dextran sulfate sodium (DSS)-induced colitis, a reduced number of T cells was observed in
G2A-deficient mice, confirming our data of the sciatic nerve after nerve injury (Figure 2C) [65]. Overall,
these results suggest that G2A-signaling may depend on the type and location of inflammation as well
as release and distribution of signaling lipids in the respective tissues [66].

The G2A receptor seems to influence migration of macrophages since it is able to change cell
morphology and cytoskeleton structure [23]. These observations are in line with our data. The most
prominent group of proteins being upregulated in macrophages after G2A activation are migratory
proteins, as well as proteins responsible for cytoskeleton remodeling. Here, after 9-HODE stimulation,
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we could show upregulated G2A expression in macrophages but not in DRGs (Figure 4A, Supplementary
Figure S2).

MMP9 is known to play a crucial role in the development of neuropathic pain and inflammation [67].
Indeed, we could observe that MMP9 release is transiently increased during the first 10 h after
9-HODE-induced G2A activation in BMDMs. However, 24 h after G2A activation, we observed
decreased MMP9 levels in macrophage cell lysates. This indicates that MMP9 release is increased
within the first hours after G2A activation but is saturated 24 h after G2A activation, leaving low
intracellular concentrations at this timepoint.

Moreover, we found MyD88, transgelin, PI3K-components and Akt1 to be strongly upregulated
in our proteome screen 24 h after G2A activation (Figure 5), which is in good agreement with earlier
studies [64]. These proteins all belong to the TLR4 signaling pathway, that is known to promote
leukocyte migration and cause release of TNFα and IL-6, both of which we found strongly reduced in
G2A-deficient mice (Figure 3B,C) [68–70]. MMP9 is also a downstream target of TLR4 signaling [71].
The transiently increased secretion of MMP9 during the first 10 h of G2A activation is in line with
pro-migratory events through TLR4 signaling. According to our data, we therefore propose that G2A
activation in macrophages initiates MyD88-PI3K-AKT signaling, transient MMP9 release, as well as
TNFα and IL-6 expression and a potential crosstalk with PTK7-Wnt signaling to initiate cytoskeleton
remodeling and migration. This is also in good agreement with the data of the proteome screen,
wherein MyD88 was not differentially regulated in G2A-deficient bone marrow-derived macrophages
(Figure 5B).

However, the study faces several limitations since the proteome analysis data was performed
with bone marrow-derived macrophages stimulated in vitro with 9-HODE. Moreover, it is unclear
whether these results can be translated to ameliorate neuropathic pain in patients.

Thus, we showed that the immune response is strongly reduced in G2A-deficient mice through a
strong reduction of migrated immune cells and reduced concentrations of proinflammatory cytokines,
like TNFα and IL-6, at the site of injury (Figure 3B,C).

It is known that IL-1β, IFN-γ, IL-17, IL-6 and TNFα are increased in nervous tissue in animal models
of neuropathic pain, but also in cerebrospinal fluid and blood of patients with neuropathic pain [72,73].
Of those, especially IL-6 and TNFα seem to play crucial roles in the initiation of neuropathic pain,
in activation of macrophages and in pain processing through sensitization of the TRPV1 channel [74,75].
However, the heterogeneity of neuropathic pain syndromes in patients, the individual differences in
disease progression and the differences in investigated liquor or tissue makes it difficult to compare
animal and patient studies and to identify specific markers for neuropathic pain.

In the present study, G2A-deficiency resulted in a reduction of IL-6 and TNFα (Figure 3B,C).
The decreased amount is likely due to reduced immune cell infiltrates at the site of injury.
Furthermore, it was shown that TNFα, IL-6 and IL-12 were increased in G2A-deficient macrophages
in atherosclerosis [76]. However, this study was performed in double knockout mice for G2A
and ApoE [76] and the strongly reduced macrophage infiltrates observed in our system may
easily compensate for a relative increase in inflammatory cytokine production by individual cells.
Such different observations may also be explained by the pleiotropic effects of G2A in different
inflammatory environments. Thus, Kern and colleagues did not find any difference in the amount of
9-HODE at the inflammatory site, whereas in an earlier study, 9-HODE induced production of IL-6,
indicating an important role of the 9-HODE–G2A axis during inflammatory processes [22,77].

5. Conclusions

We could demonstrate that G2A is a crucial component in the initiation of inflammation after
nerve injury and thus contributes to neuropathic pain. Furthermore, we showed that G2A-deficiency
leads to a strong reduction of macrophage migration to the location of the injured nerve, probably via
reduction of TLR4-MyD88-PI3K-AKT and MMP9 signaling and a potential crosstalk with PTK7-Wnt
signaling, leading to decreased TNFα and IL-6 levels at the site of injury.
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The treatment of neuropathic pain is complex, and so far, sufficient medication is not available [78].
Clinical trials dealing with TNFα or IL-6 inhibitors did not show conclusive and persuasive
results [73]. Thus, G2A may represent a promising new target, by inhibitors or antibodies against
G2A, and thereby preventing leukocyte migration and peripheral sensitization, especially at the onset
of nerve injury-induced neuropathic pain in patients. While, generally, off-target effects of systemic
G2A-inhibitors cannot be excluded, they should mainly target G2A receptors in leukocytes where the
receptor shows by far its highest expression [23] and other cell types should not be strongly affected by
these substances.

However, further preclinical studies are required to assess potential side effects of inhibiting G2A
in patients. G2A-inhibitors may have a profile of side effects that is similar to immunosuppressants,
which is mainly characterized by a higher risk of infections. We therefore consider treatment with
G2A-inhibitors to be carefully monitored and to be restricted to the onset of nerve injury-induced
neuropathic pain.
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surgery, Figure S5: Effect of 9-HODE on migratory signaling pathways, Table S1: Overview of regulated proteins
in wild-type BMDMs treated with 1 µM 9-HODE for 24 h, Table S2: Overview of regulated proteins in untreated
G2A-deficient and wild-type BMDMs.
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