Review

Highlights on Genomics Applications for Lysosomal
Storage Diseases

Valentina La Cognata !, Maria Guarnaccia !, Agata Polizzi 2, Martino Ruggieri > and
Sebastiano Cavallaro 1'*

1 TInstitute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18,

95126 Catania, Italy; valentina.lacognata@cnr.it (V.L.C.); maria.guarnaccia@cnr.it (M.G.)

Chair of Pediatrics, Department of Educational Sciences, University of Catania, Via Casa Nutrizione, 39,
95124 Catania, Italy; agata.polizzil@unict.it

Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental
Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”,

Via S. Sofia, 78, 95123 Catania, Italy; m.ruggieri@unict.it

*  Correspondence: sebastiano.cavallaro@cnr.it; Tel.: +39-095-7338128

check for

Received: 15 July 2020; Accepted: 11 August 2020; Published: 14 August 2020 updates

Abstract: Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem genetic
disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of
non-degraded substrates inside the lysosome. Although the cellular pathogenesis of LSDs is complex
and still not fully understood, the approval of disease-specific therapies and the rapid emergence of
novel diagnostic methods led to the implementation of extensive national newborn screening (NBS)
programs in several countries. In the near future, this will help the development of standardized
workflows aimed to more timely diagnose these conditions. Hereby, we report an overview of LSD
diagnostic process and treatment strategies, provide an update on the worldwide NBS programs, and
discuss the opportunities and challenges arising from genomics applications in screening, diagnosis,
and research.
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1. Introduction

Lysosomal storage diseases (LSDs) are a heterogeneous group of heritable (inborn) metabolism
defects that affect the function of lysosomes. This group comprises about 70 monogenic disorders of
lysosomal catabolism and is characterized by a gradual accumulation of non-degraded substrates inside
the lysosome, which in turn leads to cellular dysfunction, tissue damage, and death [1]. The majority of
LSDs are inherited as autosomal recessive traits (except for Fabry, Hunter, and Danon diseases that are
X- linked) and are caused by mutations in genes encoding lysosomal proteins (i.e., acidic hydrolases,
integral membrane proteins, and activator or carrier proteins) whose functional deficiencies trigger the
pathogenetic cascade [2]. Although each disorder is rare, per se, with estimated incidences ranging
from 1 in 50,000 to 1 in 250,000 live births, LSDs as a group are relatively common disorders (1:5000 live
births) [1].

LSDs can be categorized by (a) the biochemical type of stored material (e.g., sphingolipidoses,
mucopolysaccharidoses, glycoproteinoses); (b) the post-translational modification of lipofuscin
degradation or metabolism defects; (c) the dysfunctions in membrane proteins; or (d) the altered
lysosome-related organelle (LRO) defects (Figure 1).

Clinically, LSDs may present with a broad range of phenotypes reflecting the age of onset (e.g.,
more severe infantile forms vs. later/adult milder forms) [3], the extent and severity of nervous system
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and/or systemic involvements, and the related variability of signs and/or symptoms. In general,
the disease progresses and evolves relentlessly over time. Signs and/or symptoms mainly include
facial dimorphisms, psychomotor developmental delay and cognitive decline, seizures, impairment of
vision, recurrent infections, muscle deficits, organomegaly, immune defects, and skeletal changes, all
having a severe impact on prognosis and influencing the quality of life for patients and families [4,5].
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Figure 1. Disorders of lysosomes and lysosome-related organelles (LROs). Lysosomal storage diseases
(LSDs) and LROs have been subclassified according to the biochemical type of stored material
(sphingolipidoses, mucopolysaccharidoses, glycoproteinoses, lipid storage diseases) or to the integral
membrane proteins, post-translational modification, and lipofuscin metabolism defects. The causative
gene is specified in parentheses.

2. The Biology of Lysosomes

Lysosomes are the key cellular organelles in macromolecule catabolism, responsible for the
breakdown and recycling of a wide range of complex metabolites including glycosides, lipids,
phospholipids, proteins, and nucleic acids. This catabolic function is orchestrated by approximately
60 unique acidic hydrolase enzymes (glycosidases, sulfatases, peptidases, phosphatases, lipases,
and nucleases), which are located within the lysosomal lumen where the enzyme and the substrate
interact with each other. While the enzymes are mainly synthesized within the endoplasmic reticulum
(ER), tagged with a mannose-6-phosphate (M6P) residue in the Golgi apparatus and then trafficked
into the lysosome [6,7], the substrates are transported through different routes according to the nature
of the cargo. Materials from outside the cell are delivered through the endocytosis pathway via
clathrin-mediated or caveolin-mediated endocytosis vesicles. The cell’s own macromolecules and
metabolites are processed and degraded through autophagy, in one of its functional forms including
macroautophagy, microautophagy, and chaperone-mediated autophagy [8]. Recent evidence shows
that lysosomes are not only catabolic organelles, but they also function as metabolic hubs controlling
nutrient sensing, amino-acid and ion homeostasis, vesicle trafficking, and cellular growth, and they
establish contact sites with other organelles (e.g., mitochondria, ER, or peroxisomes) [7,9].

3. Diagnosis and Therapeutic Strategies

Diagnosis of LSDs is often a challenge for clinicians, owing to the rarity of single disorders and to
the non-specificity of signs and/or symptoms, often attributed to other neurological and/or systemic
diseases. Before the spread of expanded newborn screening, individuals were diagnosed years after
sign and/or symptom onset, when the disease was already advanced and interventions proved less
efficacious [10].
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The typical diagnostic work-up for LSDs includes taking a detailed history on the clinical
presentation(s) and course of disease; measuring the activity of single enzymes or protein abundance in
leukocytes, fibroblasts, urine, or rehydrated dried blood spots (DBS); conducting various laboratory,
ophthalmological, otolaryngology, ultrasonographic, neurophysiological, and imaging investigations [11].
When enzyme levels fall below the average, second-tier confirmatory biomarker tests and gene sequencing
are performed to identify DNA-specific mutations affecting gene function (Figure 2) [2]. Moreover,
prenatal diagnosis for some LSDs is emerging, using uncultured chorionic villi [12,13].
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Figure 2. Diagnostic flowchart for Gaucher and Fabry diseases. NBS, newborn screening; LysoGb1,

glucosylphingosine; LysoGb3, globotriaosylphingosine; ERT, enzyme replacement therapy; SRT,
substrate reduction therapy.

Major advances have been made in recent years in our understanding of the pathophysiology of
LSDs [1]. This has allowed researchers to identify multiple potential clinical interventions, targeting
different events in the pathogenetic cascade (Figure 3), and enabled clinicians to expand, at least
for some LSDs, the opportunities for therapeutic strategies besides the supportive medical and
physical therapies (e.g., management of neurological complications, ventilatory or nutritional support,
orthopedic interventions in order to alleviate deformities, and several others) [14].

The cornerstone for current treatment paradigms is enzyme replacement therapy (ERT), which is
considered the standard of care for Gaucher, Fabry, Pompe disease, and mucopolysaccharidosis I
(MPSI) [15]. Approved around the nineties by the US Food and Drug administration (FDA) Committee
for ERT, the current recombinant functional enzyme is delivered via periodic intravenous infusion
whose uptake occurs via the endocytosis pathway. Timely initiation of treatment is crucial for an optimal
clinical outcome [16]. Major disadvantages of ERT still include the inability of the recombinant enzymes
to diffuse easily in all affected tissues (in particular into the central nervous system, due to their large
size), [17], the great variability in patient immune responses, and the transient therapeutic benefit [15].

Hematopoietic stem cell transplantation (HSCT) uses hematopoietic stem cells from healthy
donors. These cells can repopulate specific tissues and locally release functional lysosomal hydrolases
in the extracellular space and into the blood circulation [18]. Despite the high morbidity and mortality
rate due to graft rejection and infection, this therapy remains the first choice of treatment for children
with MPS IH (Hurler disease), since it prevents the development of neurological symptoms and
increases life expectancy, especially when performed early [19].

Other strategies are directed towards restoring the equilibrium between substrate synthesis and
degradation by lysosomal enzymes (the storage equation of LSDs) [7]. In particular, substrate reduction
therapy (SRT) approved by the FDA in 2003 (e.g., miglustat, employed for Gaucher disease) uses
small-molecule enzyme inhibitors that slow down the build-up process of macromolecules, reducing
the storage amount in lysosomes, and inhibiting the biosynthetic pathways [20]. In contrast to ERT,
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SRT drugs are orally administered and are stable at ambient temperature. They do not generate
immune reactions and cross the blood-brain barrier, but they have a slower onset of action than ERT
and produce adverse effects or complications relating to drug metabolism [7].

N
()
L,,
: : s o . \ r
Correction of genetic or transcriptional information: . B e,
Transplantation from healthy donor: // N\
Gene therapy - Injection of hematopoietic stem cells (HSCT) / N\ \\
Gene editing (e.g CRISPR-Cas3) in newborns \ )
/<' 9 Ir %
RNA-based strategies —— Lg |
4 /
f ~ y
=) I‘ 2/ 4
— - AN e
A ~ |
@) .
\ (_’)\ b E’

synthesis (SRT)

m Inhibitition of substrate \
G‘;%

Mutated enzyme |

Improving folding and stability of

mutated enzymes: ~ ., repleacement (ERT) /

- Pharmacological chaperone (‘\

Proteostasis regulators

T P

Figure 3. Current lysosomal storage disorder therapeutic strategies. Gene therapy and gene editing
approaches aim to introduce a functional gene or to correct the defective gene or transcript inside
cells. Hematopoietic stem cell transplantation (HSCT) repopulates specific tissues and allows local
release of functional lysosomal hydrolases by healthy donor cells. Substrate reduction therapy (SRT)
inhibits substrate synthase at the early Golgi compartment. Enzyme replacement therapies (ERTs)
deliver functional enzymes to lysosomes via the endocytosis pathway. Chaperones can stabilize the
mutant enzyme and partially restore catalytic activity in the endoplasmic reticulum (ER) and overall in
lysosomes. Lastly, proteostasis modifiers stabilize transcription factors within the nucleus, improve
lysosomal enzyme expression and translation in the ER, reduce lysosomal membrane permeability, and
improve lysosomal function.

Pharmacological chaperone therapy (PCT) (e.g., migalastat for Fabry disease) uses inhibitory
molecules, which target mutant lysosomal enzymes to favor their native conformational folding,
stability, catalytic activity, and correct trafficking, also extending their half-life [8]. Some studies
evidenced that migalastat provides clinical results comparable to those of ERT [21]. Chaperons were
also used efficaciously in combination with ERT to treat patients with Pompe disease [22]. Unfortunately,
this kind of treatment is mutation-sensitive and clinically impractical owing to the great efforts needed
to find an optimal drug dosage.

New-generation pharmacological strategies are rapidly advancing into clinical trials, including
proteostasis modifiers and gene therapy.

Proteostasis modifiers are able to regulate the components of the proteostasis machinery (a multiple
regulatory integrated system including protein synthesis, structural folding, post-translational
modification, trafficking, and degradation) and have already been suggested for treating Gaucher
disease and GM2 gangliosidosis (Tay—Sachs disease) [8].
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LSDs are excellent candidates for gene therapy for many reasons: not only are they well-known
single-gene disorders, but also the expression of the enzyme is generally not subject to complex
regulatory mechanisms. In addition, even a small increase in enzymatic activity is sufficient to revert
the clinical phenotype [23]. A broad range of different strategies may be exploited depending on the
tissues that need to be targeted and the characteristics of the protein that must be replaced. Expression
cassettes containing the functional gene may be delivered to cells via direct gene transfer (by viral-based
systems) or via indirect gene transfer (by re-implanting engineered autologous patient stem cells back
into the donor) [24].

Promising perspectives come from genome editing platforms (ZFN, TALEN, and CRISPR-Cas9
systems), which have recently enabled the possibility of modifying target sites within the genome in
a precise manner [25,26]. The combination of nuclease-mediated genome editing with autologous
hematopoietic stem cells or induced pluripotent stem cells (iPSCs) may represent a milestone for
treatment of LSDs, as it would lower the overall risk of infection during treatment and avoid
rejection (graft-versus-host disease) [25,26]. Both preclinical (in vitro, in vivo, and ex vivo) and
clinical studies using different editing-based strategies have already been started including trials
for mucopolysaccharidoses [27] and GM2-gangliosidoses [28]. The opportunities granted by RNA-based
therapies are equally interesting, as they support the feasibility of reverting the LSD phenotype by partially
rescuing splicing defects [29]. Indeed, about 5-19% of LSD-causing mutations affect the pre-mRNA
splicing process, and in some LSDs, single splicing changes can account for up to 40-70% of pathogenic
alleles [29]. Two main splicing therapy strategies have been used for LSDs: (i) modified U1 small nuclear
RNAs (UlsnRNA) tested in cellular models of Sanfilippo C disease (or Mucopolysaccharidosis IIIC) [30]
and Fabry disease [31], and (ii) the antisense oligonucleotide (AONs) approach used in cellular models
of Niemann Pick C [32] and for the late-onset form of Pompe disease [33,34].

4. LSD Worldwide Newborn Screenings and Methodological Approaches

The rationale for mandatory (expanded) NBSs has historically included serious health conditions
with an effective therapy, relatively easy and reliable disease markers, and evidence for the beneficial
effect of early treatment in preventing severe disabilities or even death (Wilson and Jungner screening
criteria). However, many adaptations on Wilson and Jungner criteria have occurred in the last decades,
reflecting better knowledge of the natural history of many such conditions, new appraisals on logistical
and ethical issues, and the advances in genetic technology [35,36].

Until 2006, when the FDA approved alfa-glucosidase for the treatment of Pompe disease [1], none of
the LSDs was included in NBS programs. The concept of using DBS extracts for lysosomal enzyme
testing, as well as the existence of therapeutic options and the development of new screening tests,
opened up the potential for NBS in LSDs. Although widespread internationally, the inclusion of LSDs in
expanded NBS is still debated as reflected by the large differences in screening programs worldwide
(Figure 4 and Supplementary Table S1). The most active country is certainly the US, where the Advisory
Committee on Heritable Disorders in Newborns and Children (ACHDNC) was charged to draw up
national recommendations for guiding and supporting states in the development of screening programs.
The ACHDNC set out the Recommended Uniform Screening Panel (or RUSP), a list of diseases including
35 core conditions and 26 secondary conditions, the Committee recommends every baby should be
screened for. Among LSDs, Pompe disease and MPS I are considered the most favored for inclusion,
and, since 2016, these two conditions have been included in RUSP (Figure 4) [37,38]. Meanwhile,
pilot LSD screening programs have been implemented in a number of countries worldwide, including
Italy [39,40]. In Northern and Central Italy, in particular, four regions (Piemonte, Veneto, Tuscany,
and Umbria) started expanded NBS programs for Pompe, Fabry, Gaucher, and MPSI promoted by
regional Health Government indications (Figure 4), foreshadowing its extension in Italy to a larger
newborn population [41-47]. As a consequence, thanks to an amendment published by the Italian
government in December 2018 (Gazzetta Ufficiale n. 302), LSDs are currently included in the national
screening program.
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Figure 4. Newborn screening programs (NBSs). The left side shows the worldwide distribution of NBSs
including Pompe, MPSI, Krabbe, Fabry, Gaucher, and Niemann Pick diseases. Screening programs are
mandated for some regions, under development, or in pilot phases for others (see Supplementary Table
S1). The right side shows the pilot Italian regional screening programs for LSDs (brackets indicate the
targeted genes; please refer to references reported above).

The two main platforms currently used for screening multiple LSDs are the digital microfluidic
fluorometry (DMF) platform and the tandem mass spectrometry (MS/MS) platform [37,48-51]. DMF is
the multiplexing advancement of the classical enzymatic fluorescent assay based on synthetic
4-methylumbelliferone (4-MU). It has been developed by Advanced Liquid Logic, Inc. (now Baebies,
Inc. Durham, NC, USA) and is currently used for clinical diagnostic purposes and for NBSs. DMF is
based on submicroliter droplets, which are moved on an electrode-plate chip through a process known
as electrowetting. In this particular “spatial multiplexing”, each LSD enzyme reaction is performed
on a single droplet under its individually optimized conditions (pH, inhibitors, buffer). The latest
version simultaneously measures the activity of five enzymes to diagnose MPS-1, MPS-II, Pompe,
Fabry, and Gaucher diseases. MS/MS is used to detect in a 6-plex assay the enzymatic products
responsible for Pompe, MPS-1, Fabry, Gaucher, Krabbe, and Niemann-Pick-A/B diseases. The method
currently commercialized as NeoLSD by PerkinElmer Corp starts with an incubation phase of the
sample with a mixture of the six substrates and internal standards in a single buffer, followed by
liquid-liquid extraction and flow-injection MS/MS. Detailed comparative information (space and
manpower requirements, approximate costs, analytic precision) between MS/MS vs. DMF assays
are listed in previous studies [37,48,49,51]. The DMF platform workflow is simpler, requires less
maintenance, and generates results faster than MS/MS, providing results within the same day of
specimen analysis. Conversely, MS/MS is more accurate and precise, and it can be used to assay
biomarkers for which no fluorimetric methods exist [37,48,49,51].

5. Opportunities and Challenges for Genomics in LSDs

Genome-scale sequencing provides a powerful diagnostic tool for patients affected by conditions,
which escape the diagnosis by traditional genetic investigation, and offers a range of new opportunities
for genomic medicine. With the overwhelming entry of massive parallel sequencing (NGS) into
modern medicine, scientists and clinicians started to wonder whether genomic sequencing could
replace conventional biochemical tests by improving the screening of newborns or if it could just be
useful as an optional supplementary tool [52]. A major driving force for this alternative approach was
the rapidly decreasing price of NGS (competitive with current NBS prices) coupled with the vastly
improved read depths and accuracy of sequencing platforms [53]. Considerations about the context of
using sequencing information are addressed elsewhere in this issue (Figure 5).
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Figure 5. Next generation sequencing (NGS) applications in LSDs. Practical and ethical issues raised
by the use of NGS in NBS are shown in the blue boxes; benefits derived from NGS use in diagnostic
settings are shown in the green boxes.

In a practical diagnostic setting, the goal of genome-scale sequencing is to identify genetic
variants so as to provide a molecular etiology for patients’ clinical manifestations, considering all
other variants as incidental findings. The high-throughput ability of NGS has been successfully
used to diagnose LSDs [54-59], both in the form of exome and targeted sequencing. This is
particularly useful when applied to specific diagnostic contexts, including carrier screening studies in
high-risk populations (e.g., the Ashkenazi Jewish population) [60,61], prenatal diagnosis [62], unsolved
cases where traditional molecular diagnostic approaches have failed [63], unclear or suspected LSD
cases [64,65], as well as in defining genotype—phenotype correlations [66] or to find out genetic disease
modifiers [67]. More interesting is the use of NGS to differentiate genetically heterogeneous diseases
with overlapping clinical phenotypes, such as Pompe disease, limb-girdle muscular dystrophies [68,69],
and Gangliosidosis [70], or to investigate mosaic conditions [71,72]. Many companies developed
commercial panels and offer direct-to-consumer sequencing services for suspected LSD cases, utilizing
custom panels that target few or many genes (causative genes, lysosomal pathway-related genes, or
peroxisome disorder-related genes) and are based on arbitrary research (Supplementary Table 52).

In contrast, the application of genomic sequencing for NBS substantially raises a whole host of
issues encompassing several disciplines, which need to be appropriately discussed. One major challenge
is how to accurately interpret the clinical significance of incidental findings (variants of unknown
significance, VUS), including peri-gene sequence variants, mutations localized in intronic regions and
in UTRs, or synonymous variants having an impact on gene regulation. Mutational databases for
LSDs are already available; however, the complete list of LSD pathogenic mutations is still expanding.
Moreover, there is a lack of sufficiently large ethnicity-specific genetic datasets leading, in turn, to the
risk of falling into free interpretation of VUS. A combined international effort to generate large, freely
available datasets, better prediction algorithms, and standardized tests in terms of laboratory work (e.g.,
sequencing platforms, read depths, mean and minimum coverage) should be regarded as of primary
importance to solve data interpretation [53]. More importantly, there is still a poor understanding of
genotype-phenotype correlations. Most LSD patients are complex heterozygotes, the pathogenicity of
many alleles is still unknown, and genotype characterization is not enough to predict disease status in
the present or the future [53]. NGS might reveal patients in their early years with adult-onset disease,
who might not require treatment for decades, if not at all. Further concerns regard the professional
responsibility and individual or parental choices about the types of findings that should be reported,
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potential discriminatory or insurance uses of sequencing information, long-term storage of genomic data,
unnecessary interventions, and costly long-term follow-up care, monitoring, and counseling [52,73].
Nonetheless, attempts to expand the use of DNA sequencing in NBS have been carried out
using customized NGS panels targeting few relevant genes or alternatively using a WES approach
and bioinformatics analysis ad hoc [74,75]. On the other hand, genotyping-based NBS seems the
better solution for high-risk neonates admitted to the neonatal intensive care unit (NICU), or for
those disorders with no existing biochemical marker [76,77]. For example, in the case of nephropathic
cystinosis, PCR- and NGS-based analyses have been used for NBS [78]. Therefore, as outlined by the
Newborn Sequencing in Genomic Medicine and Public Health (NSIGHT) consortium, “sequencing
technology can be beneficially used in newborns when its use is nuanced and attentive to context” [73].

6. Second-Tier Confirmatory Biomarkers: Which One?

The increasing number of NBS pilot studies worldwide has revealed an unexpectedly high
number of false-positive samples and has highlighted the need to introduce second-tier testing
in order to reduce the recall rate and assist in disease diagnosis. Several primary or secondary
accumulating metabolites (i.e., molecules directly or indirectly enhanced as a result of defective
lysosomal function) have been proposed as candidate biomarkers, as they are easily detectable in
plasma or urine [3,79]. Lysosphingolipids for sphingolipidoses (LysoGb1 for Gaucher disease, LysoGb3
for Fabry disease, LysoSM and LysoSM509 for Niemann-Pick disease type A/B and C, GalSph for
Krabbe disease), heparan and dermatan sulphates for MPSs, and glucose tetrasaccharide for Pompe
have been proposed as candidate confirmatory biomarkers for differentiating patients with pathogenic
mutations, pseudodeficiency alleles, and/or benign variants at the time of screening [39,80-85].
However, uncertainties remain in the use of these metabolic biomarkers, and further studies are
necessary to achieve the development of definitive pipelines.

For the past few years, the search for new biomarkers has shifted towards microRNAs [86-88],
opening an interesting perspective for genomics applications. Indeed, specific patterns of circulating
miRNAs can identify patients with Fabry or Pompe diseases, and they could be useful for predicting
the evolution of the disease or for assessing responses to therapy as well. Some of these miRNAs, in
particular, were associated with heart problems and endothelial dysfunctions in Fabry patients, or
they significantly correlated with phenotype severity, muscle dysfunctions, and Pompe disease-related
patho/pathways (autophagy, muscle regeneration, muscle atrophy) [86-88].

7. The Importance of a Timely Diagnosis

As anticipated in the introduction, LSDs are rare genetic diseases not frequently encountered in the
medical practice, and they often receive inadequate clinical and social consideration compared to other
disorders. Nevertheless, taken together, they affect a certain percentage of the overall population (i.e.,
1:5000 live births) mostly in infancy or childhood, although patients with late-onset/milder phenotypes
are expected and represent the most subtle and difficult cases to identify. Indeed, while positive-NBS
children with a pediatric onset of LSDs are followed by expert pediatricians, late-onset patients without
a previous clinical history may be misdiagnosed for many years. Unfortunately, no pathognomonic
traits for LSDs exist, as they are characterized by a non-specific, likely equivocal multisystemic
symptomatology that combines systemic manifestations with overlapping neurological signs, and
they are often indistinguishable even biochemically (e.g., MPSIII/Sanfilippo syndromes A-B-C-D,
Table 1). These clinical and practical issues aggravate the quality of life for patients and families,
as they not only suffer from their disease manifestations but also undergo continuous psychological
stress caused by the uncertainty of both diagnostic responses, uncertain outcomes, and non-resolutive
therapeutic solutions.
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Table 1. Disease name, causative genes, age of onset, accumulating substrates, and main clinical manifestations of MPS.

Neurologic

Skeletal

Chest & Abdomen

Head

Seizures
Hydrocephalus
Sleep disturbances
Neurodegeneration
Cognitive deficits
Developmental delay
Dysostosis multiplex
Joint stiffness and contractures
Short stature
Hepatosplenomegaly
Hernias
Respiratory tract infections
Heart valvular disease
Enlarged tongue
Corneal clouding
Retinal degeneration
Teeth abnormalities
Hearing loss

Coarse facial features

Onset of symptoms

Stored material

Gene

Disease name

1 year
IDUA DS, HS 3-8 years

MPS IH
MPS IH/S

>5 years

MPS IS

IDS DS, HS 2—4 years +
SGSH

NAGLU
HGSNAT

MPS1I
MPS IITA

+ 4+ +

++ + +

2-6 years

HS

MPS IIIB
MPS IC

GNS
GALNS
GLB1

MPS IIID

+ +

1-3 years

KS

MPS IVA
MPSIVB

Infancy

DS
DS, HS

ARSB

MPS VI

+

1-4 years

GUSB

MPS VII

<1 year

HA

HYAL1

MPS IX

HS: heparin sulfate; DS: dermatan sulfate; KS: kermatan sulfate; HA: hyaluronate.
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Nowadays, genetic analysis represents the only valid aid to rapidly diagnose and differentiate
suspected LSDs cases, allowing causative mutations to be identified. The need to introduce broad
and ad hoc designed genetic tests (e.g., targeted gene panels) in diagnostic workflows is becoming
increasingly clear in order to easily identify LSDs and draw up informative guidelines that can
properly direct both clinicians and geneticists towards the right criteria for results interpretation and
diagnostic report writing. Timely diagnosis through genetic/genomic applications is key to halt disease
progression, reduce psychological burden, optimize clinical management, and provide appropriate
genetic counseling. Moreover, molecular profiling and genomic sequencing information may prompt
the design of novel therapeutic drugs targeting specific mutations. The development of more effective
treatments will open the possibility for new clinical trials that address stratified patient subclasses and
will pave the way to personalized medicine. This, in the near future, will improve the quality of life
of patients and their families and reduce both direct and indirect (e.g., care-givers services) costs to
national health services and families.

8. Conclusions

LSDs are multisystem disorders with heterogeneous genetic profiles and overlapping clinical
manifestations. Although they are monogenic diseases, the procedures and/or protocols for early
diagnosis, management, and implementation of newborn screening programs (NBSs) deserve greater
attention from the scientific community. Many efforts and elaboration phases by institutional
networks and researcher partnerships are ongoing, purposing the production of benefits for patients
with these rare, life-threatening diseases. MetabERN (Metabolic European Reference Networkgene,
available at https://metab.ern-net.eu/), for example, is a European initiative aimed at developing a
real-time consultation platform for clinical decision-making processes, and it fosters translational
research programmers across inherited metabolic disease. IMI (Innovative Medicine Initiative, an EU
public—private partnership), instead, is a funding project for Horizon 2020 with the goal of shortening
the path to diagnosis by using newborn/pediatric genetic screening via application of advanced digital
technologies (Call name H2020-JTI-IMI2-2020-23-two-stage). Application of molecular NGS-based
testing (either in the form of WES or targeted gene panels) in this perspective represents a real and
valuable aid to provide timely and correct diagnosis, detect carriership status, and ensure genetic
counseling for family planning, thus improving the overall standards of care for patients and families.
Consolidation of existing fragmented efforts will result in improved clinical and patient-oriented
outcomes, increase public understanding around rare diseases, and potentially lead to better rare
disease policies as well as improved value-based healthcare.
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