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Abstract: N4-methylcytosine as one kind of modification of DNA has a critical role which alters
genetic performance such as protein interactions, conformation, stability in DNA as well as the
regulation of gene expression same cell developmental and genomic imprinting. Some different
4mC site identifiers have been proposed for various species. Herein, we proposed a computational
model, DNC4mC-Deep, including six encoding techniques plus a deep learning model to predict
4mC sites in the genome of F. vesca, R. chinensis, and Cross-species dataset. It was demonstrated by
the 10-fold cross-validation test to get superior performance. The DNC4mC-Deep obtained 0.829 and
0.929 of MCC on F. vesca and R. chinensis training dataset, respectively, and 0.814 on cross-species.
This means the proposed method outperforms the state-of-the-art predictors at least 0.284 and 0.265
on F. vesca and R. chinensis training dataset in turn. Furthermore, the DNC4mC-Deep achieved
0.635 and 0.565 of MCC on F. vesca and R. chinensis independent dataset, respectively, and 0.562 on
cross-species which shows it can achieve the best performance to predict 4mC sites as compared to
the state-of-the-art predictor.

Keywords: N4-methylcytosine; rosaceae genome; DNA encoding methods; computational biology;
deep learning; bioinformatics

1. Introduction

Dynamic DNA modifications, such as methylation and demethylation have an essential role
in the regulation of gene expression. DNA methylation as a heritable epigenetic marker is one
type of chemical modification of DNA, which alters genetic performance without altering the DNA
sequence [1,2]. Several researches have shown that it has the ability to change DNA protein interactions,
DNA conformation, DNA stability, and chromatin structure. Meanwhile, it can regulate some
different functions including cell developmental, genomic imprinting, and gene expressions [3,4].
N4-methylcytosine (4mC), 5-Methylcytosine (5mC), and N6-methyladenine (6mA) as three common
methylations by specific methyltransferase enzymes occur in both prokaryotes and eukaryotes [5–7].

In prokaryotes, the host DNA from exogenous pathogenic DNA can be identified by 6mA and
4mC [8], and also 4mC regulates DNA replication and its errors [9,10]. Meanwhile, 4mC as part of a
restriction-modification (R-M) system prevents restriction enzymes from degrading host DNA [11].
In eukaryotes, 5mC has a crucial role in transposon suppression, gene imprinting, and regulation.
By high sensitivity techniques, 6mA and 4mC can only be detected in eukaryotes [12].
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The 5mC, as the most well-explored and common type of cytosine methylation plays a significant
role in several biological processes [13] and can be caused by cancer, diabetes, and also some
neurological diseases [14–16]. The 4mC as effective methylation protects its own DNA from the
restriction of enzyme-mediated degradation. It has an important role in controlling some various
processes including cell cycle, gene expression levels, differentiating self and non-self-DNA, DNA
replication, and correcting DNA replication errors [9,17].

Some extensive experimental studies have been performed to detect 4mC sites in the whole
genome such as 4mC-Tet-assisted bisulfite sequencing, methylation-precise PCR, mass spectrometry,
and Single-Molecule of Real-Time (SMRT) sequencing [18–21]. The aforementioned experimental
approaches are laborious and expensive work when performing genome-wide testing. Therefore, it is
necessary to develop a computational method for identifying 4mC sites.

Lately, several 4mC sites identifiers [22,23] have been proposed for different species such as
C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus, G. pickeringii. The i4mC-ROSE [24]
as the first computational tool for predicting 4mC sites within the Rosaceae genomes has been
proposed to identify the 4mC sites in the genomes of F. vesca [25] and R. chinensis [26]. It generated
six probabilistic scores by using six encoding methods; random forest (RF), algorithms with
k-space spectral nucleotide composition (KSNC), electron-ion interaction pseudopotentials (EIIP),
k-mer composition (Kmer), binary encoding (BE), dinucleotide physicochemical properties (DPCP),
and trinucleotide physicochemical properties (TPCP) that cover various aspects of DNA sequence
information. Then, those scores were combined with a linear regression model for enhanced prediction
performance [24]. The 4mcDeep-CBI [27] as a deep learning framework has been proposed to predict
the 4mC sites in an expanded dataset of Caenorhabditis elegans (C. elegans). 3-CNN and BLSTM were
used to extract deep information and to obtain advanced features.

In this work, a novel predictor, DNC4mC-Deep, has been established for the identification of 4mC
sites in the genome of F. vesca, R. chinensis, and cross-species which is newly prepared. The overall
framework of our work summarized as; Firstly we used the six encoding techniques named 2Kmer [28],
3Kmer [29], binary encoding (BE) [30,31], nucleotide chemical property (NCP) [32], nucleotide chemical
property, and nucleotide frequency (NCPNF) [32], and multivariate mutual information (MMI) [33,34].
Then, we made a deep learning model by using the Convolution Neural Network (CNN). We applied
a grid search algorithm to obtain the optimal model with tuned hyperparameters. All six encoding
schemes were input separately in the optimal selected model and recorded the results of each encoding
scheme and used the K-fold cross-validation method with the value of K as 10. To evaluate and analyze
the results of the model on each encoding scheme, we used the performance evaluation metrics. We also
presented two different applications; the first one is silico mutagenesis [35] representation using heat
maps, and the second is distinguishing the most significant portions of a sequence using saliency
maps [36]. After getting the results from the model by all six different feature encoding methods,
we ended up with that Dinucleotide composition (DNC) is outperforms from all six encoding schemes
and the state-of-the-art model. In comparison to the state-of-the-art model, DNC4mC-Deep successfully
achieves 0.635, 0.565, and 0.562 of MCC on F. vesca, R. chinensis, and cross-species independent dataset,
respectively.

2. Materials and Methods

2.1. Benchmark Datasets

The benchmark dataset of DNA 4mC obtained from Md. Mehedi Hassan et al. [24]. It contains the
F. vesca and R. chinensis genome. To prepare the high-quality dataset they have applied the sequences
with ModQV score greater than 20, whereas the remaining sequences were excluded. To solve the
homology bias problem, the CD-HIT-EST [37] software was used to exclude redundant sequences
with a cut-off of 0.65. All sequences contain a central cytosine (C) nucleotide with a length of 41 base
pairs (bp).
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In both datasets, F. vesca and R. chinensis genome were considered 75% and 25% samples from
all data as the training and the independent dataset. The training dataset consists of 4854 and 2337
positive DNA sequences as 4mC samples for F. vesca, and R. chinensis, severally. The negative DNA
sequences, such as non-4mC, consists of 4854 and 2337 samples for F. vesca, and R. chinensis genome.
Furthermore, the independent dataset included 1617 for both positive and negative DNA sequences of
F. vesca genome whereas for R. chinensis positive and negative DNA contains 779 samples.

Moreover, we made the cross-species as a new benchmark dataset from the two above datasets.
To avoid the redundancy in the original datasets we used CD-HIT-EST with different threshold values.
The recent dataset was also divided into the training and the independent dataset with the same
proportion (75% and 25% samples) where we obtained the cross-species dataset with the most attentive
threshold at 0.80 containing 7190 and 5874 positive and negative DNA sequences, respectively, on the
training dataset. Meanwhile, we assumed 2394 positive and 2234 negative DNA sequences on the
independent dataset. The length of each sample is 41nt. Details of the benchmark datasets are shown
in Table 1.

Table 1. Benchmark datasets demonstration.

Species Dataset Training Dataset Total Independent Dataset Total

F. vesca 4mC samples 4854 9708 1617 3234non-4mC samples 4854 1617

R. chinensis 4mC samples 2337 4674 779 1558non-4mC samples 2337 779

Cross-species 4mC sampels 7190 13,064 2394 4628non-4mC samples 5874 2234

2.2. Feature Encoding Methods

Feature encoding has a vital role in the construction of the model [38]. A DNA sequence is
represented as a fixed length of feature vectors which can be classified by deep learning algorithms.
In this article, six various types of feature encoding methods, binary encoding [39], DNC (2kmer), TNC
(3kmer) [40–43], Multivariate Mutual Information (MMI) [44], Nucleotide Chemical Property (NCP)
and Nucleotide Chemical Property and Nucleotide Frequency (NCPNF) [28,29,45–47] were employed
to formulate methylcytosine samples.

2.2.1. Binary Encoding (BE)

Binary encoding is a simple and effective feature algorithm converts each nucleotide into a binary
vector as follows: A (1, 0, 0, 0, 0), C (0, 1, 0, 0, 0), G (0, 0, 1, 0, 0), T (0, 0, 0, 1, 0) and N (0, 0, 0, 0, 0).
A DNA sequence with m nucleotides can be represented into a vector of 5×m features [30,31].

2.2.2. Kmer

Kmer is a common feature encoding algorithm that has been widely used in various prediction
works [28,29,45,48,49]. A DNA sample is expressed as V = N1, N2, N3, . . . NL, where L denotes
the length of the sequence and Ni is one of the regular nucleotides A, C, G, T, and N. In this work,
di-nucleotide composition (DNC) and tri-nucleotide composition (TNC) were considered. In DNC all
samples of 41 nt produce 40 components with the equation of L− k + 1. The DNC scheme generated a
25 (52) dimensional feature. Whereas in TNC samples of 41 nt generated 39 elements with the equation
of L− k + 2. The TNC form into a 125 (53)-dimensional vector. In both equations, the L denotes the
length of the sequence and k represents the value of Kmer as an integer.
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2.2.3. Nucleotide Chemical Property (NCP)

The four nucleic acids have different chemical properties [50]. In terms of ring structures, A and
G each contain two rings, whereas C and T contain only one. Regarding secondary structures, A and
T form weak hydrogen bonds, whereas C and G form strong hydrogen bonds. In terms of chemical
functionality, A and C can be classified into the amino group, while G and T can be classified into the
keto group. The cluster of four nucleotides was shown in Table 2.

Table 2. Cluster of nucleotides based on chemical properties.

Chemical Property Class Nucleotides

Ring structure Two ring A, G
One ring C, T

Hydrogen bond Strong C, G
Weak A, T

Functional group Amino A, C
Keto G, T

Three coordinates x, y, and z were used to represent ring structure, the hydrogen bond,
the chemical functionality, respectively, and the value of 0 and 1 was assigned to each one. The feature
extraction algorithm can be formulated as follows:

xi =

{
1 i f siε{A, G}
0 i f siε{C, T} , yi =

{
1 i f siε{A, T}
0 i f siε{C, G} , zi =

{
1 i f siε{A, C}
0 i f siε{G, T}

where n(si) represents A, C, G, T, and N nucleotide, which can be converted by the coordinates (1, 1, 1),
(0, 0, 1), (1, 0, 0), (0, 1, 0), and (0, 0, 0), respectively.

We also tried the nucleotide chemical properties (NCP) with the frequencies of each nucleotide
(NF) position in a sample. The method was got from Chen et al. [32] for both encoding schemes.
We integrated the NCP and NF to represent a matrix with 41 columns and 5 rows for each sample of
the DNA sequence. Each DNA base of the sequence was designated as a column of the matrix and for
each column, their initial three components were characterized as the nucleotide chemical property
and the last one represented as a nucleotide frequency which we denoted as NCPNF.

2.2.4. Multivariate Mutual Information (MMI)

MMI has been used in many works [33,34,51] to extract features of the nucleotides sequence.
We used the MMI based feature encoding algorithm which was proposed by Pan et al. [52]. First of all,
they modified a two-tuple and three-tuple nucleotides set as follows:

T2 = {AA, AC, AG, AT, AN, CC, CG, CT, CN, GG, GT, GN, TT, TN, NN}
T3 = {AAA, AAC, AAG, AAT, AAN, ACC, ACG, ACT, ACN, AGG, AGT,

AGN, ATT, ATN, ANN, CCC, CCG, CCT, CCN, CGG, CGT, CGN,
CTT, CTN, CNN, GGG, GGT, GGN, GTT, GTN, TTT, TTN, NNN}

Then, the mutual information for the elements was calculated as a frequency of nucleotides in the
sequence with respect to 2-tuple and 3-tuple. We extracted 55 MMI features.

3. The Proposed Deep Learning Model

In this study, an efficient deep learning model based on CNN was proposed for the identification
of 4mC sites in the genome of F. vesca, R. chinensis and cross-species. CNN does not require manually
extracted features like a conventional supervised learning processes. The immense advantage of a
CNN, it can extract the features by itself automatically for the classification process. Additionally,
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a handy crafted feature can also be fed to CNN to build a heterogeneous model. A CNN has a big
impact on various fields of natural language processing, image processing [53–56] and computational
biology [57,58]. To get an optimum model we applied grid search and during learning the CNN,
six hyperparameters were tuned. The ranges within each hyper-parameter was tuned to are listed in
Table 3.

Table 3. Hyper-parameters tuning demonstration.

Parameters Range

Convolution layers [1, 2, 3, 4, 5]
Filters in convolution Layer [8, 12, 16, 22, 32, 42, 64, 128]
Filter size [2, 3, 4, 5, 6, 7, 8, 10, 12, 14]
Pool-size in Maxpooling [2, 4]
Stride length in Maxpooling [2, 4]
Dropout values [0.2, 0.25, 0.3, 0.35, 0.4]

After getting the best model from the grid search, we used six different encoding schemes (DNC,
TNC, BE, NCP, NCPNF, MMI) for the input of the CNN model. Each encoding technique converted
into vectorization of the input sequence and used the same CNN model for training and testing also
verified the robustness from the independent dataset. All the feature encoding approaches had a
different impact on a single model.

In the proposed model, initially, two blocks used with the same number of layers but different
values of parameters. Each block contains one convolution layer Conv1D (f, k, s) where parameter
f is the number of filters, k is the kernel-size, and s represents the stride value are equal to 32, 5
and 1, respectively on both blocks. The convolution layer utilizes its ability to fetch the features by
self-regulating for the input sequence of positive and negative 4mC samples. As a parameter of the
convolution layer, we used L2 regularization and bias regularization to make sure that the model has
no overfitting problem. We set the values for both regularizations with 0.0001 for the two Conv1D
of blocks. As an activation function, an exponential linear unit (ELU) is used. Each Conv1D was
followed by a group normalization layer (GN) as GroupNormalization (g) where g is a number of
groups, to decrease the outcomes of convolution layers. Group normalization divides channels into
groups and normalizes the feature within each group. The number of groups was set to 4 on both
blocks of GN. To reduce the redundancy of the features after GN layers, we employed a max-pooling
layer in each block as MaxPooling1D (l, r) where l denotes pool-size and r is the stride were set as 4
and 2, respectively. The max-pooling layer helps to reduce the dimensionality of the features from
former layers. The outputs of the max-pooling layers were passed through dropout layers, Dropout
(d) with a probability of 0.25 as a value of d on both blocks for the prevention of overfitting during
the training. Dropout helps to switch off the effects of a few hidden nodes by adjusting the output of
nodes to zero at training.

After both blocks, to unstack the output, a flatten function was used to squash the feature vectors
from the previous layers. Right after a flatten layer, a fully connected (FC) dense layer used as Dense
(n) with the number of n neurons which was set as 32 and also used the L2 regularization parameter
for bias and weights with the value of 0.0001. ELU activation function used in the FC layer. At last,
a FC layer was applied and used sigmoid function for the binary classification. Sigmoid is used to
squeezes the values between the range of 0 and 1 to represent the probability of having 4mC and
non-4mC sites. Figure 1 shows the complete architecture of the presented model.

The DNC4mC-Deep was carried out on the Keras Framework [59]. In DNC4mC-Deep we used
stochastic gradient descent (SGD) optimizer with a momentum of 0.95 and the learning rate is set as
0.005. For the loss function, binary cross-entropy was used. On the fit function, we set the 100 for the
epoch and 32 for the batch size. The checkpoint was used on call back function for saving the models
and their best weights whereas early stopping was also implemented to halt the prediction accuracy at
the time when validation stops improving. The patience level was set to 30 in early stopping.



Cells 2020, 9, 1756 6 of 16

DNC TNC     BE     NCP     NCPNF      MMI
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Redundancy reduction using CD_HIT_EST with 65% similarity

Sequence Encoding Method
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MaxPooling1D

(4 units wide, 2 units of stride)

Dropout(0.25)

Conv1D (32 filters, 5 units wide)

GroupNormalization (4 groups)
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Deep Learning Model
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Probability Score
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… T T T A G A A C C C A T G G C T A T …

… A T C T C A C A G G A G T A T C A G …

-20 0 +20

Figure 1. A complete structure of DNC4mC-Deep.

4. Performance Evaluation Metrics

The performance of the prediction model can be measured by using k-fold cross-validation.
In DNC4mC-Deep we used 10 fold cross-validation to achieve the foremost prediction calculation.
Cross-validation is a resampling technique which provides a precise performance estimation for the
predictive model. It intermixes the entire dataset and divides into a k number of clusters, where each
cluster contains eight folds for training, one fold for validation, and one for testing. The model was
trained and tested k times, recorded performance each time, and concised by taking the mean score for
the performance evaluation. The most common criteria which is used to evaluate the performance
of the predicted models are four metrics; Mathew’s correlation coefficient (MCC), accuracy (ACC),
sensitivity (Sn) and specificity (Sp) with the following mathematical formulations [60–62].

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(1)

ACC =
TP + TN

TP + TN + FP + FN
(2)

SN =
TP

TP + FN
(3)

SP =
TN

TN + FP
(4)

where TP and TN as true positive and true negative indicate the correct numbers of predicted samples
for 4mCs and non-4mCs, respectively. Meanwhile, FP and FN as false positive and false negative
represent the false numbers of predicted samples for 4mCs and non-4mCs, respectively. Besides,
the receiver operating characteristics curve (ROC) and area under the ROC curve (AUC) were also
used to show the performance of proposed model.
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5. Results and Discussion

Six different encoding methods, namely DNC, TNC, NCP, BE, NCPNF, and MMI were used on
various feature encodings for identification of the best classifier for the 4mC site prediction.

5.1. Performance Evaluation of Various Feature Methods on the Training Datasets

By comparing the effectiveness of the proposed methods with i4mC-ROSE model which used
the same datasets, the DNC scheme yielded MCC, ACC, Sn and Sp of 0.829, 0.914, 0.926, and 0.903,
respectively as the best performances for F. vesca dataset (Figure 2). Similarly, it achieved 0.828 for
MCC, 0.914 for ACC, 0.919 for Sn and 0.910 for Sp as the maximum value on the R. chinensis dataset
(Figure 3). The detailed performances of DNC as the best encoding method for ten different models on
the R. chinensis dataset are given in Supplementary File 1. The TNC scheme yielded the highest value
for Sp of 0.909 on the F.vesca dataset. Table 4, summarized the prediction performances by each six
encoding methods and existing state-of-the-art model on F. vesca and R. chinensis datasets.

Furthermore, the performance evaluation by six different encoding models on the cross-species
dataset is shown in Figure 4. The DNC scheme yielded the highest value for all those metrics except
Sp which the TNC scheme achieved the highest value of 0.882 shown in Table 5.

Table 4. Performance evaluation of six encoding methods with state-of-the-art model on training
benchmark dataset for F. vesca and R. chinensis species.

Dataset Method MCC ACC Sn Sp AUC

Fragaria Vesca

DNC 0.829 0.914 0.926 0.903 0.96
TNC 0.825 0.912 0.916 0.909 0.96
NCP 0.797 0.898 0.922 0.874 0.95
BE 0.760 0.879 0.905 0.854 094
NCPNF 0.782 0.891 0.907 0.874 0.95
MMI 0.659 0.829 0.864 0.794 0.90
i4mC-ROSE 0.545 0.767 0.635 0.899 0.88

Rosa Chinensis

DNC 0.828 0.914 0.919 0.910 0.96
TNC 0.811 0.906 0.906 0.906 0.96
NCP 0.811 0.906 0.901 0.910 0.96
BE 0.805 0.903 0.891 0.914 0.95
NCPNF 0.794 0.897 0.892 0.901 0.95
MMI 0.691 0.846 0.833 0.858 0.92
i4mC-ROSE 0.563 0.784 0.668 0.900 0.89
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Figure 2. Grapical demonstration of performance comparison between six encoding methods and
state-of-the-art model on training Fragaria Vesca dataset.
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Figure 3. Grapical demonstration of performance comparison between six encoding methods and
state-of-the-art model on training Rosa Chinensis dateset.
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Figure 4. Grapical demonstration of performance comparison between six encoding methods on the
training cross-species dataset.

Table 5. Performance evaluation of six encoding methods on training benchmark dataset for cross-species.

Dataset Method MCC ACC Sn Sp AUC

Cross-species

DNC 0.814 0.908 0.935 0.876 0.95
TNC 0.800 0.901 0.933 0.882 0.95
NCP 0.779 0.890 0.929 0.843 0.94
BE 0.785 0.893 0.930 0.848 0.95
NCPNF 0.788 0.895 0.933 0.848 0.95
MMI 0.676 0.840 0.896 0.772 0.91

The ROC curve of six encoding models was shown in Figure 5 and compared to the i4mC-ROSE
model for both genomes. On the F. vesca dataset, the DNC and TNC achieved the best performance
with an AUC value of 0.96 followed by NCP, NCPNF, BE, and MMI (Figure 5a). However, the highest
AUC value was presented by DNC, TNC, and NCP of 0.96 equally and next BE, NCPNF, and MMI
provided 0.95, 0.95, and 0.92, respectively on R. chinensis dataset (Figure 5b). Besides, DNC, TNC,
BE, NCNF, and NCP all have the highest value of 0.95 on training benchmark dataset cross-species
(Figure 6).
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Figure 5. auRoc curves of six encoding methods for the proposed model on two training
benchmark dataset.
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Figure 6. auRoc curves of six encoding methods for the proposed model on new cross-species training
benchmark dataset.

5.2. Performance Evaluation of Various Encoding Methods on the Independent Datasets

We considered DNC as an encoder to characterize our proposed model, DNC4mC-Deep, due to its
consistent performance on training datasets. It means we used the DNC4mC-Deep term instead of DNC
scheme on the independent datasets. As represented in Table 6, the DNC4mC-Deep scheme achieved
MCC, ACC, Sn and Sp of 0.635, 0.815, 0.878, and 0.753, respectively on F. vesca dataset (Figure 7).
However, it yielded 0.565 MCC, 0.783 ACC, 0.801 Sn and 0.765 Sp on R. chinensis dataset (Figure 8).
It can be seen clearly, comparing with the i4mC-ROSE method, the performance of the proposed
predictor outperformed on both datasets. Additionally, as can be seen in Table 7, we compared the
performance of six different encoding schemes on the cross-species dataset. The DNC4mC-Deep
yielded the highest values for MCC, ACC, Sp, and AUC of 0.562, 0.780, 0.706, and 0.85, respectively.
However, the NCPNF provided 0.871 Sn as the highest value Figure 9. Furthermore, we reached to
0.89, 0.87, and 0.85 of ROC for F. vesca, R. chinensis, and cross-species datasets which are depicted in
Figure 10.
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Table 6. Performance evaluation between the DNC4mC-Deep and state-of-the-art model on independent
benchmark dataset for F. vesca and R. chinensis species.

Dataset Method MCC ACC Sn Sp AUC

Fragaria Vesca DNC4mC-Deep 0.635 0.815 0.878 0.753 0.89
i4mC-ROSE 0.601 0.797 0.721 0.873 0.89

Rosa Chinensis DNC4mC-Deep 0.565 0.783 0.801 0.765 0.87
i4mC-ROSE 0.535 0.759 0.636 0.881 0.86

Table 7. Performance evaluation of DNC4mC-Deep and other five encoding methods on independent
benchmark dataset for cross-species.

Dataset Method MCC ACC Sn Sp AUC

Cross-species

DNC4mC-Deep 0.562 0.780 0.849 0.706 0.85
TNC 0.542 0.769 0.854 0.678 0.84
NCP 0.530 0.764 0.828 0.696 0.84
BE 0.546 0.770 0.867 0.666 0.84
NCPNF 0.560 0.777 0.871 0.677 0.85
MMI 0.512 0.753 0.858 0.640 0.83
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Figure 7. Grapical illustration of performance comparison between DNC4mC-Deep and state-of-the-art
model on the independent Fragaria Vesca dataset.
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Figure 8. Grapical illustration of performance comparison between DNC4mC-Deep and state-of-the-art
model on the independent Rosa Chinensis dataset.
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Figure 9. Grapical illustration of performance comparison between six encoding methods on the
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Figure 10. auRoc curves of three independent benchmark dataset on DNC4mC-Deep model.

5.3. Interpreting Applications of Deep Learning Models

Deep learning has an ability to accomplish the state-of-the-art results but it is further challenging
to construe the algorithms as a standard statistical model. In the presented work, we demonstrated
two applications to understand why those deep learning models perform well apart from others and
analyze their prediction by presenting the various visualization methods.

The first most authenticated and reliable method to interpret a CNN model for computational
biology is silico mutagenesis which is used in several research works [35,63,64]. We computationally
mutated the nucleotides by mutating each nucleotide of a single sequence with a fixed length of
five nucleotides A, C, G, T, and N. During this systematic approach, the model recomposes the output
of every mutation and stores the output as an absolute difference. Next, the average of mutated
predictive results of the whole dataset was taken.

A heat map was used to show the mutated modifications. CNN has the capability to visualize
each convolution filter as a heat map or weight matrix. Figure 11, depicts the visualization of the
mutation on F. vesca dataset as a local feature while learning the model. In the center of the sequences,
the impact of mutation is more impactful on the final predictions because of C nucleotide which
is representing the methylcytosine modification, the alteration of C nucleotide can lead to different
types of gene modification. In contrast, the other sides of the heat map show the low effect of a
mutation on the prediction which indicates the alteration of nucleotides cannot affect the outcome of
N4-methylcytosine identification.
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Figure 11. Heatmap visualization of silico mutation, where center of sequence with C nucleotide
represents the highest effect on final prediction of Fragaria Vesca dataset.

There is another application to interpret the CNN model for knowing about the important features
in the sequence, which help to gradients of the model for the final prediction. Saliency maps are the
opted option to know about the most influential parts of the sequences for the classification because
many researchers used in their works [36,65,66]. To visualize the effect of each position, we performed
a pointwise product of the saliency map with the binary encoded sequence to acquire the derivative
values for the original nucleotide letters of the sequences (A, C, G, T, and N). Samples were divided
into 2-mer components across all sequences by L− k + 1 formulation. In Figure 12, we can see the
impact of di-nucleotide characters at each position on the output score of the whole F. vesca dataset.
At the center of the bases, di-nucleotide motif CC has high magnitude value which represents the most
important feature motif in the sequences for the prediction of the CNN model. Motif CC also indicates
the N4-methycytosine modification which is our considerable problem for the prediction.

GC CC CC CA AT TA AT TT TA AG GG GC CC CT TA AT TC CA AT TC CC CA AT TT TT TA AA AT TG GA AG GT TC CA AC CA AT TG GA AG
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Figure 12. Saliency map of each di-nucleotide influence on model’s output in the Fragaria Vesca dataset.
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6. Conclusions

In this work, we presented an influential computational model named as DNC4mC-Deep to
identify the N4-methylcytosine sites. There are two benchmark datasets related to the Rosaceae genome
used Fragaria Vesca and Rosa Chinensis, from those two datasets we constructed a new benchmark
dataset: cross-species. We used six different types of feature encoding schemes to input DNA sequence
and fed to the CNN model one after another. The CNN based predictor was derived after applying
the grid search algorithm. The results obtained from each encoding technique, we concluded that
dinucleotide composition (DNC) outperforms and is most imperative for the strong performance
of deep learning algorithms to predict 4mC sites. However, to compare with the state-of-the-art
models, the CNN model with DNC encoding scheme shows the utmost effective performance and
indicates the high capability of prediction. We used different evaluation metrics such as MCC, ACC,
Sn, Sp, and AUC, to acquire the efficiency of the proposed predictor. Finally, we interpreted our
deep learning model from two techniques: silico mutagenesis and saliency map. DNC4mC-Deep can
make a high impact on the biologist to identify the N4-methylcytosine sites and can be used in brain
development abnormalities. In the future, we will extend the work to prepare some new datasets
and make computational models related to deep learning. Meanwhile, we established the webserver
http://home.jbnu.ac.kr/NSCL/DNC4mC-Deep.htm, for users to achieve their desired results easily.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/8/1756/s1.
Supplementary File 1: The detailed performances of ten different models on DNC.
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